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Abstract: Viral quasispecies are distinct but closely related mutants formed by the disparity in
viral genomes due to recombination, mutations, competition, and selection pressure. Theoretical
derivation for the origin of a quasispecies is owed to the error-prone replication by polymerase and
mutants of RNA replicators. Here, we briefly addressed the theoretical and mathematical origin of
quasispecies and their dynamics. The impact of quasispecies for major salient human pathogens is
reviewed. In the current global scenario, rapid changes in geographical landscapes favor the origin
and selection of mutants. It comes as no surprise that a cauldron of mutants poses a significant risk to
public health, capable of causing pandemics. Mutation rates in RNA viruses are magnitudes higher
than in DNA organisms, explaining their enhanced virulence and evolvability. RNA viruses cause
the most devastating pandemics; for example, members of the Orthomyxoviridae family caused the
great influenza pandemic (1918 flu or Spanish flu), the SARS (severe acute respiratory syndrome) and
MERS (Middle East respiratory syndrome) outbreak, and the human immunodeficiency viruses (HIV),
lentiviruses of the Retroviridae family, caused worldwide devastation. Rapidly evolving RNA virus
populations are a daunting challenge for the designing of effective control measures like vaccines.
Developing awareness of the evolutionary dispositions of RNA viral mutant spectra and what
influences their adaptation and virulence will help curtail outbreaks of past and future pathogens.
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1. Preamble

Over the period of time, the term quasispecies in itself has evolved with many def-
initions, often interchangeably used to denote genetic variation within a population. If
simplified, the quasispecies can be referred to as the diverse mutants in a population gener-
ated as a result of equilibria between mutation and natural selection [1–4]. RNA viruses
constantly evolve, generating mutant swarms helping them to adapt to new environments.
The generation of a quasispecies is an amalgamation of various mechanisms of genetic
variation caused by mutation, gene duplication, recombination, and reassortment [5,6].
Low-fidelity RNA polymerases exhibit defective proofreading, limited template-copying
ability, and ineffective post-replicative repair resulting in viral mutations [7]. The variations
in the quasispecies pool are subjected to a continuous process of genetic variation, competi-
tion, and selection in the given environment for the survival of the fittest [7,8]. Quasispecies
considerations are important for antiviral drug development and mechanistic studies.

1.1. Origin of Quasispecies

Eigen and Schuster, in 1970, explained the “precellular RNA world,” a mathematical
framework to formulate the quasispecies theory [9,10]. Not only random mutations and
fluctuations in the genome are responsible for quasispecies formation. Instead, variations
may also occur by recombination and reassortment [11]. A few decades ago, quasispecies
was considered as a simple genetic entity. Still, recent advancements in quasispecies theory
have encouraged us to view and examine viruses as complex mutant spectra [8].

Though the concept of a quasispecies is taken as a single biological entity, its impact
becomes more evident when the genome has high mutation rates in limited genome size
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(viz. RNA viruses) [7]. Whether viral or cellular, the quasispecies dynamics can operate
in any of them due to higher mutation rates responsible for mutant spectra generation.
When we talk of mutant spectra in RNA virus genetics, it does not involve only a single
mutant but a cloud of mutants. Hence quasispecies is also termed mutant swarms or
mutant clouds [7,12]. For the past three decades, the quasispecies theory has provided a
population-based framework to understand RNA virus evolution [9]. Viral population
load involved in the infections plays an important role in viral quasispecies evolution.

Francis Crick suggested and encouraged Manfred Eigen in a breakfast discussion
to work on the first quantitative/mathematical treatment of replication systems, which
undergoes a production of regular error copies [13,14]. These error copies were first termed
‘comet tail’ by Eigen, and later as quasispecies. Based on the macromolecular organization,
replication, and adaptability, Eigen proposed a theory of the origin of life termed the
quasispecies theory [13]. This theory was further taken ahead by Schuster and Eigen,
and it was found to have an important application in the RNA virus’s evolution [13].
The concept of quasispecies arose by formulating these two fundamental mathematical
equations: (a) concentration of mutant types as a function of replication time, and (b) the
error threshold relationship [7,15]. These mathematical expressions of the quasispecies
theory are explained in Figure 1. Charles Weissmann, in 1970, first gave an insight into the
presence of mutant concentration as a function of replication time [11] (first equation in
Figure 1). The higher the number of mutations that accumulate, the higher the probability
of extinction; this error threshold tells us the maximum error limit to maintain the survival
balance of the genetic information [14,15] (second equation in Figure 1).

Figure 1. Quasispecies theory is described by using two fundamental equations. (A) The first
equation describes the change in the concentration of mutant i with respect to time, xi(t); similarly,
xk(t) describes the concentration of mutant k. The second equation expresses the error threshold
relationship. The second equation has importance in virology and lethal mutagenesis, where the
mutation rate pushes the virus beyond the error threshold and has benefits in drug development.
(B) Error Threshold: the higher the mutations, the lower the infectivity.

Based on population dynamics, quasispecies can be understood by the given diagram:
Quasispecies formation depends on the mutation rates or the error rates in replication. If
the virus replication rate is accurately perfect, the viral offspring will occupy the same
sequence space as shown in Figure 2. However, a mutation in the wild-type virion results in
imperfect replication, and due to several biological constraints, the selection of a particular
strain over other strains in the quasispecies cloud is observed (Figure 2).
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Figure 2. (A) Model depicting wild-type virion with allelic differences. (B) Model showing a mutation
in the wild-type virion (yellow, red, and green). (C) Model showing the quasispecies cloud and
selection of a particular strain over other strains due to biological constraints.

In evolutionary terms, all the possible mutations in a gene or amino acid are repre-
sented in sequence space. Naturally occurring mutations are present in minimal functional
space. So, the theoretically possible region is larger than the practically possible region.
Mutations in the sequence space correlate with the expansion of the space depending on
the high mutation rate and the selection of the variants (Figure 3) [14,16].

Figure 3. This is a simplified model of a 3D representation of the theoretical sequence space possible
and available sequence space for viruses. Here, the square depicts the theoretical sequence space.
The sphere represents the occupancy of virus mutants. This 10-fold difference in the smaller and
bigger sphere explains the difference in the available occupancy of two viruses.

1.2. Contributors of Quasispecies Formation

The ability of viruses to generate and maintain genetic diversity to circumvent rapidly
evolving environments and hosts is controlled by various drivers, including mutation,
reassortment, and recombination. Random mutations by the RNA-dependent RNA poly-
merase (RdRps) viral polymerase are the major driving force for genetic diversity in
RNA viruses. These low-fidelity RNA polymerases exhibit mutation rates of roughly
10−4 mutations per nucleotide copied, which is greater than nearly all DNA-dependent
DNA polymerases [17–20]. Another major source of mutations in the RNA genome is
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contributed by host editing enzyme families like Apolipoprotein B mRNA Editing Cat-
alytic Polypeptide (APOBEC) and adenosine deaminase, which is RNA-specific (ADAR).
APOBECs are cytidine deaminases, which are DNA editing proteins that play a role in viral
defense mechanisms in the host cells and are also involved in the process that often induces
lethal hyper-mutation leading to the formation of a defective mutated progeny. In the case
of ADAR1, the conversion of adenosines to inosines, occurring on self-complementary and
immune-activating defective genomes, causes viral RNA hyper-mutations. ADAR1 hyper-
mutation disrupts the complementary segments, thus eliminating the double-stranded
substrate for immune activation as observed in the influenza virus [21], measles virus,
and Rift Valley fever virus [22–24]. Viruses exist as a cloud of related sequences rather
than a defined contig [11,25,26]. Recombination involves the formation of new sequence
combinations by shuffling genetic material between parental genomes during genome
replication [27]. Reassortment, formally called pseudo-recombination, occurs in viruses
having segmented genomes or when two related viruses co-infect a cell and entire genome
segments are swapped [28]. The fact that segmented viruses consistently evolve within and
across families suggests that reassortment benefits viral fitness and evolution. Reassortment
results in viruses that might be genetically diverse enough to break resistance [29,30], cause
novel symptoms [31–33], alter host range [34,35], and evolve into new species.

Cumulatively, mutations at the genome level correspond to the changes at the phe-
notypic level, which are naturally selected in the population towards increased fitness.
The two types of natural selection (positive and negative/purifying selection) play an
important role in the evolution of viral quasispecies. When a newly derived mutation
has an advantage over the other mutations, it is termed as ‘positive selection’, whereas
‘negative selection’ removes the deleterious mutations or variants. Hence negative selection
is also sometimes called purifying selection. The positive selection increases the beneficial
mutations, and the deleterious mutations are exempted from the population by the negative
or purifying selection. In this way, natural selection influences the formation of a new
mutation or a quasispecies [36,37]. During the course of viral evolution, host-to-host trans-
mission, within-host transmission, and single-cell evolution play a critical role in shaping
the quasispecies dynamics. When a mutant virus is shifted to a new environment, it has
to either use a strategy of co-evolving or out-competing the fittest. Although, trying to
out-compete excessive bottlenecks could lead to deleterious mutations. This phenomenon
is known as Muller’s ratchet. So, in order to survive, a virus must balance the mutation rate
between adaptability and fitness losses [38]. Firstly, new variants emerge at individual host
levels further to jump through host-to-host transmission. Multicellular organisms impose
heterogenous micro-environment for evolution and selection. Each tissue type provides the
replicating virus with different selective pressures affecting its spread, pathogenesis, and
evolution [36]. Host-to-host transmission is dependent upon bottleneck events, resulting
in allelic frequency drift in the viral population [39]. Average fitness losses occur due to
repeated bottleneck events. In contrast, rapid fitness gains are in accordance due to the
large population passages [12].

Rather than genomes acting independently, variants that populate an environment
can act cooperatively or in competition, thus dynamically affecting allelic frequencies.
Those mutations or its combination that are advantageous in a particular environment
can be positively selected (complementing the system), becoming dominant in a mutant
spectrum. In contrast, negative selection is the process by which genomes are eliminated
from the mutant spectrum or fall in frequency. The result is a fine-tuned ensemble of
variants with specific frequencies optimized for that particular environment. Movement
into diverse territories, such as an encounter with the immune system or a virus spread to
a new tissue type, results in the re-equilibration of alleles to fit that particular environment.
Biological constraints are negative interactions imposed on the selection factor to control
the over-expansion of the sequence space [7]. A viral genome carrying a mutation occupies
the sequence space and prevails to achieve fitness in the biological environment. A low
mutation rate accompanies a stable population, whereas a high mutation rate could lead to
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new variants, and if the error threshold is crossed, it may lead to extinction (Figure 4). The
occurrence of spontaneous genetic variations in RNA viruses could affect viral propagation
and its virulence, ultimately implicating significant changes to the fatality curve.

Figure 4. (A) The fitness landscape represents a relationship between genotype and evolutionary
fitness. It allows the mutation to settle and thrive in the sequence space. Here, peaks and valleys
represent high fitness due to the accumulation of specific mutations and low fitness due to minor
fitness losses, respectively. A typical wild-type virus (represented as blue) that tries to occupy
sequence space of the nearest peak by consecutive mutations will gain fitness and survive. At the
same time, if it tries to occupy the sequence space of the valley, it will lead to the extinction of the
mutant type (red). While in certain scenarios, mutations could lead to comparatively decreased
fitness (green), so the virus is not extinct but incapable of proliferation. (B) In the above figure,
mutants with low mutation rates are more stable (green) and cluster at the neighboring peaks, but the
fittest will out compete the others. Mutants with high mutation rates will try to occupy neighboring
peaks but, due to large mutational shifts, get trapped in the sequence space and will not spread out
(yellow). (C) In order to achieve the highest peak, wild jumps are needed, which consequently leads
to fitness and, therefore, the probability is low for their survival. On the other hand, mutants with
slow and stable leaps are mutationally robust (green ones on comparatively flatter peaks) and will
prevail. Therefore, the mutants on the higher peak (yellow) will always represent lower mean fitness
in comparison to mutants on flatter peaks (green).

2. Unique Features of the RNA Genome

The mutability of RNA viruses is around a million-fold higher than standard mutation
rates operating in cellular DNA and is an established facet for RNA viruses. As a result,
they are considered the first link between the quasispecies and virology [8,15]. A negative
relationship between genome size and mutation rates suggests why DNA viruses mutate
slower than RNA viruses [40]. The mutation rate in RNA viruses depends upon the
extent of adaptability, which is supposed to correlate with its size [41]. By maintaining a
relatively low fidelity rate, an RNA virus can rapidly traverse diverse environments with
relative ease; in contrast, a high-fidelity replicating entity (such as a eukaryote) would
be trapped in that sequence space and unable to adapt. This concept explains why the
accumulation of mutations is advantageous to a virus, provided it is below the threshold
leading to extinction.

3. Footprints of Quasispecies Evolution of Major RNA Viruses

Throughout history, outbreaks of emerging and re-emerging viral diseases have been
a threat globally. Pandemics caused by viruses such as Influenza, MERS, Ebola, Polio, and
others have been a catastrophe to mankind [42]. A timeline of model virus species that has
caused devastating outbreaks in the past is given in Figure 5. The impact of any variant in
causing the pandemic is very vividly observed during COVID-19. We all have witnessed
the first, second, and third waves (in India majorly) of the COVID-19 pandemic causing
mortality all over the globe.
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Figure 5. Chronological representation of pandemics that occurred in the past.

Additionally, mutations in the receptor binding domain (RBD) and N-terminal domain
led to an alpha, beta, gamma, delta, and omicron variant [43]. This has exposed the
struggle in vaccine development and shed some light on improving our understanding
of quasispecies formation in RNA viruses for developing new preventives. So, we aim to
discuss quasispecies in some major RNA viruses’ families.

3.1. Paramyxoviridae

The family Paramyxoviridae consists of three genera: Paramyxovirus, which includes the
parainfluenza viruses and mumps virus; Pneumovirus, which includes respiratory syncytial
virus; and Morbillivirus, which includes the measles virus [44]. Virions in the family are
enveloped and can be spherical or pleomorphic, capable of producing filaments. The
diameter is around 150 nm. The nucleocapsid contains a monopartite, single-stranded,
negative-sense RNA genome and an RNA-directed RNA polymerase. The genome is
non-segmented, 15–19 kilobases in length, encoding 6–10 genes [45]. The nucleocapsid
is surrounded by a lipid envelope that is studded with 8–12 nm spikes of two different
transmembrane glycoproteins. The activities of these surface glycoproteins are the primary
cause of diversity in the family. Quasispecies dynamics of members of paramyxoviruses
have been profusely recognized, with processes of mutation, competition, and selection
occurring as part of the natural life cycle of the virus, with evidence of past recombination
events [46].

Due to the reasons mentioned above, one would expect the virus to be antigenically
unstable. However, in contrast to instability in the RNA virus’s genome, members of
the Paramyxoviridae family are antigenically stable. The reason behind this spectacle can
be posited as follows: The genome is non-segmented and thus cannot undergo genetic
reassortment. The second reason relates to the idea of antigenic drift. Another major
hypothesis behind the stability of the virus is that the mutation leads to a decrease or total
loss of function, which would, in turn, cause the new virus to be less efficient. These mutant
progenies struggle to survive compared to the wild strains and would eventually die out. A
fundamental concept in virus research is that genomes are packaged into particles to spread
in the extracellular milieu. In most viruses, individual genomes are packaged. However,
the pleomorphic particles of the members of the Paramyxoviridae family often incorporate
more than one genome, as deduced initially from particle sedimentation and ultraviolet
inactivation studies [47], causing the formation of genetically divergent progeny.

Pneumoviruses are pleomorphic, enveloped virions ranging from 150 to 200 nm in
diameter and capable of producing filaments [48]. Fatal effects of human respiratory
syncytial virus (HRSV)-associated disease are seen in children below the age of 1 year,
while bovine respiratory syncytial virus (BRSV)-associated illness is usually terminal in
calves below the age of 6 months. HRSVs are classified into two major groups (A and B)
based on antigenic differences in the G glycoprotein. [49]. BRSV and HRSV are closely
related, but antigenic differences have been observed. The G glycoprotein in these viruses
shows extreme antigenic and sequence divergence, with only 47% amino acid homology
between prototype HRSV A and B viruses [49]. It has been hypothesized that changes in
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amino acid sequences benefit the virus allowing it to escape immunity by modifying its
epitopes [50].

3.2. Orthomyxoviridae

Viruses belonging to the Orthomyxoviridae family are known as orthomyxoviruses.
These are enveloped virions that measure between 80–120 nm in diameter, with nucleocap-
sids forming a helical symmetry [51]. These viruses possess segmented and negative-sense
single-stranded RNA genomes. The genome consists of 7–8 RNA segments. These seg-
ments encode different structural and non-structural proteins. Some structural proteins
include hemagglutinin (HA), neuraminidase (NA), two matrix proteins, and a nucleo-
protein. Orthomyxoviruses cause respiratory problems in humans as well as in animals.
Orthomyxoviridae family is divided into seven genera: Influenza viruses A, B, C, and D,
Quaranjavirus, Thogotovirus, and Isavirus [52]. Infection in humans is generally caused by
the Influenza A virus and is the one with pandemic potential [53]. Worldwide, influenza
causes 500,000 deaths, and 3–5 million people are affected severely [54]. The significant
proteins that undergo mutations are HA and NA structural surface glycoproteins. HA and
NA proteins are substantial targets for neutralizing antibodies the host immune system
produces. Since these proteins are considered to show high mutability, which becomes a
significant limitation for antiviral therapy [55], due to the segmented viral genome, during
maturation virus may undergo reassortments resulting in different combinations of genes
causing the emergence of a new virus subtype [56]. As per the reports in 2019, nearly
1–18 HAs and 1–11 NAs are involved in viral attachment and release [57]. If reassortment
occurs between these 18 HAs and 11 NAs, a total of 198 combinations are possible. In
humans, four combinations of 3 HAs and 3 NAs have been found, which are H1N1, H2N2,
H3N2, and possibly H3N8. However, mutability and reassortment are two different and
distinct phenomena but are the major contributing factors to the overall variability of the
influenza virus.

3.2.1. Avian Influenza

Based on the virulence potential in chickens, avian influenza is divided into two
categories: low pathogenic avian influenza (LPAI) and highly pathogenic avian influenza
(HPAI). Due to constant changes in the gene arrangements of influenza viruses in dif-
ferent species, especially in human-animal interaction, many avian influenza viruses are
responsible for causing human outbreaks [58]. H5N1 was the first HPAI virus that caused
a pandemic in Hongkong in the year 1997 [59]. According to researchers and many his-
torians, the first influenza pandemic likely occurred in 1510 [60]. The first well-known
pandemic was the Russian flu, which occurred in 1889 and 1893, caused by IAV/H3N8
based on the data [61,62]. Spanish flu caused by IAV/H1N1 came into existence in 1918
and arose from an avian influenza virus [63], resulting in high morbidity and low mortality.
This time the death rate rose by 50 folds compared to the Russian flu pandemic, and over
50 million people lost their lives [64]. Gene reassortments among humans, avian, and swine
IAV/H1N1 of the 1918 pandemic are considered the root cause of the 1957, 1968, and 2009
pandemics [65]. Asian flu of 1957–1959, caused by the IAV/H2N2, was another pandemic
the world saw [66]. Approximately 1–2 million deaths occurred during this period. It
was only less than a decade when the Hongkong flu came into existence in 1968–1970,
caused by a new combination of IAV [66]. The 2009 pandemic occurred due to the triple
reassortment of human, avian, and swine influenza virus and gave rise to IAV/H1N1 [67].
Overall, the influenza pandemic depends on virulence and the power to reassort and form
new combinations by genetic drift and genetic shift, which poses a significant challenge to
tackling the pandemics each time [68].

3.2.2. Mutations in Influenza Leading toward Quasispecies

The two possible reasons for the influenza viruses’ evolution are antigenic drift and
antigenic shift. Mutations in the HA and NA gene of influenza is responsible for antigenic
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drift. These mutations are ultimately responsible for different HA and NA protein combi-
nations and cause pandemics [58]. This antigenic drift is present in all influenza strains
and is highest in A, followed by B, C, and D [69]. The antigenic shift does not occur with
the different genera of influenza viruses and is very common among Influenza A Viruses
(IAVs) [69,70].

Different combinations of strains are present in the environment, and a pool of viral
variants generated from a common species because of mutation or reassortment when
undergoing competition and selection gives rise to quasispecies, as mentioned above. This
is known to cause pandemics from time to time. So, it becomes challenging to predict what
and when will the next combination come into existence [14,71]. On the one hand, this is a
big obstacle for the virologists, while on the other, it also becomes a potential opportunity
to work on this.

3.3. Reteroviridae

The retrovirus family is widespread and found in varieties of vertebrate hosts. These
are enveloped virions that measure between 80–100 nm. The members of this family contain
linear, positive sense single-stranded RNA and reverse transcriptase enzyme, which reverse
transcribes its genome into DNA. The reverse transcribed DNA is integrated into the host
DNA and gives rise to the provirus. If the viral DNA integration occurs into the germline
tissue, then it can give rise to a heritable provirus known as an endogenous retrovirus [72].

Retrovirus family virion contains four genes 5′-gag-pro-pol-env-3′, coding for various
viral proteins. The env gene of retrovirus encodes for two types of proteins that is a
surface protein (SU) and transmembrane protein (TU). The gag gene of retrovirus encodes
the matrix protein (MA), capsid protein (CA), and nucleocapsid protein (NA). The pol
gene of the retroviral family virion is responsible for synthesizing reverse transcriptase
(RT) and integrase [73]. The lack of proofreading activity and mechanism of viral reverse
transcriptase enzyme is responsible for the high rate of genetic diversity and recombination
and accountable for the formation of quasispecies or mutant swarm populations of the
retroviruses [74].

The retrovirus family virion is responsible for many diseases, such as immunode-
ficiency (AIDS), autoimmune disease, lower motor neuron diseases, and several acute
diseases, including tissue damage. Some of the retroviruses are also associated with ma-
lignancies, including lymphoma, sarcoma, and certain leukemia. Retroviruses can be
transmitted via both horizontal and direct routes. The horizontal transmission includes
transmission via blood, saliva, sexual contact, etc., whereas the direct routes involve the
infection of the developing embryos or via milk, etc. [75]. The HIV-1 virus is a member of
the retrovirus family with exhibits characteristics that increase its potency to form quasis-
pecies. The heterogeneity and diversification of viral sequences in the HIV-1 population
are due to the high mutation rate, short generation time, virion production rate, and high
frequency of recombination that contributes to quasispecies dynamics [72–74]. The het-
erogeneity and diversification of viral sequence are more complicated by the reactivation
of the latent provirus, compartmentalization of the infection, and the presence of a viral
reservoir [75–78]. The proviral activation will contribute to new replicating sequences, thus
generating millions of recombinant and mutant viruses [79,80].

HIV-1 virus strains are classified into two types that are R5- tropic virus strain and
X4-tropic virus strain, depending on the type of coreceptor they used to infect the target
cell. Generally, R5- tropic virus strains are found in the early stage of the disease, whereas
X4-tropic virus strains are predominant during the late phase of the disease [81,82]. A
classic example of HIV X4 selection is evidenced in a case report on a patient from Berlin,
who was suffering from HIV and acute myeloid leukemia. The patient was given HAART
therapy with allogenic stem-cell transplantation, homozygous for the CCR5 variant. The
transplantation was successful for R5 elimination, but it led to the selection of the CXCR4-
tropic variant (X4), which used the coreceptor [83]. R5-strain can induce CD4-T cell
apoptosis in the late phase of the disease. X4-strain of virus can infect naive T cells,
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which is likely to be responsible for the association of the X4-strain virus with the disease
progression [84,85].

The capacity of replication or “fitness” is the key parameter of virion that influences
HIV-1 behavior and response to selective constraints [86]. Multiple mechanisms of HIV-1
RNA interference and drug resistance have been described [86,87]. The input of new
genomic sequences, high mutation rate, and mutation that diminishes the sensitivity to
the antiretroviral agent is responsible for drug-resistant [88,89]. Recombination can also be
responsible for generating multi-drug resistant viral strains by bringing together different
genomic sequences that each provide resistance to antiretroviral drugs [90,91]. Only par-
tially suppressed replication and suboptimal treatment are also responsible for the rapid
development of drug-resistant [92,93]. The host immune system imposes multiple selective
constrain that act upon all viral infections. In the case of HIV-1, there is an added complica-
tion in that the immune cell itself gets infected, causing immunosenescence and thereby
modifying the immunological environment [94]. HIV-1 has developed both interaction
and evasion strategies to cope with the immune response. The escape mutant of HIV-1
contributes to virus survival in response to neutralizing antibodies and cytotoxic T-cells [95].
The functional impairment of HIV-1 specific CD8-T cells and continuous viral replication
is responsible for uncontrolled HIV-1 infection, and that is also the reason why HIV-1
often emerges as the winner in the arms race between the viral quasispecies and immune
system [96,97]. The ability of HIV-1 to evade the host immune response and persistence for
long periods constitute a major difficulty for the design of an effective vaccine.

3.4. Coronaviridae

Coronaviruses with their signature crown-shaped capsid structure belong to the family
Coronaviridae; they are classified based on their host choice; alpha and beta coronaviruses,
infecting mammals, and gamma coronaviruses, infecting birds. These are the largest,
positive-sense single-stranded RNA viruses, whose 31 kb genome comprises structural
glycoprotein including spike protein (S), an envelope protein (E), glycoprotein (M), and
nucleocapsid (N) and accessory regions (ORFs) [42].

Coronaviruses were less of a concern until 2002, when the SARS outbreak occurred [98].
The transmission of the SARS-CoV-related virus was first observed in horseshoe bats as
their primordial hosts and palm civets as intermediate hosts. Dogs, cats, and mice act as
a reservoir for human coronaviruses (HCoVs). Before 2002 these were associated with
mild to severe respiratory concerns in immune-compromised individuals. After SARS,
MERS CoV caused an outbreak in Saudi Arabia, affecting 27 countries [99] and giving
implications to mutation trajectories encasing the whole population. MERS CoV has
zoonotic implications from camels to humans, transmitted from direct and indirect contact
with camels and contaminated products [100]. In 2019, SARS-CoV caused a pandemic with
severe infections causing high mortality [101,102]. The transmissibility of SARS-CoV-2 is
highest in comparison to other SARS-CoV and influenza viruses [103].

MERS-CoV has the largest size among all coronaviruses, i.e., ~30.11 kb, compared to
SARS-CoV-2 and SARS-CoV, both of ~29 Kb. All coronaviruses mediate entry by attaching
the receptor-binding domain to different host surface receptors. For SARS-CoV, angiotensin-
converting enzyme 2 (ACE 2) acts as the primary receptor, but it also facilities it’s entry
via CD209 and CD209L. MERS-CoV uses CD26 as an entry receptor. SARS-CoV-2 shares
ACE 2 with SARS-CoV along with integrins to make an entry in the cell [104]. However,
SARS-CoV-2 has a higher affinity for ACE-2 than SAR-CoV. This diversity in targeting the
host cell receptor suggests selective mutations to increase the host range’s adaptivity and
expansion. The genomic variation that arose due to inter- and intra-host evolution has led
to MERS-CoV, SARS-CoV, and SARS-CoV-2 with diverse host ranges [100].

Some experimental evidence has shown that the deviation from the wild-type mutation
has significantly affected the viral kinetics and its infectivity. As in the case of double
mutations in (A9G/R13A) in the non-structural protein 1a (nsp1) of the MERS coronavirus
causes lower infectivity and smaller plaque size compared to wild-type viruses [105]. Also,
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variations in the coronavirus spike glycoprotein due to natural and experimentally induced
mutations give rise to changed viral tropism and pathogenesis.

A variant of wild-type MERS-CoV, comprising an out-of-frame deletion of 530 nu-
cleotides in the spike glycoprotein gene, caused the loss of a large portion of the S2 subunit
resulting in the production of defective particles with low infectivity. However, the muta-
tion did provide aid to the wild-type MERS-CoV infection by producing a misfolded S1
protein, which acted as a trap toward the spike-specific neutralizing antibodies [106].

Another study analyzing non-consensus sequences from 24 patients infected with
MERS-CoV revealed high-level heterogeneity among samples [107]. After analyzing the
samples, mutations were found in the receptor-binding domain (RBD) of the viral spike
glycoprotein. These mutations resulted in the low affinity of RBD for dipeptidyl peptidase-4
(CD26), rendering viral fitness. Although, the frequency of wild type also gets reduced to
approximately 10% in all the samples, suggesting selection enforced by the host immune
system on the genetic variants. The effect of spike glycoprotein mutation in T1015N
of MERS-CoV on its propagation and plaque morphology in vitro is supported by an
increased replication rate of 0.5 logs and the formation of bigger plaques than wild-type
MERS-CoV [108].

Analysis of quasispecies in SARS-CoV-1 from 9 patients showed nine variable sites
among 107 variations [109]. The quasispecies in two samples from SARS-CoV-2 patients
from Italy revealed the two nucleotide mutations A-T and G-A substitutions in the ORF
1ab gene at 2269 and 7388, respectively [110]. Clearly, analysis of variants from clinical
samples arose de novo and could suggest host-pathogen relationships and adaptability in
various environments. An understanding of which mutation could cost viral fitness can be
a benefit.

3.5. Other Viruses

Concerns related to global threats due to emerging and remerging viruses are in-
creasing day by day. Apart from the families discussed above, some other families like
Picornaviridae (Polio), Togaviridae (Chikungunya), Flaviviridae (Hepatitis C virus), and Filoviri-
dae (Ebola) have imposed significant mortality in public. The evidence of quasispecies
formation in some of the important RNA viruses is reviewed in the following section.

3.5.1. Hepatitis Virus

This class includes a range of unrelated human pathogens like the Hepatitis A virus
(HAV), an unenveloped RNA virus belonging to the Picornaviridae family; the Hepatitis C
virus (HCV), a single-stranded enveloped RNA virus belonging to Flaviviridae; the Hepatitis
D virus (HDV), single-stranded circular RNA virus belonging to Hepadna viruses, and
Hepatitis E virus (HEV), another non-enveloped single-stranded RNA virus belonging to
Caliciviruses [111]. Among these, HCV acts as a prototype of quasispecies formation. It
was first identified in 1989, and since then, several genotypes of HCV have been discovered.
HCV is associated with blood transfusions and spreads to the liver resulting in cirrhosis
and hepatic carcinoma. Approximately 58 million people annually develop chronic HCV
infection. HCV shares feature with other members of the Flaviviridae family, like Dengue
fever virus, Japanese Encephalitis virus, and Classical swine fever virus. All these mem-
bers have enveloped virions containing positive sense, single-stranded RNA genomes of
9.6 to 12.3 kb. Encoding for structural and non-structural proteins. HCV has a gene NS5B
for the RNA-dependent RNA polymerase that lacks proofreading activity. It incorporates
nucleotides with a high error rate of 10−3 errors/site, which leads to heterogeneity in the
gnome. Another factor responsible for quasispecies formation is the hypervariable region
(HVR) in the envelope protein (E2). HVR-1 is located at the N-terminal of E2, while HVR-2
is slightly downstream of HVR-1. HVR-1 acts as a dominant epitope for neutralizing
antibodies. Mutations in the HVR-1 are responsible for the formation of escape mutants
under host immune selection pressure. HVR-1 and HVR-2 variations are responsible for
virus tropism, virulence, and resistance against drugs. During the acute phase of infection,
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HCV has a higher rate of mismatched substitution per site. One case study suggests that
the HVR-1 does not display neutralizing epitopes during infection. The existence of vari-
ous closely related mutants during the acute phase and their adaptation leads to chronic
infection [112]. Other mutations contributing to quasispecies spectra are phosphorylated
non-structural proteinNS5A, which modulates RNA-dependent RNA polymerase activity.
It is also attributed to the attenuation of interferon (IFN) activity. Mutations are reported in
the IFN-sensitivity-determining region (ISDR) of NS5A that often affects IFN therapy [113].

3.5.2. Ebolavirus

The Ebola virus belongs to the Filoviridae family, which includes two other genera:
Cuevavirus and Marburgvirus [114]. When viewed under an electron microscope, the
virion shape resembles a twisted thread; hence the family has been named filoviridae be-
cause, in Latin, ‘filum’ means ‘thread’ [114]. It is a linear, non-segmented, single-stranded,
negative-sense RNA. There is a long historical background of hemorrhagic fever. First
recorded in 1944, the Crimean-Congo hemorrhagic fever was later spread to Korea, Ar-
gentinian, Bolivian, and Lassa between 1955–1969. It was 1976 when the first cases of
Ebola-borne hemorrhagic fever (now called Ebola virus disease) were recorded in the
Democratic Republic of Congo (formerly Zaire). According to a WHO report, the fatality
rate of Ebola virus disease (EVD) is approximately 50%. Because of its RNA nature, Ebola
Virus has the potential to emerge as the next pandemic in the world, and its different
strains lead to a quasispecies formation. In the case of Ebola, virus tropism is due to
glycoprotein (GP) mutation. It was evidenced in the case study, where sequences of the
glycoprotein of 66 Ebola isolates were aligned from the old (1976 to 2005), and new (2014)
outbreaks showed variations in the region. Nucleotide mutations at two positions, A82V
and P382T were observed in the new isolates [115]. This accounts for the emergence of the
2014 variant from the pool of quasispecies having mutations in the GP region. In some
other studies, mutations at positions A82V and T544I has produced virus with increased
infectivity [116–118].

3.5.3. Poliovirus

Poliovirus, which belongs to the Picornaviridae family, causes poliomyelitis. It is a
non-enveloped, positive-sense single-stranded RNA (+ssRNA) virus [42]. The virion has
an icosahedral symmetry and is 27 nm in diameter comprising 7500 nucleotides. Being
an RNA virus, it has relatively high mutation rates. There are three poliovirus serotypes:
1, 2, and 3, out of which 1 is the most common form in nature. The two mechanisms
that help the virus to evade the immune system are, first, to replicate very quickly before
mounting an immune response and second, to survive the highly acidic conditions of the
stomach. Polio has been significantly reduced all over the world by WHO 1988 eradication
program, but certain countries are still affected (WHO, 2019). A study was conducted on
poliovirus to understand the effect of limiting genomic diversity on the evolution of the
virus. A substitution of Glycine at position 64 (G64S) in the polymerase was done. Here the
mutant showed higher fidelity and a noticeable effect on adaptation and pathogenicity [119].
Another study revealed that poliovirus infection in mice has diversity in tissue-specific
patterns within individual organs [120]. Sequencing results from the spleen, kidney, and
liver showed distinct quasispecies populations across individual mice.

3.5.4. Chikungunya Virus

Chikungunya (CHIK), which belongs to the family Togaviridae, is an arthropod-
borne virus (arboviruses) that causes high morbidity in humans; it infects humans via
mosquitos [121]. It has some recurrent past events, majorly affecting Africa, Southeast Asia,
and the 2013 outbreak in America [122]. Within the host and population-based selection,
pressure for quasispecies development is highly pronounced in the arboviruses. A study
in the murine model investigated low and high-fidelity mutants’ genetic diversity with
the host [123]. Both high- and low-fidelity mutants showed low virulence compared to the
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wild type. The high-fidelity mutants reported varied diversification in NGS data. Increased
virulence is observed due to mutation in nsp2 G641D and nsp4 C483Y of high-fidelity
mutants. CHIK variants showed different plaque morphology, reported in 2005 [124].
Small plaque sizes show reduced in-vivo fitness variants and are maintained in natural
quasispecies in the viral pool.

Till now, we have discussed and analyzed how specific mutations occur in the viral
genome and how their selection is influenced by environmental and host-pathogen interac-
tions, which could affect the replication rate in the host. Understanding replication rate,
plaque morphology, and sequence analysis could shed light on the intricate phenomenon
of quasispecies selection and might provide evidence for resolving obstacles to developing
therapies in controlling current and future pandemics.

4. Challenges and Discussions for Prospective Antiviral Treatments

Viral quasispecies under selection pressure led to the formation of escape mutants;
these low-frequency strains escape immune targeting and proliferate in the host system.
This is the biggest challenge in developing vaccines against RNA viruses [94,125,126].
Escape from antiviral drugs leads to vaccine failures and fatality. The selection of drug-
resistant mutants from the inhibitory effects of antiviral drugs is another big challenge. To
unveil new antiviral preventive measures, we must comprehend the interplay of the escape
mutants and their co-evolution strategies.

In the case of influenza, mutants have shown resistance against administered drugs
Amantadine and Rimantadine [127]. Many mutations are observed in influenza strains due
to the use of the anti-influenza drug oseltamivir [128]. These resistant strains of influenza
are found in bird populations, which could give rise to emerging strains of influenza.
Nevertheless, the collective fitness loss of resistant species to specific drugs in combinational
therapy confirms the replication of the virus up to minimized levels. Hence, proving the
effectiveness of combinational therapy against low-frequency undetected mutants.

RNA interference (RNAi) systems are a promising alternative to antiviral drugs.
Synthetic miRNA (siRNA) targeting specific viral sequences [129] leads to BHK cell survival
when infected with Dengue virus 2 (DENV2) and significantly reduces virus titer [130].
Also, inhibition was improved when delivery of siRNA was replaced with lentivirus.
Some examples hold evidence for the effectiveness of RNAi, like, RNAi against ST6GAL1
resulted in the inhibition of binding of influenza to the sialic receptor, hence preventing
infection [131]. In HIV, siRNA against CCR5 led to the inhibition of HIV infection in RNAi-
treated macrophages [130]. Although, careful consideration is needed while designing the
RNAi as it may cause toxic, harmful effects, rendering its efficiency. Another concern is
that resistant mutants may rise due to treatment with RNAi, which could be the dominant
strain under selection pressure. RNAi escape mutants are seen to have mutations in the
regions targeted by siRNA evidence found in poliovirus, JEV, Hepatitis C viruses, and
others [132–134].

Another important treatment is lethal mutagenesis, which also holds some promising
results. Administration of mutagenic pyrimidine analog in AIDS patients resulted in lethal
mutagenesis [135]. When a non-mutagenic and mutagenic agent is administered in therapy,
it results in escape mutants which either complement or interfere with the system; however,
interference with the replication and infectivity of the wild-type genome results in the
replication system breakdown. Some commonly used mutagenic agents are tabulated in
Table 1. Additionally, virus extinction is strongly controlled by mutagenesis and defective
interfering genomes [13]. As the ratio of mutants increases, it evokes an extreme syner-
getic interference in the growth kinetics of the virus. One such piece of evidence is the
delayed replication of drug-resistant poliovirus mutants in the presence of trans-acting
mutants [136,137]. In the presence of mutagens like ribavirin (a nucleoside analog), FMDV
mutants experience interference due to the generation of some defector genomes obstruct-
ing replication. Also, inhibitors like guanidine hydrochloride (GU) produce a suppressive
effect on the interference caused due to defector mutants on wild-type proliferation [138].
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Table 1. A list of mutagenic base and nucleotide analogs used in lethal mutagenesis of RNA viruses.

Virus Family Mutagenic Base and Nucleotide Analog

Polio virus Picornaviridae Ribavirin, 5-nitrocytidine

Dengue virus Flavivirus 5-Fluorouracil, ribavirin

Zika virus Flavivirus Ribavirin, favipiravir

Hepatitis C virus Flaviviridae Ribavirin, favipiravir

Hepatitis E virus Hepeviridae Ribavirin

SARS-CoV-2 Coronaviridae Favipiravir

Tobacco mosaic virus Virgaviridae 5-fluorouracil

Influenza A virus Orthomyxoviridae 5-fluorouracil, Ribavirin 5-azacytidine

Vesicular stomatitis virus Rhabdoviridae 5-fluorouracil

Hantaan virus Hantaviridae Ribavirin

Rift valley fever virus Phenuiviridae Favipiravir

Ebola virus Filoviridae 5-fluorouracil

Marburg virus Filovirade Favipiravir

Even a mutation in a single amino acid could give rise to enough interference to
convert a genome into an interfering genome (the reverse is true as well), although the
probability of mutation in the sequence space is random. Accordingly, this can be induced
in-vitro by increasing the viral load of defective interfering particles in the system [139,140].
This could provide insight into developing new therapeutics against mutants that interfere
with wild-type variants. The spectrum of variants arose due to the complementation and
interference of altered viral proteins affecting the antiviral treatments. Understanding the
role of these interfering particles (defective interfering particles) could lead to the successful
development of antiviral therapy.

Consequently, we can address the challenge that arose due to the quasispecies selection
of the dominant variant by sequential or combination treatment involving alternative
inhibitors and mutagenic agents in clinical trials [135]. There are some theoretical and
experimental shreds of evidences of the benefits of sequential therapy over combinational,
which could result in the extinction of a mutagen-resistant variant [141,142]. There is a
need to intensively comprehend combinational therapies as it holds promise to develop
minimized virus load, and the critically analyzed siRNA or lethal mutagens could possibly
prevent the fitness cost of escape mutants.

5. Concluding Remarks

In experimental virology, the physiochemical milieu affects the frequency of mu-
tants and their nature, while in-vivo selection and biological constraint interfere with
the quasispecies formation [15]. Selection and survival solely depend on the extent of
the accumulation of the favorable mutation. Transmission between individual host and
host-to-host evolution shows that heterogeneity in the genome arises from various factors.
Interestingly, the extinction of virus species as a cost of a high mutation rate has impor-
tance to virologists. It could help if we could design the drug to manipulate the virus
mutation rates, as high mutation rates can push the population beyond the error threshold.
Even though the hyper-mutability of RNA viruses works in our favor, viruses manage to
conserve their identity in terms of genetic robustness to maintain the viral gene pool [16].
As we have reviewed above, many factors contribute to the efficacy of antiviral drugs,
including quasispecies dynamics. Evolution differs for heterogeneous tissue/organs, even
within the same individual virus. Tissue-specific micro-environment provides a different
set of parameters for virus replication. So, the development of effective drugs and vaccines
should encircle all factors in order to be effective against mutants, as the generation of
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novel mutants with higher pathogenicity and transmissibility is vividly seen in the case of
COVID-19. These escape mutants are selected under the pressure of antiviral drugs and
host immune response. To control the generation of escape mutants, we must understand
the effect of combination therapies for each step of the virus life cycle, which could help
eliminate the probability of the generation of variants. Understanding the upper limit
constraint of virus replication and the effectiveness of combinational therapies, which leads
to the extinction of the virus, is the key to solving the mystery of antiviral treatments [7].
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