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Abstract: Background: The viral neutralization assay is the gold standard to estimate the level of
immunity against SARS-CoV-2. This study analyzes the correlation between the quantitative Anti-
SARS-CoV-2 QuantiVac ELISA (IgG) and the NeutraLISA neutralization assay. Methods: 650 serum
samples were tested for both SARS-CoV-2 anti-spike (anti-S) immunoglobulin G (IgG) and neutral-
izing antibodies (nAbs) using kits by EUROIMMUN, Germany. Results: There was a significant
correlation between levels of anti-S and nAbs (Spearman’s rho = 0.913). Among the positive samples
for anti-S, 77.0% (n = 345) were positive for nAbs. There was a substantial agreement between anti-S
and nAbs (Cohen’s kappa coefficient = 0.658; agreement of 83.38%). Considering NeutraLISA as a
gold standard, anti-S had a sensitivity of 98.57%, specificity of 65.66%, NPV of 97.5%, and PPV of
77.0%. When the anti-S titer was greater than 18.1 RU/mL (57.9 BAU/mL), nAbs were positive, with
a sensitivity of 90.0% and specificity of 91%. Conclusions: A titer of SARS-CoV-2 anti-S IgG can be
correlated with levels of nAbs.

Keywords: COVID-19; neutralizing antibodies; spike antibodies; receiver operating characteristic
(ROC) curve; cutoff point

1. Introduction

The SARS-CoV-2 genome encodes the spike (S), nucleocapsid, membrane, and en-
velope structural proteins. The S protein plays a key role in viral infection and patho-
genesis. It comprises subunits S1 and S2: S1 harbors the N-terminal domain (NTD) and
the receptor-binding domain (RBD) [1]. The RBD on the viral spike interacts with the
angiotensin-converting enzyme 2 (ACE2) on host cells required for cell entry [2].

The neutralizing ability of antibodies targeting the S1/RBD has been reported by
several studies. Neutralization is attributed to the ability of antibodies to block the S1/RBD
binding to the ACE2 receptors in the respiratory tract [2]. Neutralizing antibodies (nAbs)
primarily prevent viral infection by blocking the early step of infection, viral entry, and
especially by interfering with virions binding to their receptor. Neutralizing antibodies can
be estimated using in vitro neutralization tests, and their presence is often correlated with
protective immunity [3].

In the era of COVID-19, it is important to characterize the nature of SARS-CoV2
antibodies in terms of their binding (mere mechanical blocking) and neutralizing ability
(functional neutralization of virions). This characterization is necessary to assess protective
antiviral immunity following infection or vaccination. The detection of the neutralizing
ability of antibodies is also required to identify donors for convalescent plasma therapy [4].
The Food and Drug Administration (FDA) has recommended that convalescent plasma
with a virus-neutralizing antibody titer of ≥1:160 be used for therapeutic transfusion [5].

Gomaa et al., reported that among 227 plasma samples from convalescent donors
tested for nAbs against SARS-CoV-2 using a microneutralization assay, a third of the tested
samples were negative for nAbs [6]. Furthermore, SARS-CoV-2 humoral immune responses
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have been studied extensively in a multitude of serosurveillance studies worldwide to de-
scribe pandemic dynamics, epidemiology, and associated risk factors. The epidemiological
surveys primarily used anti-S tests, while a smaller percentage utilized viral neutralizing
tests [7,8]. Despite the importance of nAbs in protection against SARS-CoV-2 infection, the
level of nAbs has not been precisely correlated with the protection ability [9].

Several serological tests are available to determine the humoral immune response
elicited by SARS-CoV-2 infection. These are based on techniques such as enzyme-linked im-
munosorbent assays (ELISAs), chemiluminescent immunoassays (CLIAs), and lateral flow
immunoassays (LFIAs). Concerning tests for nAbs, two tests are considered gold standards.
These are the plaque reduction neutralization test (PRNT) and the viral neutralization
test (VNT). The PRNT can only be performed for smaller sample sizes by experienced
personnel in biosafety level-3 (BSL-3) laboratories. The pseudovirus neutralization test uses
a replication-deficient virus and does not require a BSL-3 laboratory, but it is more difficult
to perform and is not suitable for high throughput samples. Owing to this complexity,
PRNTs and VNTs are not used routinely, but they are utilized for research purposes only.
Manufacturers have developed surrogate enzyme-linked immunosorbent assays (sELISAs)
to overcome these drawbacks. Surrogate VNT (sVNT) tests are carried out via the competi-
tive binding of anti-SARS-CoV-2 neutralizing antibodies with the angiotensin-converting
enzyme 2 (ACE2) to block an enzyme-labeled S-RBD protein from binding its natural
ligand on a microtiter plate. Surrogate ELISAs are high-throughput, cheaper, faster, and
can be performed under standard laboratory safety conditions. However, there are limited
data on how they compare to PRNTs and VNTs [10–12]. Consequently, the association
between the results of tests measuring the levels of anti-S binding antibodies and those
measuring the blocking neutralizing ones is gaining importance with time [13,14]. This
correlation between both types of antibodies might allow the titer of anti-S antibodies to be
used as an indicator, or predictor, substituting the more sophisticated neutralization tests.
Several anti-S immunoassays are commercially available, but there is wide variability in
their correlation with nAbs [15].

Using a commercial anti-S test which has a good correlation with nAbs and identi-
fying a cutoff value indicating neutralization are important when it comes to predicting
protective immunity. Therefore, we used two commercially available ELISA kits (anti-S
and a neutralizing assay) to test their correlation and then identify an anti-S cutoff value
which indicates neutralization.

2. Methods
2.1. Study Setting and Sample Size Determination

This cross-sectional study was carried out over a period of six months (January–June
2021) during the early waves of COVID-19 in Egypt. The serum samples were part of a
larger survey intended to determine the seroprevalence of anti-S in the Egyptian commu-
nity [16]. Based on the seroprevalence rate of SARS-CoV-2 antibodies in our previously
mentioned survey (estimated to be 46.3%) [16], a minimum sample size of 388 subjects
(including 155 subjects testing positive by NeutraLISA) was required to achieve a minimum
power of 80% for detecting a change in the sensitivity percentage of a screening test from
0.70 to 0.80 [17], based on a target significance level of 0.05. The sample size was calculated
using Power Analysis and Sample Size (PASS) 11 software.

2.2. Data Collection Methods and Tools

A total of 650 serum samples were tested for both SARS-CoV-2 anti-S and nAbs using
kits by the same manufacturer (EUROIMMUN, Lübeck, Germany). The kits used in the
study were the anti-SARS-CoV-2 Quantivac enzyme-linked immunosorbent assay (ELISA)
(EUROIMMUN, Lübeck, Germany), and the SARS-CoV-2 NeutraLISA kit (EUROIMMUN,
Lübeck, Germany). The first ELISA test was used to quantify immunoglobulin G (IgG)
against the S1 domain of the viral spike protein of SARS-CoV-2 using a standard curve.
The principle of the test depends on coating the microtiter plate with the S1 domain of the
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viral spike protein of SARS-CoV-2. After the addition of serum samples, bound antigen-
antibody complexes were detected by the addition of another enzyme-labeled anti-human
IgG (enzyme conjugate).

The second kit was used to measure the neutralizing antibodies in a competitive
ELISA manner. The principle of this test depends on the coating of the microtiter plate
with the S1/RBD domain of the spike antigen of SARS-CoV-2, followed by the addition of
samples dissolved in ACE-2 biotinylated buffer. If nAbs are present, they compete with the
binding sites of the ACE-2 for the S1/RBD receptors. The intensity of the color formed is
inversely proportional to the level of antibodies in the sample [18]. Tests were performed
and interpreted according to the manufacturer’s instructions.

The results of anti-S are expressed in relative unit/mL (RU/mL) and were catego-
rized as follows: negative (<8 RU/mL), borderline (titer: 8–<11 RU/mL), and positive
(titers ≥11 RU/mL). For our study, we considered borderline results to be positive. Accord-
ing to the manufacturer, the specificity of the QuantiVac ELISA (IgG) test was 99.8% [19].

The obtained results in RU/mL were multiplied by 3.2 and calculated in binding
antibody unit/mL (BAU/mL), which is the first International Standard of the World Health
Organization to detect SARS-CoV-2 neutralizing antibodies [20].

Concerning the detection of nAbs, a surrogate viral neutralization test (sVNT) with
the competitive ELISA method was used (NeutraLISA, EUROIMMUN, Lübeck, Germany).
This test measures the neutralizing activity of several immunoglobulins, which are Igs
A, M, and G [18]. According to EUROIMMUN, this kit has a specificity of 99.7% and
its sensitivity is 95.9% [21]. As instructed, the percentage inhibition (%IH) results were
interpreted as follows: % IH < 20 were considered “negative”, % IH ≥ 20 to <35 were
considered “borderline”, while % IH ≥ 35 indicated a “positive” result [18]. Similar to
our approach with borderline results for anti-S, borderline results for nAbs were also
considered positive.

Tests of association and quantitative correlation were performed between both anti-
bodies. After ensuring a good correlation existed between both tests, a receiver operating
characteristic (ROC) curve analysis was constructed to generate a cutoff point for anti-S
above which the NeutraLISA test was predicted to be positive at an optimum sensitivity
and specificity.

2.3. Statistical Analysis

Statistical analysis was performed using SPSS-V25 (IBM Corp., Armonk, NY, USA)
and Medcalc. Concordance analyses (Cohen’s Kappa) were performed to compare the
results of each antibody assay and the results were interpreted as follows: value ≤ 0 as no
agreement, 0.01–0.20 as none to slight, 0.21–0.40 as fair, 0.41–0.60 as moderate, 0.61–0.80 as
substantial, and 0.81–1.00 as almost perfect agreement [22]. Receiver operating charac-
teristic (ROC) curve analysis was used to identify optimized thresholds (cutoff indices).
Means were given with standard deviation (SD) and medians with interquartile range
(IQR). For comparison of means, the Mann–Whitney U and Kruskal–Wallis tests were
used. The Spearman’s correlation coefficient was determined for the linear correlation of
two variables; p-values < 0.05 were considered significant differences.

3. Results

A total of 650 serum samples were tested for both anti-spike and neutralizing antibod-
ies against SARS-CoV-2 using kits by the same manufacturer (EUROIMMUN, Germany).
Borderline results constituted 10.5% (68 samples) of all nAb results, and 2.9% (19 samples)
of all anti-S results. Borderline results were considered positive for both antibodies to avoid
confusion in statistical analyses.

Anti-S positivity was prevalent in 68.9% of samples (n = 448), with a median (IQR) titer
of 44.0 (77.48) RU/mL in positive samples (equivalent to 140.8 BAU/mL) and a median
(IQR) of 20.40 (60.53) (equivalent to 65.3 BAU/mL) in total samples. The presence of nAbs
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was prevalent in 53.8% of samples (n = 350), with a median (IQR) IH% of 62.18 (46.29) in
positive samples and median (IQR) of 24.81(59.18) in total samples (Table 1).

Table 1. Distribution of the 650 samples according to their median (IQR) results for SARS-CoV-2
anti-S IgG titer (RU/mL) and SARS-CoV-2 nAbs (%IH).

No. % Median: Titer (anti-S)/IH%(nAbs) IQR

SARS-CoV-2 anti-S IgG

Negative 202 31.1 1.65 4.10

Positive 448 68.9 44.00 77.48

Total 650 100.0 20.40 60.53

SARS-CoV-2 nAbs

Negative 300 46.2 4.82 15.46

Positive 350 53.8 62.18 46.29

Total 650 100.0 24.81 59.18

There was a significant correlation between levels of anti-S and nAbs (Spearman’s
rho = 0.913, p-value < 0.01) (Figure 1).
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Figure 1. Correlation of EUROIMMUN SARS-CoV-2 anti-S (RU/mL) with EUROIMMUN SARS-
CoV-2 NeutraLISA (%IH)* (n = 650).

Among the positive samples for anti-S, 77.0% of them (n = 345) were also positive for
nAbs, while 23.0% were negative. Among the negative samples for anti-S, the majority
were also negative for nAbs, while five samples (2.5%) had a neutralizing activity despite
being negative for anti-S. There was a substantial agreement between anti-S and nAbs
(Cohen’s kappa coefficient (κ) = 0.658 (0.602–0.714), SE = 0.029, p-value < 0.01), with an
overall percent agreement of 83.38%. Considering NeutraLISA as a gold standard, anti-S
was found to have a sensitivity of 98.57%, specificity of 65.66%, NPV of 97.5%, and PPV of
77.0% (Table 2).
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Table 2. Agreement and performance of EUROIMMUN SARS-CoV-2 anti-S with EUROIMMUN
SARS-CoV-2 NeutraLISA as a gold standard (n = 650).

EUROIMMUN SARS-CoV-2 NeutraLISA
Total

Negative (n = 300) Positive (n = 350)

EUROIMMUN SARS-CoV-2 anti-S
Negative 197 (97.5%) 5 (2.5%) 202

Positive 103 (23.0%) 345 (77.0%) 448

Cohen’s kappa coefficient (κ) = 0.658 (0.602–0.714), SE = 0.029, p-value < 0.01
Overall percent agreement = 83.38%

Sensitivity = 98.57% (96.69–99.53%)

Specificity = 65.66% (59.99–71.02%)

* NPV = 97.52% (94.26–98.95%)

** PPV = 77.00% (74.11–79.67%)

*** Positive LR = 2.87 (2.45–3.35)

**** Negative LR = 0.02 (0.00–0.05)

* NPV: negative predictive value; ** PPV: positive predictive value; *** Positive LR: positive likelihood ratio;
**** Negative LR: negative likelihood ratio.

The ROC curve showed a good predictive value in terms of the anti-S titers for the
prevalence of nAbs (area under the curve = 0.964 (0.951–0.977). When the anti-S titer
exceeded a value of 18.1 RU/mL (57.9 BAU/mL), nAbs were also positive at a sensitivity
of 90.0% [95% CI: 68.6–89.6%] and a specificity of 91% [95% CI: 73.5–97.9%] (Figure 2).
Lower anti-S titers exhibited higher diagnostic sensitivities but lower specificities and vice
versa. For instance, when the anti-S titer was 10 RU/mL, the prediction of nAbs prevalence
had a sensitivity of 97.7% and a specificity of 73%. Meanwhile, when the anti-S titer was
40 RU/mL, the prediction of nAbs prevalence had a sensitivity of 67.1% and a specificity
of 98%.
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4. Discussion

To the best of the authors’ knowledge, there are no current data available regarding the
titer of neutralizing antibodies that protect persons from SARS-CoV-2 infection. However,
the role of nAbs as a marker of immunity against COVID-19 infection is proven. Lucas et al.
reported that the early appearance of nAbs correlates with better COVID-19 clinical trajec-
tory and prognosis among hospitalized patients. They also found that patients who had
lower SARS-CoV-2 viral loads in their nasal swabs had higher serum nAbs [23]. Similar
protective effects of nAbs were reported in studies on vaccine recipients and donors of
convalescent plasma [3,6]. Cromer et al. reported that a decline in neutralizing antibodies
against SARS-CoV-2 occurs in convalescent patients, resulting in reinfection [24]. This
highlights the importance of laboratory tests for nAbs to evaluate the immune status of
such individuals.

An International Standard (IS) containing a known amount of anti-SARS-CoV-2 im-
munoglobulins with well-characterized neutralizing activity was made available by the
WHO in December 2020 to allow for the accurate calibration of assays to the international
unit (IU) for neutralizing antibodies or binding antibody units (BAU) for binding antibodies,
thereby reducing interlaboratory variation and creating a common language for reporting
data [20]. This standardization of measuring units is encouraged among kit manufacturers
and vaccine developers to allow for the comparison of results from studies on infection or
post-vaccination and to precisely identify correlates of protection [25]. Regarding the tests
used in our study, the Quantivac SARS-CoV-2 test has an established conversion factor (as
described by the manufacturer), where results in RU/mL are multiplied by a factor of 3.2 to
obtain results expressed in BAU/mL, as recommended. However, no such conversion
factor is available for the NeutraLISA kit [26]. Nevertheless, since our work was not aiming
to identify a correlate of protection against infection and we aimed to merely identify a
positivity cutoff for neutralizing antibodies, the lack of a conversion factor did not affect
the rationale of our study or the reliability of our results.

Our study used a surrogate VNT (sVNT) rather than the conventional pseudovirus-
based SARS-CoV-2 neutralizing antibody assay. This sVNT test (SARS-CoV-2 NeutraLisa
test) has the advantage of being easy to perform, not requiring a BSL-3 laboratory and the
production of rapid results. The sVNT is also suitable for high-throughput testing and/or
fully automated testing after minimal adaptation. According to Tan et al., there was a good
correlation between the results of the RBD ELISA and the RBD sVNT [27].

We chose the EUROIMMUN NeutraLISA test and the anti-S test Quantivac by the same
manufacturer to maximize the accuracy of our results and reduce variation owing to differ-
ences in manufacturing techniques between different commercial brands. Montesinos et al.
compared the results of six binding assays and compared their clinical performances against
a plaque reduction neutralization test (PRNT) at a 1/80 titer and concluded that EUROIM-
MUN QuantiVac IgG showed a better ability to detect nAbs than four other assays with
an area under the ROC curve of 0.95 (95% CI: 0.92–0.98) [28]. Pieri et al. also reported
an overall agreement of 95.45% and a correlation of r = 0.810 between the EUROIMMUN
sVNT and the results of the gold standard VNT [26]. Overall, these results encouraged us
to choose the EUROIMMUN sVNT in our study for cutoff determination.

In our study, among the positive samples for anti-S, 77.0% (n = 345) were positive for
nAbs. This indicates that the humoral response against S-protein for the most part also
involves the production of neutralizing antibodies. Several studies reported such find-
ings [4,29,30]. Almost a quarter of the sera (23.0%) had no nAbs despite being positive for
anti-S. Researchers have explained this by the fact that SARS-CoV-2 infection/vaccination
may often fail to induce sufficient B-cell expansion and maturation to generate high-titer
neutralizing antibodies [31].

Considering NeutraLISA as a gold standard, anti-S was found to have a sensitivity
98.57%, a specificity 65.66%, an NPV of 97.5%, and a PPV of 77.0%, with an AUC of
0.964 (0.951–0.977). There was a significant correlation between levels of anti-S and nAbs
(Spearman’s rho= 0.913, p-value < 0.01) and a substantial agreement between both tests
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(Cohen’s kappa coefficient = 0.658 (0.602–0.714), p-value < 0.01), with an overall percentage
agreement of 83.38%. The manufacturer (EUROIMMUN) tested 111 samples with anti-
SARS-CoV-2 Quantivac (IgG) and NeutraLISA kits and stated a qualitative agreement of
99.1% (borderline results were excluded) [21]. In our case, the agreement between both
tests was lower than that reported by the manufacturer, and this could be a result of our
inclusion of borderline results with positive ones. The agreement between anti-S and nAbs
denotes that the humoral response against S-protein also primarily involves the production
of neutralizing antibodies [10]. Similar to our work, Dinç et al. reported a correlation
between both kits by EUROIMMUN (rs = 0.496, p < 0.001) [32].

Valdivia et al., reported a strong correlation between SARS-CoV-2 anti-S and nAbs.
However, their study used the EUROIMMUN SARS-CoV-2 IgG ELISA (rho = 0.73) and a
pseudotyped virus assay for 50% virus neutralization [33].

When the spike antibodies had a titer exceeding 18.1 RU/mL (57.9 BAU/mL), nAbs
were also positive, with a sensitivity of 90.0% [95% CI: 68.6–89.6%] and specificity of
91% [95% CI: 73.5–97.9%]. A study reported a similar approach, where a cutoff anti-RBD
IgG antibody level of 9.95 S/CO resulted in a sensitivity of 84.0% and a specificity of
86.3% for the prediction of seropositivity for neutralizing antibodies [34]. Another study
evaluated the antibody response (both spike and neutralizing antibodies) among vaccinated
participants using the same EUROIMMUN kits used in the present study. In that study, the
anti-S test was reported to be a reliable predictor among cases with positive neutralizing
antibodies (area under the curve = 0.929). In that same study, when the anti-S titer exceeded
40 RU/mL (128 BAU/mL), neutralization was also positive, with a sensitivity of 80.6% (95%
CI: 68.6–89.6%) and specificity of 90% (95% CI:73.5–97.9%) [35]. In that study, borderline
results were considered to be negative, while in the present study, borderline results (10.5%)
were considered to be positive, and this might explain the relatively higher cutoff chosen
by their study compared to ours. Moreover, our larger sample size (n = 650) compared to
theirs (n = 92) might also contribute to the better accuracy and lower cutoff value.

Generally, to determine an optimized predictive cutoff out of a ROC analysis, this
requires knowing the purpose of the test. In the context of the COVID-19 pandemic, if an
immunoassay is required as a diagnostic aid, such as in serosurveillance studies, then a
high sensitivity is preferred (exceeding 90%) over a high specificity. However, if antibody
tests were required for the release of patients from quarantine, then specificity would be
more important than sensitivity. This is because a low specificity could lead to infectious
patients being released from the quarantine to the community, leading to the perpetuation
of the infection in the community [36].

In our study, at lower anti-S titers, e.g., 10 RU/mL, the prediction of nAbs positivity
had a sensitivity of 97.7% and a specificity of 73%. Meanwhile, when the anti-S titer was
40 RU/mL, the prediction of nAbs positivity had a sensitivity of 67.1% and a specificity
of 98%. It is noteworthy to observe the variation in sensitivity and specificity at the titer
40 RU/mL between our study and the other study described earlier [35], as we recorded
a lower sensitivity but a higher specificity at that titer. Again, our larger sample size and
discrepancy in terms of the inclusion of borderline results might have contributed to these
variations in diagnostic performance, even though both studies used the same commercial
kits for both antibodies.

In the present study, five samples (2.5%) had a neutralizing activity despite being
negative for anti-S. This might be explained by the fact that, although the RBD specifically
is the main target for nAbs, other areas/epitopes of S protein may also elicit nAbs [29].
Possible reasons for this include the fact that the NeutraLISA test, as described by its
manufacturer, does not only measure only neutralizing IgG but also neutralizing activity
by IgA and IgM. On the other hand, the Quantivac kit, as stated by the same manufacturer,
measures the anti-S binding ability of IgG only. EUROIMMUN recommends repeating the
investigations 7 to 14 days later to overcome this discrepancy [19]. Marot et al. reported
that in their convalescent plasma samples, the purified IgA had a greater neutralizing
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capacity than IgG at earlier time points (2 weeks post-infection until 3 months), whereas
the opposite pattern was observed after 3 months [37].

It is noteworthy to mention that the samples of our study were collected near the end
of the second wave of the pandemic and throughout the whole third wave (January–June
2021). During this time, the dominant viral variants belonged to the Pangolin lineage
C.36 (especially C.36.3) [38]. According to official national reports in August 2021, at that
time, the Delta variant had not yet been detected in Egypt, despite being discovered in
several other countries [39]. Delta (B.1.617.2) and Omicron (B.1.1.529) variants are known
for their immunity evasion and escape from neutralization owing to mutations in their
N-terminal domain of the spike protein, which is the primary neutralizing epitope [40]. Ai
et al. reported that their pseudovirus assay demonstrated that Omicron virus neutraliza-
tion by plasma of convalescent or twice-vaccinated people (with BNT162b2, mRNA-1273,
ChAdOx1, Ad26.COV2.S, Sputnik V, BBIBP-CorV) was significantly reduced or absent in
comparison with the ancestral strain [41]. Studies on viral neutralization should always be
interpreted in the context of circulating viral variants in a specific geographical location.

Strengths and Limitations

Our study included a relatively large number of samples, which provided more
reliable results when the cutoff was calculated. Although several studies utilized the
Quantivac (EUORIMMUN) kit, there is a scarcity in terms of the publications available on
the sVNT NeutraLISA (EUORIMMUN) test. To the best of our knowledge, no other study
has been published that predicted a cutoff value for this anti-S Quantivac test using the
NeutraLISA kit.

The limitations of the study include the absence of a conversion factor for the Neu-
traLISA test in terms of the WHO international standards (IU/mL). This might have had
helped in identifying the values of nAbs that exceed the cutoff of anti-S in units that are
standardized between different neutralization tests.

5. Conclusions

Our results indicate that the anti-SARS-CoV-2 QuantiVac ELISA IgG test (EUROIM-
MUN, Lübeck, Germany) can be correlated with the neutralizing antibody response against
SARS-CoV-2. This can be helpful following natural SARS-CoV-2 infection and vaccination
or for the identification of convalescent plasma donors.
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