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Abstract: Novel efficient vaccines are needed to control tuberculosis (TB), a major cause 

of morbidity and mortality worldwide. Several TB vaccine candidates are currently in 

clinical and preclinical development. They fall into two categories, the one of candidates 

designed as a replacement of the Bacille Calmette Guérin (BCG) to be administered to 

infants and the one of sub-unit vaccines designed as booster vaccines. The latter are 

designed as vaccines that will be administered to individuals already vaccinated with BCG 

(or in the future with a BCG replacement vaccine). In this review we provide up to date 

information on novel tuberculosis (TB) vaccines in development focusing on the risk 

assessment of candidates composed of genetically modified organisms (GMO) which are 

currently evaluated in clinical trials. Indeed, these vaccines administered to volunteers raise 

biosafety concerns with respect to human health and the environment that need to be 

assessed and managed. 
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1. Introduction 

Tuberculosis (TB) is a contagious infectious disease caused by Mycobacterium tuberculosis (Mtb) 

and other mycobacteria belonging to the Mtb complex (M. africanum, M. bovis, M. canettii). TB is 

spread by aerosols of species of the Mtb complex, which are shed through cough from open cavitary 

pulmonary TB patients before onset of multi-drug therapy. It is a major source of morbidity and 

mortality which has afflicted mankind since its origin [1]. Mtb is a pathogenic micro-organism 

belonging to the risk group (RG) 3 namely a biological agent that can cause severe human disease and 

may present a risk of spreading to the community [2]. An effective prophylaxis or treatment for 

infectious diseases caused by agents of RG 3 is usually available. An effective treatment exists against 

TB except for patients with extremely multi-drug resistant strains (XDR-TB) which are defined as 

strains resistant to most of the available antibiotics. The airborne route of transmission of Mtb and its 

low infectious dose in humans (ID50 1–10 bacilli) greatly contributes to the final classification of this 

pathogen into RG 3 [3]. 

World Health Organization (WHO) reported that in 2012, 8.6 million new cases of TB were notified 

and that 1.3 million people died from TB [4]. Among the 8.6 million cases of incident TB, 13% were 

in HIV co-infected individuals, 450,000 were caused by a multi-drug resistant strain (MDR-TB) 

defined as resistant to both isoniazid and rifampicin, 2.9 million were women and 0.53 million were 

children. Among the 1.3 million people that died of TB, 320,000 individuals were HIV-positive, 170,000 

died of MDR-TB, 410,000 were women and 74,000 were HIV-negative children. 

According to the WHO, the TB mortality rate has fallen globally by 45% since 1990 and number of 

deaths is falling in most parts of the world. This can be attributed to a better access to treatment around 

the world (via the implementation of treatment programs such as the one of directly observed treatment 

short-course or DOTS) as well as to the recent development of more rapid diagnostic methods (for 

example the GeneExpert). Nevertheless, in order to achieve an effective control of TB, novel antibiotics, 

new treatment schemes and effective vaccines able to prevent the development of the contagious 

pulmonary form of TB are needed. 

Until now, there is no effective vaccine to prevent TB in adults [4]. Bacille Calmette-Guérin (BCG) 

is a live-attenuated vaccine derived from M. bovis isolated in 1921 that is still the only licensed 

vaccine available against TB. Vaccination with BCG was progressively implemented worldwide since 

the middle of the 20th century and currently, in TB endemic countries, BCG is part of the vaccines 

administered in the context of the WHO Expanded Program on Immunization (EPI). In non-endemic 

countries, BCG is recommended only to individuals at increased risk of exposure to Mtb. BCG 

vaccination protects children against TB meningitis and against disseminated disease, but has been 

found to be of variable
 
efficacy against pulmonary TB (ranging from 0% to 80%) in a number of 

clinical trials [5–7]. Therefore, BCG has a minor impact on transmission of Mtb infection. 

A major problem in the quest for more efficient TB vaccines is the poor understanding of the 

immunity that is needed for effective protection. Nevertheless, it is well established that a key role in 

protection against this intracellular pathogen is played by the cellular arm of the adaptive immune 

system, particularly by CD4
+
 Th1 (type T helper) cells producing IFN-γ, TNF-α and IL-2 [8]. This is 

underscored by the clinical association between HIV and TB, by the genetic susceptibility to TB and 

opportunistic mycobacterial disease of individuals bearing mutations in the IL-12/IL-23–IFN-γ 
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pathway and by the increased risk to develop reactivation TB of individuals treated with anti-TNF-α 

agents used for a range of inflammatory/autoimmune diseases, such as rheumatoid arthritis and 

Crohn’s disease [9–11]. MHC class I restricted CD8
+
 T cells play also a role in the immune response 

against Mtb through production of cytokines and their lytic activity targeting infected cells. This has 

been demonstrated by a number of studies in pre-clinical models and with samples isolated from 

humans [8,12]. The importance of CD8
+
 T cells in the control of latent TB infection and immune 

protection against reactivation TB in humans was convincingly demonstrated by Bruns et al [13]. who 

have reported that anti-TNF-α immunotherapy with infliximab reduced CD8
+
 T cell-mediated 

antimicrobial activity against Mtb in humans through the interaction of the antibody with cell surface 

expressed TNF-α on CD8
+
 T cells and their subsequent complement-mediated lysis [13]. Hence, when 

developing novel TB vaccines, the type of immunity that is mainly sought is cellular adaptive 

immunity with CD4
+
 Th1 cells and CD8

+
 T cells. 

In this review, TB vaccine candidates that are currently evaluated in clinical trials are presented.  

A particular emphasis is given to the risk assessment of vaccines composed of genetically modified 

organisms (GMO) such as recombinant BCG and Mtb strains or viral-vectored sub-unit vaccines. 

Indeed, vaccines based on GMO that are administered to volunteers raise biosafety concerns with 

respect to human health and the environment that need to be assessed and managed [14,15]. 

2. Risk Assessment of Activities Involving GMO-Based Vaccines against TB 

2.1. General Regulatory Considerations in Europe 

Depending on the purpose and the type of activity in the European Union (EU), the use of 

genetically modified and/or pathogenic (micro-)organisms may fall within the scope of several 

regulatory provisions (Table 1). As the manipulation of pathogenic micro-organisms may pose a risk 

related to the exposure of the worker to biological agents, this type of activity is covered by the 

European Directive 2000/54/EC [2]. Activities involving manipulations of Genetically Modified 

Micro-organisms (GMM) in a facility may increase the probability of exposure of the population and 

the environment to these organisms. In this case, a risk assessment should be made in accordance with 

the provisions of the Directive 2009/41/EC related to the contained use of GMMs [15]. In addition if 

these activities involve the deliberate release of GMOs (including GMMs) into the environment they 

should undergo an environmental risk assessment (ERA) according the principles defined in annex II 

of the European Directive 2001/18/EC [14]. Moreover, activities aiming at commercializing of GMO 

biopharmaceuticals are covered by the Regulation (EC) No 726/2004 laying down procedures for the 

authorization and supervision of medicinal products for human and veterinary use [16]. 

2.2. Activities Involving Manipulation of GMO-Based Vaccine Candidates against TB 

Development of vaccines involves two main steps: the pre-clinical and the clinical development 

stage starting when the vaccine is first tested in humans. 
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Table 1. EU’s regulatory framework governing the conduct of clinical trials using genetically 

modified organisms (GMOs) and/or pathogens and the marketing of medicinal substances 

containing or consisting of GMOs (adapted from Verheust et al. 2012 [17])  

Legislation Main elements Ref. 

Directive 2000/54/EC 

This Directive aims at the protection of workers against risks to their health 

and safety, including the prevention of such risks, arising or likely to arise 

from exposure to biological agents at work. It requests Member States to 

determine the nature, degree and duration of worker’s exposure during an 

activity likely to involve a risk of exposure to biological agents and on the 

basis of this assessment, to implement adequate protective measures. 

Biological agents are classified in four risk groups, from the one that is 

unlikely to cause human disease to a biological agent causing severe disease 

for which no effective prophylaxis or treatment is available. 

[2] 

Directive 2001/18/EC 

This Directive defines the procedure for granting consent for the deliberate 

release in the environment and placing on the market of GMOs as or in products. 

It provides for a common methodology to assess on a case-by-case basis the risks 

for human health and the environment associated with the release of GMOs. It 

also introduces compulsory monitoring after GMOs have been placed on the 

market, as well as compulsory public consultation and GMO labeling. 

[14] 

Directive 2009/41/EC 

This Directive focuses on the contained use of genetically modified micro-

organisms (GMMs), i.e., any activity involving GMMs for which specific 

containment measures are used to limit their contact with, and to provide a 

high level of safety for, the general population and the environment. The 

Directive requests Member States to assess on a case-by-case basis the risks 

contained uses may pose and to implement appropriate containment and other 

protective measures to avoid adverse effects on human health and the 

environment. Contained uses are classified in four classes, from no or 

negligible risk to activities of high risk. 

[15] 

Regulation (EC)  

No. 726/2004 

This Regulation lays down procedures for the authorization, supervision and 

pharmacovigilance of medicinal products for human and veterinary use. For 

medicinal products derived from biotechnology, it foresees a compulsory 

centralized authorization procedure in which the European Medicines Agency 

is responsible for drawing up opinions on any matter concerning the 

evaluation of the products. 

[16] 

Directive 2001/20/EC 

This Directive sets out common rules for the authorization and regulatory follow-

up of a clinical trial. It aims at protecting human subjects involved in clinical 

trials and ensuring that the results are credible, by establishing quality, safety and 

ethical criteria. Approval of trials is the responsibility of individual EU Member 

States, who are required to evaluate the products used in clinical studies. 

[18] 

During the pre-clinical stages of research and development of novel TB vaccines, a number of 

studies are performed involving handling pathogenic Mtb or the GMO-based vaccine candidate. These 

research activities are carried out in contained facilities with a set of containment measures in order to 

protect human health and the environment against an accidental exposure to Mtb or the GMO vaccine 

candidate. A case-by-case risk assessment of these activities is performed to estimate the probability of 

occurrence and the severity of adverse effects in order to adapt the containment measures (Figure 1).  
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It should identify potentially harmful properties of the biological agent (pathogenic organism 

genetically modified or not) that is manipulated. The following properties have to be documented to 

conduct a proper risk assessment: the pathogenicity of the organism, the transmission mode, its 

infectious dose, its persistence and stability in the environment and the availability of effective 

prophylaxis or therapy against the disease. Concerning the risk assessment of a GMO, each element 

used towards the achievement of the genetic modification should be assessed: the recipient organism, 

the genetic material inserted, the vector and the donor organism. The final organism (genetically 

modified or not) is then classified into one of the four risk groups according to their relative hazards, 

RG 1 referring to micro-organisms that are proven non-pathogenic or are unlikely to cause disease (in 

healthy individuals) and RG 4 referring to micro-organisms highly transmissible that cause a fatal 

disease for which no treatment or prophylaxis is available [2]. The risk assessment takes also into 

account the characteristics of the operation performed with the organism that could influence the 

probability of exposure of workers, the general population and the environment: the scale of the 

operations (a production activity involving high volumes), the concentration of the organism and the 

type of manipulations involving the organism (creating infectious aerosols for example). 

Figure 1. The risk assessment of a ―contained use‖ activity. The risk assessment takes into 

consideration on one hand, the identification of biological hazards of the genetically 

modified or pathogenic organism and the determination of its risk group and on the other 

hand, the nature of the manipulations determining the probability of exposure to potential 

biological hazards. The risk assessment allows assigning a class of risk to the contained use 

activity and the implementation of the recommended containment level in order to protect 

public health and the environment.  
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The case-by-case risk assessment of the activity allows the determination of an adequate containment 

level (CL) to implement in order to protect the public health and the environment. CLs consist in a 

combination of technical characteristics of the facility, safety equipment, laboratory practices and 

operational procedures [15]. Generally, facilities, including laboratories, animal housing areas and 

production facilities are classified into four CL ascending from CL-1 to CL-4 [15,19], in which CL-4 

implements the most stringent containment measures in order to contain extremely virulent and 

transmissible micro-organisms during their manipulation. The risk assessment is specific for an 

activity, therefore additional containment measures can be required to the standard measures defined 

by a given containment level. 

When the GMO vaccine candidate (also named recombinant vaccine candidate) has achieved  

pre-clinical studies without any obvious adverse effect and with proven protective efficacy in different 

animal models, it enters the clinical stage of development in humans. Clinical studies cover four stages 

over several years, from initial phase I clinical trials in humans assessing the safety in healthy humans 

to phase III trials assessing efficacy against the disease under natural disease conditions and finally 

post-marketing surveillance to detect adverse effects as well as to assess long term efficacy (phase IV). 

Clinical development is built on rigorous ethical principles of informed consent from volunteers or 

patients, with an emphasis on vaccine safety as well as efficacy. Clinical trials using recombinant 

vaccines, as all human clinical trials performed in the EU, fall under the scope of Directive 

2001/20/EC establishing provisions regarding the conduct of clinical trials on human subjects 

involving medicinal products (Table 1) [18]. 

In the framework of the European biosafety directives, at each clinical stage, Directive 2001/18/EC 

on deliberate release of GMOs must be considered in case the vaccine candidate enters into contact 

with the environment and the general population. Dissemination of a recombinant vaccine into the 

environment is not an adverse event per se but an ERA must be performed with the aim of evaluating 

(i) the potential of the GMO to cause adverse effects on persons (other than treated subjects), animals, 

plants and other micro-organisms exposed to it and (ii) the probability that these adverse effects will 

occur. The ERA requires an assessment of the genetic stability of the recombinant vaccine and the 

possible interaction of the GMO with other organisms [20]. It has to take into account the intrinsic 

characteristics of the strain used, the characteristics of the transgene(s), the biodistribution and level of 

dissemination of the GMO, the possibility of recombination and the risk classification. Indeed, a 

critical step in the ERA is evaluating pathways of exposure through which the recombinant vaccine 

may interact with humans (other than vaccinee) or the environment. It excludes pure medical aspects 

on the efficacy and safety of the vaccine for the treated subject, even though data on safety are very 

useful to assess the potential pathogenicity of the vaccine candidate and may inform the ERA. It is 

worth mentioning that the exposure of the general population and the environment will usually be 

lower than the exposure of the vaccinee [21]. 

3. Update of TB Vaccine Candidates in Clinical Trials 

Research and development of new and effective vaccines has increased in the last 20 years after 

recognition of the limited effectiveness of BCG as a global vaccine approach and the increasing 

incidence of MDR-TB impacting upon chemotherapy-based TB control programs. The ideal TB 
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vaccine would be a pre-exposure vaccine that is able to elicit sterilizing immunity preferably at the 

time of initial infection. Nevertheless, given the complex interactions between Mtb and its host and the 

poor understanding of the correlates of protection, current vaccine research rather aims at developing a 

vaccination protocol impacting on the transmission of the infection by inducing levels of immunity 

that are able to prevent the development of active TB, to be administered before Mtb exposure or to 

latently infected individuals. 

TB vaccines under development fall under two main categories. The first category is the one of 

vaccines that could replace BCG. Indeed, as BCG is protective against childhood forms of TB, a new 

vaccination protocol should involve a vaccine that is able to prevent these forms of the disease and that 

could be administered to newborns as it is currently done with BCG. The second category is the one of 

sub-unit vaccines to be administered as booster vaccines later in life to individuals that have been 

vaccinated with BCG during infancy and that should prevent the development of adult pulmonary TB. 

These booster sub-unit vaccines are also tested in individuals latently infected with Mtb. The rationale 

behind all the booster vaccines is the notion that BCG induced immunity wanes with time, although 

this notion is not accepted by everyone in the scientific community [22,23]. It was already demonstrated 

that homologous boosting with BCG is not protective [24], while pre-clinical data indicate that using  

sub-unit vaccines consisting of protective mycobacterial antigens can improve protection [25]. 

Several TB vaccine candidates are currently at different stages of clinical trial development  

(phase I to phase III). Designed as BCG replacements are two GMOs: a genetically modified BCG 

strain called VPM1002 and a genetically modified Mtb strain called MTBVAC. Designed as booster 

vaccines are the viral-vectored sub-unit vaccines MVA-85A, MVA-85A-IMX313, AdHu5Ag85A, 

AERAS-402 and ChAdOx1 85A based on Modified Vaccinia virus Ankara (MVA) or on modified 

adenoviruses (Ad). Different recombinant proteins (genetically engineered fusions of mycobacterial 

antigens) are also currently in clinical development. These proteins are formulated in adjuvants such as 

the M72, fusion of Rv0125 and Rv1196 formulated in the liposome-based AS01 adjuvant system; 

Hybrid1 (a fusion of Ag85B and ESAT-6), Hybrid56 (a fusion of Ag85B, ESAT-6 and Rv2660) or 

Hybrid4 (a fusion of Ag85B and TB10.4) formulated in the adjuvant IC31 and finally the ID93 fusion 

of four Mtb antigens linked in tandem (namely Rv3619, Rv1813, Rv3620 and Rv2608) formulated in 

GLA-SE (Glucopyranosyl lipid adjuvant-stable emulsion), a synthetic adjuvant based on a TLR4 

agonist [26–30]. 

In this review, we will focus on the genetically modified mycobacterial strains (MTBVAC and 

VPM1002) and the viral-vectored sub-unit vaccines that fall under the category of GMOs (Table 2). 

Issues related to the other sub-unit vaccines in clinical development, which involve the use of GMOs 

for their development and production, will not be discussed here. 
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Table 2. GMO-based vaccine candidates against TB in clinical trials. 

Vaccine Backbone Genetic modification 
Current clinical 

phase of development 
Ref. 

GMO-based vaccine candidates designed to replace BCG 

VPM1002 Recombinant BCG 

ΔureC::hly Hm(R) deleted in ureC 

expressing listeriolysin (hly) from 

Listeria monocytogenes 

Phase II [31,32] 

MTBVAC Recombinant Mtb 
deleted in phoP and fadD26 without 

antibiotic-resistance markers 
Phase I [33] 

Viral vectored sub-unit vaccines designed as booster vaccines 

MVA-85A (also 

called AERAS-485) 

Recombinant Vaccinia 

Ankara vector 
Expressing Ag85A (Rv3804c) Phase IIb [34–47] 

MVA-85A-IMX313 
Recombinant Vaccinia 

Ankara vector 

Expressing a fusion of Ag85A 

(Rv3804c) and IMX313 
Phase I [48] 

AERAS-402  

(also called  

Crucell Ad35) 

Recombinant 

replication deficient 

Adenovirus serotype 

35 (Ad35) 

Expressing Ag85A (Rv3804c); Ag85B 

(Rv1886c) and TB10.4 (Rv0288) as a 

fusion protein 
Phase II [49,50] 

Deleted in E1 

AdAg85A 

Recombinant 

replication deficient 

Adenovirus serotype 5 

(Ad5) 

Expressing Ag85A (Rv3804c) 

Phase I [51,52] 
Deleted in E1 and E3 

ChAdOx1 85A 

Recombinant  

replication deficient 

simian Adenovirus 

Expressing Ag85A (Rv3804c) 

Phase I [53] 
Deleted in E1 and E3 

4. Biosafety Considerations of Clinical Studies with GMO-Based Vaccines 

Human use of a GMO as vaccine requires rigorous tests to control their attenuation and the 

absence of reversion to virulence, their persistence and biodistribution in the vaccinated subject,  

their ability to survive outside the host in the environment and their genetic stability [54,55]. Issues 

raised by use of antibiotic resistance markers need to be addressed and evidence for lack of shedding 

of live micro-organisms by vaccinated persons should also be assessed. Concerning recombinant  

live mycobacteria, the possibility of exchange of genetic material with naturally occurring 

environmental mycobacteria needs to be studied and requires an assessment of the consequences of 

such genetic exchange. 

4.1. BCG Replacement with Genetically Modified Mycobacteria 

One of the basic strategies to develop this first category of TB vaccines is to improve BCG by 

genetically modifying it. The resulting genetically modified (GM) BCG strain will express or  

over-express Mtb protective antigens or will be able to better induce protective immune responses as 

compared to the original BCG vaccine strain. The second strategy followed to replace classic BCG 

vaccination is rational attenuation of Mtb in order to develop a live attenuated TB vaccine that 
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resembles more the pathogenic mycobacteria in terms of antigenic repertoire and in terms of the 

induced immune responses. 

4.1.1. Genetically Modified BCG in Current Live Vaccine Candidates: VPM1002 

BCG was developed by attenuation of virulent Mycobacterium bovis through 230 passages in 

glycerin-bile-potato medium over the course of 13 years [56]. The original BCG vaccine was 

distributed to laboratories that have continued passaging the strain and consequently new sub-strains of 

BCG arose with somewhat different genetic background. The various sub-strains are divided into two 

broad groups known as early and late strains [57]. They show genetic variations but no substantial 

differences were observed between them in efficacy and protection against Mtb in guinea pigs [54,58]. 

All BCG vaccine strains have lost RD1 (Region of Difference 1) encoding the machinery required to 

synthesize and export the major T-cell antigen/virulence factor ESAT-6/CFP-10. Deletion of RD1 is 

essential for attenuation of virulent M. bovis. 

Taking advantage of the information accumulated from BCG studies over the years, the vaccine 

strain BCG is being widely used as a backbone to design improved recombinant BCG derivatives as 

vaccine against TB. Two strategies have been adopted to improve vaccine efficacy over parental BCG: 

(i) by designing means to induce increased antigen-specific responses by favouring antigen escape 

from the phagosomal compartment and increase cross-presentation of mycobacterial antigen over  

those achieved by parental BCG or (ii) by constructing BCG strains that are able to over express 

protective antigens. 

Three GMO vaccine candidates based on BCG entered in clinical trials: VPM1002, AERAS-422 

and rBCG30 [31,59,60]. VPM1002 is the only one that successfully continues in phase II clinical trial, 

the two others have been stopped, in the case of AERAS-422 for possible safety reasons (some trial 

participants developed shingles). Other promising candidates using BCG as a backbone are still in  

pre-clinical stage [61,62]. 

The vaccine candidate VPM1002 is a GM BCG Danish subtype Prague strain expressing the 

listeriolysin protein (LLO) and carrying a urease gene deletion [31]. VPM1002 has been tested in two 

phase I trials, one in Germany and one in South Africa, and a phase II trial to evaluate its safety and 

immunogenicity in comparison with BCG in newborn infants was recently completed in South Africa 

(NCT01479972). The rationale behind the development of this recombinant BCG strain was to 

overcome the poor ability of BCG to induce CD8
+
 T cell responses by integrating into its genome the 

gene hly of Listeria monocytogenes. LLO, the protein encoded by hly, is responsible for the formation 

of pores in the phagosome after endocytic uptake of the bacterium, which might enable VPM1002 to 

access the cytosol and result in MHC class I presentation of BCG derived peptides. 

A phase I clinical trial with VPM1002 vaccine candidate has been authorized and achieved on 

healthy volunteers in Germany. A thorough risk assessment of the trial has been performed as described 

in European Directives on the contained use and the deliberate release of GMO. A summary of this 

analysis is now publicly available in an SNIF (summary notification information format) [63]. 
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4.1.1.1. Characteristics of the Parental BCG 

According to international classification lists, BCG may belong to RG 2 (in UK and USA) or RG 1 

(in Switzerland and Germany) [64–67]. BCG is considered as a safe vaccine and has been administered 

to hundreds of millions of neonates in the world without serious side effects. However, on rare occasions 

BCG may cause abscesses at the site of inoculation and localized lesions such as osteitis. The most 

serious complication of BCG is disseminated disease that results from impaired immunity [68]. BCG 

administration is thus contraindicated in HIV infected infants as it may pose a considerable risk of 

distant or disseminated BCG disease [69,70]. 

In a laboratory or clinical setting, workers manipulating BCG may be exposed to this agent through 

contact of mucous membranes or injured skin to aerosols or droplets containing the organism but also 

by an accidental inoculation or ingestion of material containing BCG [67]. Mycobacteria show generally 

high stability and capacity to persist outside a host into the environment as well as a high resistance to 

dehydration [71]. However, these micro-organisms present slow replicative rates and therefore a poor 

propagative capacity. A CL-2 is generally required for manipulations of BCG in a laboratory and 

workers should wear as a minimal personal protective equipment: a lab coat, gloves and safety  

glasses [67,72]. In addition, all aerosol-generating activities must be conducted in a class II Biosafety 

Cabinet (BSC). 

The genetic background used in VPM1002 is the BCG Danish, subtype Prague. In this sub-strain, 

BCG has lost the genetic segments RD1 and RD2 carrying genes implicated in virulence [73,74]. 

4.1.1.2. The Transgene and the Genetic Modification 

In VPM1002, BCG expresses a recombinant fusion protein composed of the leader sequence of the 

mycobacterial antigen 85B in front of LLO, a secreted thiol-activated cholesterol-binding hemolysin 

showing hemolytic activity around pH 5.5. In order to guarantee the optimal pH for listeriolysin 

activity the gene ureC encoding the mycobacterial urease C sub-unit was disrupted by insertion of the 

Ag85B-LLO expression cassette [31]. The hly expressing cassette is placed under the regulation of the 

mycobacterial promoter sequence from the heat shock protein 65 (hsp65). 

LLO is a toxin considered as a virulence factor of the bacterium L. monocytogenes, the causative 

agent of listeriosis. As already mentioned, the mechanism by which VPM1002 might improve 

immunogenic protection against TB compared to parental BCG is that perforation of the membrane 

surrounding the phagosome by LLO facilitates translocation and subsequent MHC I loading of 

mycobacterial antigens [75]. In addition, studies in mouse and human macrophages reported that 

phagosomal membrane perforation might activate cell apoptosis following leakage of phagosomal 

enzymes in the cytosol which in turn results in cross-priming of the mycobacterial antigens [76]. 

Indeed, Hly from L. monocytogenes has been shown to induce apoptotic cell death in different cell 

types [77,78]. 

LLO construction in VPM1002 provides two safety features in order to limit perforation to 

phagosome membrane of the infected cell: the pore-forming function of the protein is restricted to 

acidic pH and LLO carries the PEST amino acid sequence (containing proline, glutamic acid, serine 

and threonine) that directs the protein to phagosomal degradation immediately upon appearance in the 
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host cell cytosol [79,80]. In pre-clinical studies on Rhesus monkeys, no indications of lysteriolysin 

induced hemolysis were reported after an intradermal injection with the research precursor of 

VPM1002 (rBCG∆ureC::Hly
+
::Hyg

+
) [81]. 

pVEP2003, the plasmid used to generate the VPM1002 is an E. coli shuttle vector, based on the 

pJSC284 plasmid. The plasmid carries an E. coli origin of replication but no mycobacterial origin of 

replication, which makes this plasmid a suicide plasmid which cannot replicate in mycobacteria [63]. 

The plasmid carries no transposable elements. Beside the hly expressing cassette, the vector contains a 

hygromycin resistance cassette for selection reasons [32]. It is flanked by 2 γδ resolvase recognition 

sites used to excise the hygromycin out of the VPM1002 vaccine candidate upon extrachromosomal 

expression of the resolvase. However, it is not clear from available data if this marker is removed from 

VPM1002. It is worth mentioning that generally, the use of antibiotic resistance genes as markers 

should be limited as much as possible in order to prevent potential risks associated with exposure of 

humans and the environment to these markers. 

4.1.1.3. Genetic Stability of VPM1002 

Hundreds passages of M. bovis have resulted in different BCG strains and sub-strains demonstrating 

genetic variability of the micro-organism. However, no other factors of genetic modification have been 

reported since the initial use of BCG except the general mutational factors (drugs or radiation). History 

of parental BCG practical use as vaccine during years shows no evidence of gene reversion to 

virulence or gene complementation. It does not reveal any evidence of horizontal gene transfer 

capacity of BCG [20]. During construction of VPM1002, the insert is integrated in the bacterial 

chromosome, making horizontal gene transfer highly improbable. Research on VPM1002 reports that 

the vaccine shows genetic stability after several laboratory passages [63]. Reproducible conditions of 

culture and manufacturing of the vaccine would indeed maintain stability of the VPM1002 genome. 

For the use in vaccination studies on humans, genetic stability of the recombinant BCG material need 

to be confirmed which means that VPM1002 material has to be well-characterized and the genetic 

modification has to be confirmed by molecular techniques such as PCR, Southern blotting and 

sequencing [55]. 

4.1.1.4. Safety of VPM1002 

Pre-clinical and clinical studies bring valuable information concerning safety of VPM1002 

vaccination compared to BCG vaccination which can be used to assess the potential pathogenicity of 

the GM vaccine [31,32,55]. VPM1002 was shown to cause no serious adverse effects in different 

animals used as models for different immunological status (IFNγ knock-out mice and SCID mice) and 

age (newborn rabbits) [55]. In rhesus monkeys vaccinated with the precursor of VPM1002, no other 

adverse effect than a mild local reaction such as that observed in BCG vaccinated animals was 

reported [81]. The report on the first results of phase I clinical studies in human confirms safety of 

VPM1002 on healthy volunteers from Germany and South Africa [32]. 
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4.1.1.5. Transmission of VPM1002 

No studies seem to have reported specific information on VPM1002 transmission modes. During 

manipulations in a laboratory or a clinical setting, VPM1002, as a mycobacterium, may transmit to 

workers by inhalation of infected droplet nuclei, by contact with non-intact skin and mucous 

membranes and by accidental inoculation or ingestion of infected material. Nevertheless, as the 

precursor of VPM1002 has showed lower persistence in infected mice macrophages than the parental 

BCG, the probability of transmission to other organisms is considered lower as well [75,82]. In the 

framework of surveillance of unintended transmission of the vaccine during the phase I clinical 

studies, no suspected transmission of the vaccine to other persons has been reported [32]. 

4.1.1.6. VPM1002 Risk Classification 

The risk classification of VPM1002 depends on the nature of the parental organism (BCG), the 

transgene and the consequences of the insertion on the parent characteristics. BCG has been classified 

in RG 2 or RG 1 depending on the international classification list considered. Effect of LLO, the 

product of hly expression in VPM1002, combined to the urease gene deletion, appears directed 

specifically to the phagosome membrane and suggests that the transgene does not potentiate risks 

linked to the use of VPM1002. Indeed, no deleterious effects have been observed after administration 

of this vaccine candidate to animals and humans in preclinical and clinical studies, suggesting that 

VPM1002 is not pathogenic. Inventors even underline that the rate of adverse events of VPM1002 

vaccination was lower than the parental BCG vaccination [63]. Also, compared to the parental BCG, 

VPM1002 has been shown to be more rapidly degraded in the organism. Finally, it has to be 

mentioned that VPM1002 is sensitive to antibiotics commonly used in the treatment of mycobacterial 

infection (e.g., isoniazid, rifampicin and ethambutol) [55,63]. 

Taking into account these characteristics of VPM1002 and the first results of clinical studies, this 

vaccine candidate may be classified in RG 1, namely, a biological agent with no or a negligible risk for 

human health and the environment and for which a CL-1 is required. 

4.1.1.7. Biodistribution of VPM1002 and Environmental Risk Assessment 

VPM1002 has been shown to have a low multiplication rate and a weak persistence in infected  

cells [75,82]. No viable bacilli in slices of lungs, livers and lymph nodes of guinea pigs were detected 

by culture after vaccination with VPM1002, though PCR data revealed that a systemic spread of 

VPM1002 had occurred in these rodents [55]. This observation suggests that excreted biological fluids 

of a vaccinated subject may contain DNA of the recombinant BCG which may by this way be released 

into the environment. In the framework of clinical trials, putative routes of transmission of the vaccine 

were explored through the analysis of blood, saliva, urine and stool from vaccinated volunteers for 

traces of vaccine (PCR analysis of unique genomic DNA regions of VPM1002). All results were 

reported negative and no suspected transmission of the vaccine to other persons were observed during 

the first clinical phases [32,63]. 

Shedding of VPM1002 was not detected as reported by analysis of body fluids from vaccinated 

subjects. The probability of VPM1002 dissemination into the environment from the vaccinated person 
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is therefore considered very low. However, if the vaccine candidate spreads into the environment, the 

supposed genetic stability of VPM1002 is foreseen to limit its interaction with other mycobacteria. The 

possibility of exchange of genetic material with naturally occurring environmental mycobacteria needs 

to be studied and requires an assessment of the consequences of such genetic exchange. 

If an external, non-vaccinated person such as a clinical worker or a relative is contaminated by 

VPM1002 no toxic effects are foreseen from the newly introduced gene. The first clinical trial with 

VPM1002 in humans compared the number and intensity of adverse effects (AE) in BCG-naïve 

volunteers and in BCG-vaccinated persons. Although the number of AE was higher in the  

BCG-vaccinated group, their intensity was similar to those in the group of BCG-naïve subjects (mostly 

mild AE), suggesting that VPM1002 may not induce any exaggerate immune response (Koch 

phenomenon) in a person already vaccinated with BCG. Similarly, it might be assumed that the same 

situation will occur in a person (other than the vaccinee) who is latently infected with Mtb and who 

comes inadvertently into contact with the vaccine candidate. However, this assumption needs to be 

confirmed. At the opposite, an unintentional exposure to VPM1002 of a human who is immunosuppressed 

or HIV infected may probably increase the risk for this person to develop BCG complications. Indeed, 

BCG vaccination is not recommended in HIV-infected infants and in adults. 

4.1.1.8. Risk management Measures (Containment, Worker Protection Measures, Waste) 

The high attenuation profile of VPM1002 allows handling of this GMO under a CL-1 (Directive 

2009/41/EC). However, this level is appropriate to manipulate VPM1002 at the condition that the 

vaccine candidate has been well-characterize before use in humans. Additional measures should be 

taken to prevent or manage risks associated with manipulations by the clinical personnel and with 

dissemination into the environment of VPM1002 (Table 3). Transmission to workers may occur by 

inhalation of the airborne VPM1002, by an inadvertent exposure of mucous membranes or damaged 

skin to contaminated aerosols, droplets or materials or by an accidental parenteral inoculation with a 

needle or a sharp instrument carrying VPM1002. These potential incidents involving the clinical 

personnel may be at the origin of an unintentional release of the GMO vaccine candidate into the 

environment. The prevention of VPM1002 exposure of personnel during manipulations of VPM1002 

material will consist for workers, in the application of specific work practices and in wearing personal 

protective equipment. In particular, all open phase operations with VPM1002 material should be 

carried out in a class II BSC and workers should limit as much as possible the use of sharp objects. 

Adapted procedures should be applied for material and surface decontamination taking into account 

the properties of mycobacteria (high survival capacity outside the host and resistance to some standard 

disinfectants). Potentially contaminated waste and personal protective equipment should be inactivated 

using an appropriate method before disposal. 
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Table 3. Work practices for personnel manipulating genetically modified TB vaccines to 

prevent or manage risks for public health and/or the environment. 

 Aerosol producing operations should be reduced during preparation and administration of the 

GM vaccines and personnel manipulating the GM vaccines should wear adequate protective 

clothing such a lab coats, goggles. Some manipulations should preferably be carried out in a 

class II biosafety cabinet.  

 Work with needles and other sharp objects should be strictly limited and workers should never 

recap nor remove needles from syringes. Removal of the needle from the syringe should occur 

by means of hand free operations (i.e., hands do not touch the needle) into a closed container. 

 The use of gloves is required to avoid skin contamination. 

 Appropriate procedures for material and surfaces decontamination should be applied. 

 Spills should be inactivated by an appropriate disinfectant, allowing sufficient contact time 

before disposal.  

 Contaminated waste and personal protective equipment should be inactivated using an 

appropriate method before disposal. Potentially contaminated non-disposable materials need 

to be properly decontaminated.  

 If an incident occurs that could lead to infection (e.g., breakage of a vial containing the GM 

vaccine, or needle stick), applicable first aid should be performed (i.e., flushing eye for ocular 

exposure, placing an absorbent tissue on the affected area in order to absorb all viral particles 

and apply disinfectant directly to the tissue for percutaneous exposure), followed by reporting 

to the supervisor. 

 The injection site should be protected and covered. Appropriate waste management measures 

and disposal should be taken by the patient. 

Finally, the volunteer who has been vaccinated with VPM1002 and goes back home should  

take measures to protect the injection site to avoid direct contact of the vaccine with any other person 

and to limit dissemination of the GMO into the environment. In the case of VPM1002, as for BCG,  

the vaccine is administered intradermally to the subject. This route of administration is recommended 

for several reasons: (i) a more consistent dose is delivered to the patient than for other routes of 

administration; (ii) the skin presents a dense network of immune-stimulatory antigen-presenting cells 

increasing the immunogenicity of the vaccine and (iii) the intradermal route reduces the risk of  

needle-stick injuries for caretakers and the risk of blood or nerve injuries for patients. However, 

compared to intramuscular injection, intradermal administration of a vaccine results also in a potential 

increase of local adverse events and in a superficial lesion that may last three months after vaccination 

in the case of BCG. Lesions at the injection site become a way of vaccine leakage into the environment. 

Thus the VPM1002 injection site should be covered at least until complete healing of the lesion. In 

addition, it is important to consider adequate management and disposal of the waste generated by the 

vaccinee during this period. 

4.1.2. Mtb Genetic Background of Current Live Vaccine Candidates: MTBVAC 

The second strategy that is followed in order to develop a BCG replacement is the rational 

attenuation of Mtb by genetically modifying it. As cured TB does not prevent reinfection, the success 

of this approach is unpredictable. On the other hand, PPD (Purified Protein Derivative) positive 
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subjects who were exposed to Mtb and developed a latent TB infection can control the infection  

in 90%–95% of the cases. The resulting attenuated strain will resemble more the pathogenic 

mycobacteria in terms of antigenic repertoire and in terms of induced immune responses than the  

M. bovis derived BCG vaccine. The biosafety issues need to be carefully addressed as these attenuated 

strains are derived from a pathogen belonging to the RG 3 micro-organisms, namely a biological agent 

that can cause a severe disease and that presents an elevated risk of spreading to the community. Thus, 

as a minimal requirement for approval for human use, an Mtb-based vaccine candidate needs to 

comply with the Geneva Consensus calling for at least 2 unlinked non-reverting mutations in Mtb 

vaccine strains and the absence of an antibiotic resistance gene [20]. So far only the MTBVAC 

candidate is being tested in a phase I clinical trial after a long procedure to obtain regulatory approval 

for clinical safety testing. The aim of this trial is to assess the safety and immunogenicity of MTBVAC 

in a dose escalation study. According to MTBVAC investigators, the preliminary safety results are 

already promising [83]. Immunogenicity results are expected for 2014. 

4.1.2.1. Characteristics of the Parental Mtb 

Mtb is a highly communicable human pathogen. It has a very low infectious dose and transmission 

may occur through contaminated objects or surfaces or by inhalation of droplet nuclei carrying Mtb. 

Other modes of transmission, albeit less frequent, include percutaneous transmission such as direct 

injury to the skin and mucous membranes through breaks in skin [3]. Infected animals (but not mice) 

can spread the infection to laboratory workers through aerosols, fomites or animal bites. Risk of 

transmission is increased by the capacity of Mtb to persist in the environment for long periods. In R&D 

facilities, a CL-3 facility is required for work involving infectious or potentially infectious materials, 

animals or cultures. 

4.1.2.2. Genetic Modifications in MTBVAC 

MTBVAC is an Mtb strain deleted in the transcriptional regulator phoP and in fadD26 [33]. These 

two steps mutations were engineered on a human clinical isolate of Mtb, namely MT103. PhoP is a 

transcriptional regulator part of a 2-component system involved in sensing and adaptation of the 

pathogen to an intracellular environment. It has been proposed to constitute a key regulator in the 

control of Mtb growth-associated virulence [84,85]. Its expression was shown to be strongly upregulated 

in a clinical isolate demonstrated to be a cause of MDR-TB [86], indicating that PhoP is a transcription 

factor contributing to virulence. Indeed, Mtb∆phoP cannot express numerous genes including important 

virulence factors [87]. 

The second deleted gene in MTBVAC is fadD26 whose gene product is required to synthesize 

phtiocerol dimycocerosates (PDIMs). PDIMs are unique components of the mycobacterial cell wall 

playing an important role as a permeability barrier and in pathogenicity of mycobacteria from the Mtb 

complex [88,89]. PDIMs have been shown to protect the intracellular pathogen from host defense and 

to be required for multiplication in mouse lungs [90]. 

Plasmids used to genetically delete phoP and fadD26 in MT103 Mtb strain consist in two suicide 

vectors carrying phoP or fadD26 genes disrupted by insertion of an antibiotic resistance marker 

cassette. Each insert (fadD26::Ώhyg and phoP::Ώkm ) was incorporated into a pJQ200X vector used to 
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achieve their insertion in Mtb genome by homologous recombination. This clonal vector is a suicide 

vector that cannot replicate in mycobacteria. The antibiotic resistance markers are flanked by 2 γδ 

resolvase recognition sites that are used to excise the antibiotic genes out of the vaccine candidate in 

presence of resolvase, leaving only res sites in the final MTBVAC [91,92]. 

4.1.2.3. Genetic Stability of MTBVAC 

At the second Geneva meeting on recommendations to follow for novel live TB vaccines clinical 

studies, it was globally accepted that mycobacteria and their GM derivatives are genetically highly 

stable with a lack of evidence of gene reversion complementation or horizontal gene transfer [20]. 

Large clinical and practical experience with BCG vaccine supports this opinion. In the case of 

MTBVAC, inserts are integrated in the bacterial chromosome, decreasing horizontal gene transfer 

probability. However, the possibility of exchange of genetic material of recombinant Mtb with 

naturally occurring environmental mycobacteria and the consequences of such genetic exchange should 

be explored, particularly to assess the probability of attenuation complementation. 

As mentioned earlier for VPM1002, reproducible conditions of culture and manufacturing of the 

vaccine would maintain stability of the MTBVAC genome. Before its use in vaccination studies on 

humans, genetic stability of the recombinant Mtb material has to be checked and the vaccine candidate 

has to be well characterized. 

4.1.2.4. Safety of MTBVAC 

Both mutations in MTBVAC affecting key virulence regulators of Mtb have resulted in Mtb 

attenuation. Safety studies have been performed earlier for each individual genetic modification that 

result in MTBVAC vaccine in animal models. Investigators have shown that an Mtb mutant strain that 

has the phoP gene inactivated (SO2 strain) is more attenuated than the BCG strain [87]. The same 

observations are reported for the recombinant Mtb that has the fadD26 gene inactivated [93]. Both 

individual Mtb mutants are also reported to provide protection levels higher or comparable to those 

conferred by BCG in mice. The mutant Mtb strain MTBVAC with the combination of the 2 independent 

mutations, one in synthesis of the PhoP protein and one in PDIM synthesis, has been shown to be more 

attenuated than BCG in SCID mice after intravenous inoculation of the vaccine candidate [92]. 

Toxicity studies with guinea pigs inoculated with a 50 times the BCG vaccine human dose, showed 

that these animals gained weight over a period of six months and no visible TB lesions were observed 

on these animals at autopsy [33,92]. It is also reported to provide a greater degree of protection than 

BCG in the guinea pig model [33]. So far, no data are already available on the safety of MTBVAC 

vaccination in human volunteers. 

4.1.2.5. Transmission of MTBVAC 

No specific data on transmission modes of this vaccine candidate can be found in the literature.  

The genetic modifications of Mtb in MTBVAC may not modify the transmission characteristics of the 

parental Mtb strain. The recombinant Mtb may then transmit by inhalation of infected droplet nuclei. 

Indeed, SCID mice have been inoculated by aerosol with MTBVAC in studies of vaccine attenuation [92]. 
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Other ways of transmission include contact of MTBVAC aerosols with damaged skin and mucous 

membranes and an accidental parenteral inoculation of MTBVAC material. It is worth mentioning that 

the recombinant Mtb presence has been shown to decline after vaccination in mice decreasing as such 

the probability of transmission from the vaccinee. The capacity of MTBVAC to persist outside a host 

may be high and similar to that generally shown by mycobacteria, or may be altered as a consequence 

of deletion of phoP or fadD26 genes. This still needs to be determined. Similarly it is not well 

established if genetic modifications in MTBVAC may alter the growth rate of the Mtb double mutant.  

4.1.2.6. MTBVAC Risk Classification 

The parental Mtb strain of MTBVAC is classified in RG 3. In MTBVAC, two independent 

deletions in fadD26 and phoP genes affecting key virulence factors have attenuated the strain as 

demonstrated in pre-clinical studies on MTBVAC. The safety profile of MTBVAC has been reported 

to be better than the BCG profile in immune-compromised SCID mice [33]. In addition, the Mtb 

double mutant remains sensitive to antituberculosis drugs, which would allow a conventional treatment. 

As already mentioned, at the Geneva Consensus meeting on the safety requirements for novel TB 

vaccine candidates, participants claimed that mycobacteria and their GM derivatives are genetically 

stable with any evidences of gene reversion complementation or horizontal gene transfer. Thus, 

nowadays and taking into account results reported by pre-clinical studies, MTBVAC would be 

classified in RG 1 for animals. Data are missing to determine a final risk group of MTBVAC in 

humans. Results from the phase I clinical trial in humans are expected to provide valuable information 

to be used in a thorough risk assessment of MTBVAC. 

4.1.2.7. Biodistribution of MTBVAC and Environmental Risk Assessment 

MTBVAC biodistribution in mice was reported to be localized mainly in lymph nodes where a 

progressive clearance of the colonies was observed after four weeks of intradermal vaccination [33]. 

MTBVAC could not be detected in urine and stool of mice. No information has been found on its 

presence in saliva or blood. In guinea pigs, viable MTBVAC was exclusively found in the site of 

vaccination only immediately after intradermal administration. 

Vaccine shedding was not detected in urine and stool of MTBVAC inoculated mice thereby 

indicating that the probability of MTBVAC dissemination into the environment from a vaccinated 

animal may be low. This should be assessed in humans during the first phase clinical study using 

MTBVAC. In case of vaccine candidate release into the environment, only a limited environmental 

impact is expected to occur if MTBVAC has kept the poor replicative characteristics and the high 

genetic stability of mycobacteria. However, the possibility of genetic exchange occurrence with 

environmental mycobacteria may exist and should be explored mainly to discard any possible 

reversion of MTBVAC to virulence. Similarly, no adverse effects of the attenuated MTBVAC are 

anticipated in a person (other than the vaccinee) coming into contact with this vaccine candidate. 

Nevertheless and as discussed for VPM1002 vaccine candidate, an exposure to MTBVAC of an 

external person latently infected with Mtb or previously vaccinated with BCG may induce a severe 

immune reaction. This should be explored in current clinical study with MTBVAC. 

  



Vaccines 2014, 2 480 

 

 

4.1.2.8. Risk Management Measures (Containment, Workers Protection Measures, Waste) 

MTBVAC may be handled in a CL-1 facility with some additional measures (Directive 2009/41/EC; 

Table 3) taking into account the risk assessment of MTBVAC in animals and considering that the 

genetic characteristics and stability of MTBVAC have been confirmed before use in the clinical 

setting. Transmission to personnel manipulating the vaccine could occur by inhalation of the airborne 

MTBVAC, by exposure of mucous membranes or damaged skin to droplets, aerosols containing the 

recombinant Mtb and by an accidental parenteral inoculation when handling a needle or any sharp 

object carrying MTBVAC. Prevention of worker exposure and release of MTBVAC into the environment 

should be managed by use of adapted equipment such as a BSC for open phase manipulations of the 

MTBVAC material and by bearing adequate personal protective equipment. Workers should limit as 

far as possible the use of sharp objects. Surface decontamination, waste inactivation and disposal 

methods should be adapted to mycobacteria characteristics. At home, appropriate measures should be 

taken by the vaccinee to cover and protect the site of injection. This measure aims to limit vaccine 

dissemination from the site of administration and vaccine contact with external persons particularly if 

the recombinant vaccine is injected intradermally. As already mentioned, this route of administration 

may result in a local superficial lesion that may be the origin of an unintended release of the 

recombinant Mtb into the environment. Likewise, potentially contaminated waste generated by this 

procedure should be collected and inactivated before adequate disposal. 

In the framework of MTBVAC phase I clinical trial on humans, investigators also recommended to 

volunteers to avoid as far as possible closed contacts with old or young people or persons who are 

immune-compromised or HIV infected during the study period (7 months). Indeed, an exposure to 

MTBVAC may increase the risk for these persons to develop a TB related disease. 

These measures should be evaluated and adapted if necessary in function of the results and 

information obtained from the ongoing or future studies of the GM Mtb vaccine in humans. 

4.2. TB Vaccine Candidates Based on Recombinant Viral Vectors as “Booster” Sub-Unit Vaccines 

Another category of TB vaccines under development is the one of preventive TB ―booster‖ sub-unit 

vaccines, which have been conceived to be administered in a vaccine regimen involving BCG vaccination 

at birth followed by a boost vaccination. These booster sub-unit vaccines are also tested in individuals 

latently infected with Mtb. The rationale behind all the booster vaccines is the notion that BCG 

induced immunity wanes with time. BCG-induced protective efficacy is thought to last 10–15 years 

but at least one study has reported on a much longer persistence of protection [22,94]. The following 

viral-vectored candidates are currently tested in clinical trials: AERAS-402, AdHu5Ag85A, ChAdOx1 

85A, MVA-85A and MVA-85A-IMX313 (Table 2). 

AERAS-402 is a recombinant replication deficient Adenovirus serotype 35 (Ad35) vector expressing 

the mycobacterial antigens Ag85A, Ag85B and TB10.4 as a fusion protein. AERAS-402 has been 

tested in early-stage clinical trials in healthy adults and in adults with recently treated pulmonary 

tuberculosis [49,50]. It has also been evaluated in a phase IIb in infants vaccinated with BCG as well 

as in HIV infected adults, with latent TB and prior to BCG vaccination. Two trials are ongoing,  
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one on infants and the other on adults in combination with the MVA recombinant vector MVA-85A 

described hereafter. 

AdHu5Ag85A (AdHu5 for human Ad5) is a recombinant replication deficient Ad5 vector expressing 

the mycobacterial antigen Ag85A [52]. The safety and the immunogenicity of AdHu5Ag85A vaccine 

has been demonstrated in healthy humans in a phase I clinical study [51]. Pre-existing anti-AdHu5 

antibodies have a minimal negative effect on Ag85A-specific T cell reactivity in healthy adult humans 

and interestingly did not affect the safety and efficacy of the vaccine [95]. 

Replication defective Ad have been employed extensively as vaccine because they induce a strong 

humoral and especially a strong T cell response, skewed towards T helper type 1 immunity specific for 

the antigen expressed by the vector [95]. 

Most Ads naturally infect the respiratory tract and can be transmitted by direct contact, faecal-oral 

route or respiratory droplets [96]. They are usually acquired in early childhood and cause infections of 

the upper respiratory tract and to a lesser extent the gastrointestinal and urinary tracts. Human Ads are 

divided into 7 species and 55 serotypes [95]. Wild-type Ad35 belongs to species B and has a tropism 

for the urinary tract. Wild-type Ad5 belongs to species C and has a tropism for the respiratory tract. 

Human Ads are ubiquitous, and most people have been infected with one or more serotypes, leading to 

lifelong immunity. Most adults have been exposed to Ad5. At the contrary, Ad35 is rare in the human 

population and seroprevalence and levels of neutralizing antibody titer to Ad35 in adults are much 

lower than those of Ad5 (seroprevalence: 20% vs. 90%, respectively) [49]. 

Adenovirus infection can be asymptomatic or can lead to disease which is usually mild in 

immunocompetent individuals. Whereas most Ad infections are mild, Ads can be dangerous in 

immunosuppressed individuals, especially transplant patients in which Ads probably reactivate from 

latent or low grade persistent infections [97]. Wild-type human Ads belong to RG 2. Ad are relatively 

stable, resistant to dehydration, able to persist in aerosols and water. 

MVA-85A (also called AERAS-485) is a recombinant of the Modified Vaccinia Ankara (MVA) 

strain expressing Ag85A. Several phase I and II clinical trials have been conducted and are still ongoing 

with the MVA-85A. The trials performed so far mostly concern humans (infants, children and adults), 

but MVA-85A has also been tested for vaccination of calves against bovine TB. Noteworthy, MVA-85A 

is also tested in individuals that are latently infected with Mtb as well as in HIV infected patients. 

Recently, a phase I clinical trial with MVA-85A-IMX313 has started (NCT01879163).  

MVA-85A-IMX313 expresses the fusion of Ag85A with IMX313, the oligomerization domain 

encoded by the last exon of the complement 4 binding protein (C4bp) alpha-chain derived from 

chicken [48]. The aim of this phase I trial currently recruiting participants is to evaluate the safety and 

immunogenicity of MVA-85A-IMX313 vaccination compared to MVA-85A vaccination in BCG 

vaccinated adults. Finally, it is worth mentioning that there are also plans to administer subsequently at 

a 3-month interval the 2 booster vaccines AERAS-402 and MVA-85A (NCT01683773). 

The MVA strain has been developed in the 1970s as a vaccine against smallpox but since the 

nineties it is widely tested in clinical trials as recombinant vector for vaccination or gene  

therapy applications. Biosafety aspects of MVA based viral vectors or vaccines have been recently 

reviewed [17,98]. 

Finally, several other novel viral-vectored sub-unit vaccines are under investigation, many based on 

simian adenoviruses. ChAdOx1 85A is a new candidate based on a simian (chimpanzee) adenoviral 
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vector expressing the Mtb Ag 85A. ChAdOx1 is classified as a Human adenovirus serotype E.  

It differs from HuAd5 which belongs to serotype C [99]. The low prevalence of neutralizing antibodies 

against chimpanzee adenovirus in the human population makes it an excellent vaccine candidate. 

Furthermore, this vector has been used as a vaccine candidate against many pathogens and the results 

of pre-clinical and human clinical studies demonstrated its excellent safety and immunogenicity  

profile [100]. A phase I trial is ongoing to evaluate the safety of ChAdOx1 85A vaccination in healthy 

BCG-vaccinated subjects, with and without MVA-85A boost vaccination (NCT01829490). ChAdOx1 

85A is administered by the intramuscular route. ChAdOx1 85A is made replication deficient by 

deletion of E1 and E3 genes [53]. The vectors are propagated in complementing cell line HEK 293.  

Risk assessment of viral-based vectors is done case-by-case and should mainly consider the 

following points: (i) the intrinsic characteristics of the viral strain; (ii) the characteristics of the 

transgene; (iii) its biodistribution into the patient’s body and dissemination and (iv) the possibility of 

recombination with other viruses. Knowledge of the biodistribution of the viral vector is crucial to 

evaluate the risk associated with dissemination into the environment and possible transmission to 

people in close contact with the patient. General considerations on the biosafety of virus-derived 

vectors used in gene therapy and vaccination have been reviewed elsewhere [21]. 

4.2.1. Intrinsic Characteristics of the Four Viral Strains Currently Used in TB Clinical Trials 

In AERAS-402, the Ad35 has been made replication deficient by deletion of E1 genes which are 

necessary for expression of E2 and late genes required for adenoviral DNA synthesis, capsid protein 

expression, and viral replication. The E1 genes are deleted and replaced with an expression cassette 

with an exogenous promoter driving expression of the mycobacterial antigens (Ag85A, Ag85B and 

TB10.4). The vectors are propagated in complementing cell line PER.C6/55K which retains and 

expresses the E1A and E1B proteins [101]. 

Ad35 vectors can infect a variety of human cells because the primary receptor for Ad35, CD46, is 

ubiquitously expressed in human cells. Furthermore, Ad35 vectors efficiently transduce in the presence 

of anti-Ad5 antibodies. 

As in AERAS-402, Ad5 is made replication deficient by deletion of E1 genes and by a subsequent 

deletion of the E3 genes. These genes are involved in anti-host immunity and are required for 

replication of the virus in vitro. The vectors are propagated in complementing cell line HEK 293 [52]. 

The majority of the transduced adenoviral vector genomes essentially remains episomal and 

integration into the host genome occurs only at very low frequency. Since adenoviral vectors do not 

integrate into the genome, dividing cells will gradually loose the adenoviral vector along with its 

transgene. While wild-type Ad belong to RG 2, the adenoviral vectors generally belong to the lower 

RG 1 as long as the genetic modifications lead to attenuation of the virus and the inserted gene(s) does 

not encode for potentially hazardous gene products.  

MVA is a highly attenuated vaccinia strain derived from the Chorioallantoic Vaccine Ankara (CVA) 

strain belonging to the orthopox virus (OPV) genus. Serial passages in chicken embryo fibroblasts 

resulted in a genomic loss of approximately 15% compared to the parental CVA strain. This has 

reduced its virulence and pathogenesis making MVA unable to propagate in human and in most 

mammalian cells. It was found to be safe—safer than other vaccinia strains—and immunogenic. It has, 

as all poxviruses, a fully cytoplasmic cycle of propagation [102]. Hence the possibility of integration 
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of genetic material from the virus in the host chromosomes is very low. In addition due to its high 

attenuation profile, risk of reconversion to wild-type is commonly accepted as negligible. 

It is important to notice that most of the MVA strains are actually polyclonal and contain some 

variants capable to replicate in cells generally considered non-permissive for MVA. This has been 

observed in vitro but it has not been observed in any human clinical trial undertaken so far [103]. 

However information regarding the homogeneity of the MVA recipient strain is important in order to 

exclude the presence of replication competent MVA particles. Hence, the choice for a stable and 

homogenous MVA strain is recommended. Concerning MVA-85A used in clinical trials, no data on 

which precise MVA strain was used for its construction or regarding its homogeneity are  

publicly available. 

In MVA-85A-IMX313 a small DNA sequence (IMX313) has been added in order to achieve an 

immune potentiating effect. It is an oligomerization domain which induces antigen multimerization 

and should result in increased immunogenicity without affecting Ag85A stability and expression [48].  

As all poxviruses, MVA shows high environmental stability and high resistance to drying. 

However, if unintended environmental spreading occurs only limited environmental impact is expected 

due to the poor replicative and propagative characteristics of MVA [17]. In addition, vaccinia virus has 

no natural reservoir [104]. 

4.2.2. The Characteristics of the Transgenes 

The antigens 85A (Ag85A) and B (Ag85B) belong to a family of three highly homologous  

proteins: 85A, 85B and 85C. There are enzymes associated with mycolyl transferase activity and 

involved in the mycobacterial cell wall biosynthesis [105]. Ag85A is also involved in lipid storage 

body formation [106]. Ag85A, B and C are highly conserved in all mycobacterial species and Ag85A 

and Ag85B are major components of the Mtb cell wall and are immunodominant in Mtb infected 

animal and human studies. The expression of the gene encoding Ag85A or Ag85B in a recombinant 

viral vector vaccine is a way to induce and amplify the cellular immune response of the vaccine  

against Mtb [41]. 

Ag85A and Ag85B have no known toxic or allergic effects when administered to humans.  

To date MVA-85A has been administered to more than 1000 individuals with no vaccine related 

serious adverse effects [44]. It is not yet known if the presence of the multimerization domain  

IMX-313 as in MVA-85A-IMX313 changes the safety profile of the product. The first phase I  

trial with MVA-85A-IMX313 started in July 2013 (NCT01879163) and the results are not expected 

before 2015. 

TB10.4 is a secreted protein encoded by the Rv0288 gene. This gene was found to belong to a 

subfamily within the esat-6 family that consists of the three highly homologous proteins TB10.4, 

TB10.3 and TB12.9. The gene Rv0288 is located in the esx cluster 3 that seems to be essential for the 

virulence of Mtb [107]. TB10.4 protein may play an important role in Mtb pathogenesis but until now 

its function is unknown [108]. This protein is recognized by human and murine T cells upon mycobacterial 

infection and is a target for antimycobacterial immune responses in humans. No information is 

available regarding potential toxicity of TB10.4 antigen. However AERAS-402 has been tested in 

clinical trials and no adverse effect has been observed in vaccinated healthy humans [49,50].  
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4.2.3. Biodistribution and Dissemination of the Recombinant Viral Vector Vaccines 

AERAS-402 and AdHu5Ag85A are administered by intra-muscular route. Biodistribution and 

shedding of Ad viral vectors are dependent on the dose and the route of administration and in case of 

intramuscular administration it depends on the muscle group that is injected [96,109]. Intramuscular 

administration of the Ad vector leads to systemic biodistribution and shedding via almost all excreta 

might occur. Shedding via semen and transport across the blood-brain barrier is not expected. 

In pre-clinical studies AdHu5Ag85A and a bivalent Ad5 recombinant vector expressing the Mtb 

antigens 85A and TB10.4 have been administered by intranasal route in mice [52,110]. Intranasal route 

has not been tested in humans yet. Intranasal mucosal delivery of an Ad5 recombinant vector 

expressing green fluorescent protein to mice resulted in dissemination predominantly in the upper and 

lower respiratory tract. Dissemination to the olfactory bulb was moderate and only little or no viral 

dissemination to the brain has been observed [111]. 

It is concluded from an inventory of shedding data based on results reported for 201 patients  

that conversion to replication-competent virus has not been found in patients treated with a  

replication-deficient adenoviral vector [109]. In addition, the risk management could reduce 

significantly the likelihood of dissemination of the vector and infection of other persons. 

The possible consequences of leakage of the vector into the environment are not known but may 

include, for example, adverse effects associated to the infection of personnel or people in general 

coming into contact with the vaccinated individuals or with contaminated surfaces or material, and 

recombination with other viruses. 

If inadvertent horizontal transmission occurs with the replication-deficient adenoviral vectors 

considered here the risks would be minimal since the expressed proteins have no known harmful effect. 

Infection of immunosuppressed persons with replication competent adenovirus (RCA) generated 

after recombination with a wild-type Ad (see below) could be responsible for adverse effects and 

specific measures should be taken to avoid contact with immunosuppressed persons two weeks after 

the injection of the vaccine. 

MVA-85A tissue distribution studies in small animals were performed in pre-clinical studies 

together with toxicology tests [112]. Results are however not publicly available. 

In a pre-clinical study performed with macaques where MVA-85A was administered via aerosol or 

intradermally the authors report that no viable virus was detected in any of the macaques tissue 

samples taken at necropsy 5 weeks after administration of MVA-85A [113]. Unfortunately no samples 

were taken earlier after the administration of the vaccine candidate. 

Results of several phase I or II clinical trials with MVA-85A administered intradermally have been 

published: 13 in humans (infants, children, adolescents or adults) [34–44,46,47] and 2 in calves [114,115]. 

In none of these publication data are given about dispersion of the vector from the site of administration 

in the body of the treated subject (human or animal). Also no shedding assays are reported. Mild local 

skin reaction at the site of administration is frequently reported as adverse event in patients vaccinated 

with MVA-85A, and often scaling or desquamation is reported [34,35,38,39,42,43]. PCR assays on 

shed material complemented with in vitro cell culture on a permissive cell line could have been of 

great interest to assess if shedding of intact MVA vector occurs.  
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4.2.4. Possibility of Recombination with Other Viruses 

It cannot be excluded that the recombinant Ad exchanges its genetic material during co-infection of 

the same human cell by a wild-type adenovirus and thus reacquires a replication capacity generating 

RCA. The probability of occurrence of this event is extremely low because Ad vectors are non-replicative 

and would involve only a limited number of viral particles which would be rapidly eliminated by the 

immune system, and consequently would have no effects on health of the persons in contact with the 

vaccinated subject after a putative horizontal transmission. Individuals that have naturally been 

exposed to wild-type adenovirus develop neutralizing antibodies which constitute an additional barrier 

that protects against potential horizontal transmission of adenoviral vectors or RCA. These pre-existing 

neutralizing antibodies would likely not protect against adenoviral vectors derived from less common 

alternative adenoviral serotypes like Ad35. 

For a recombinant MVA vaccine recombination with a naturally occurring homologous non human 

OPV is theoretically possible in case of co-infection and in this case some disrupted or deleted MVA 

genes could be rescued [116,117]. Such recombination could also result in the transfer of the transgene 

from the recombinant MVA to a replication competent OPV. It would require co-localization/co-infection 

of the same cells in the same host which is very unlikely, especially in humans, because there are no 

known human poxviruses. The likelihood increases if the vaccine is used for treatment of animals and 

if epidemiological data confirm the occurrence of natural OPV in the geographical area of vaccine 

administration. MVA-85A has been tested as vaccine for immunization of cattle against bovine 

tuberculosis [114,115]. This is a case where the question of potential recombination is certainly 

pertinent. However as the transgene has no known toxic effects the consequences of the transfer of 

Ag85A into a replication competent OPV are expected to be negligible. In addition, due to its high 

attenuation profile, the risk of the recombinant MVA to re-acquire the wild-type characters is commonly 

accepted as negligible [118,119]. 

4.2.5. Risk Classification 

Human Adenoviruses belong to RG 2 but when made replication deficient by deletion of  

the E1A and E1B regions, which is the case for AERAS-402 and AdHu5Ag85A, they could be 

classified into RG 1 for which level 1 containment is appropriate. MVA belongs to the same risk group 

and the same biosafety profile of MVA has been observed upon administration to immune-compromised 

macaques [120]. 

The final risk classification of recombinant viral vector vaccines has to take into account any 

potential risk associated with the transgene. Based on their biological properties, there are no reasons 

to think that the presence of Ag85A in the four vaccines under consideration here (AERAS-402, 

AdHu5Ag85A, MVA-85A and MVA-85A-IMX313) or the presence of Ag85B and TB10.4 in 

AERAS-402 could change the safety profile of the recombinant viruses. As previously mentioned, the 

three antigens Ag85A, Ag85B and TB10.4 have no known toxic or allergic effects when expressed in 

humans [49–51]. However it is important to investigate whether the insertion of the gene of interest 

has altered the virological safety profile of the recipient viral strains. The results obtained in the 

clinical trials with AERAS-402 and AdHu5Ag85A have shown that these vaccines are safe and no 
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adverse effects have been observed in phase I clinical trials [49–51,101]. The results obtained in the 

clinical trials with MVA-85A are reassuring: to date MVA-85A has been administered to more  

than 1000 individuals, including infants [38,45,46], HIV infected persons [39,40,44], patients 

previously vaccinated with BCG [34–36,38,41,43,47] and patients latently infected with Mtb [37,39], 

with no vaccine-related serious adverse event. In all these clinical trials but one the vaccine was 

administered intradermally. Only in one trial MVA-85A was also administered via the intramuscular 

route [47]. Due to the properties of the transgenes and because MVA and Ad are defective for the 

replication, the viral vectors MVA-85A, AERAS-402 and AdHu5Ag85A can be classified into RG 1. 

Regarding MVA-85A-IMX313 more pre-clinical and clinical data are needed before assigning this 

viral vector vaccine into a risk group. It should be investigated if the presence of the IMX313 adjuvant 

could potentially result in an exacerbated immune response.  

4.2.6. Environmental Risk Assessment 

Only a limited environmental impact is to be expected after unintended environmental spreading of 

MVA based vaccines, like both MVA-based TB vaccines under consideration here, due to their poor 

replicative and propagative characteristics (see above). In addition, if an external person is exposed no 

toxic effect is expected from the new introduced gene. The same applies to the recombinant Ad5 and 

Ad35. In addition as human Ads are mostly species specific Ad5 and Ad35 are not pathogenic to animals. 

4.2.7. Risk Management Measures 

Regarding MVA based vaccines it is known that MVA strains have variants which may replicate in 

human cells. Therefore during the production of MVA TB vaccines the absence of replicating viruses 

should be attested by infection assays [121]. 

The attenuation in AERAS-402, AdHu5Ag85A, MVA-85A and the history of safe use of MVA 

allows handling these recombinant viruses under CL-1 in the clinical setting. As mentioned before the 

addition of the Ag85 gene(s) has not changed their safety profile. During the production process, all 

batches should be tested for the presence of RCA. 

For personnel manipulating AERAS-402, AdHu5Ag85A, MVA-85A and MVA85A-IMX13, the 

primary hazards consist in exposure to droplets or aerosols of mucous membrane or broken skin, and 

inadvertent parenteral inoculation (injury with needle stick or other sharp objects). There is also a risk 

of accidental projection of the vaccine candidates into the eye or other mucous membranes, or 

unintentional contamination via close contact with contaminated material. In addition, such bio-incidents 

could result in unintentional dissemination of the recombinant viruses in the environment. Exposure 

via these pathways can be prevented by application of risk management strategies. Aerosol producing 

operations should be reduced during preparation and administration of the viral vectors and personnel 

manipulating the vectors should wear adequate protective clothing such as lab coats, gloves,  

goggles and masks because the puncture of a container holding the vector may produce aerosols.  

Some manipulations should preferably be carried out in a class II biosafety cabinet. Work with needles 

and other sharp objects should be strictly limited and workers should never recap nor remove needles 

from syringes. 
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As MVA and Ads are relatively stable, spills should be inactivated by an appropriate disinfectant, 

allowing sufficient contact time before disposal. Contaminated waste and personal protective equipment 

should be inactivated using an appropriate method before disposal and potentially contaminated  

non-disposable materials need to be properly decontaminated. If an incident occurs that could lead to 

infection (e.g., breakage of a vial containing the vector, or needle piercing), applicable first aid should 

be performed (i.e., flushing eyes for ocular exposure, placing an absorbent tissue on the affected area 

in order to absorb all viral particles and apply disinfectant directly to the tissue for percutaneous 

exposure), followed by reporting to the supervisor. 

Special precautions against aerosol exposure of care givers should be taken if recombinant TB 

vaccine is delivered by the aerosol route. This route of administration has not yet been tested in clinical 

trials but aerosol delivery of MVA-85A was tested in mice and macaques. The aerosol route could 

potentially circumvent immunity against MVA induced by previous vaccinations [113]. In mice 

aerosol vaccination strongly increases the Ag85A specific CD4
+
 T cell response in the draining  

lung lymph nodes [122] and in macaques aerosol vaccination by direct delivery to the lungs prevented 

anti-vector antibody response [113]. In addition the triggering of immune response in the  

mucosa-associated lymphoid tissue might lead to increased protection against pulmonary TB. Inducing 

the immune response at the site where the pathogen is first encountered would allow a faster local 

response [113]. If for efficacy or economic reasons the aerosol route should be chosen for the 

vaccination of humans it changes the exposure pathway through which the MVA-85A may interact 

with personnel, patient relatives and/or the environment. Such a change should be taken into account in 

the risk assessment. 

Personnel manipulating recombinant TB vaccines could latently be infected with Mtb. Also the 

subject treated with the recombinant vaccine could possibly come into contact with caregivers or 

relatives who are immunosuppressed, HIV infected, latently infected with Mtb or previously vaccinated 

with BCG. Are extra precautions needed to prevent any advertent contact of these persons with the 

recombinant virally vectored TB vaccines? In clinical trials where MVA-85A has been administered to 

HIV infected subjects [39,40,44], to healthy subjects latently infected with Mtb [37,39] or to subjects 

previously vaccinated with BCG [34,36,38] no serious adverse events were observed and in particular 

no Koch reaction has been observed. This indicates that MVA-85A is not a threat for HIV infected 

people, persons latently infected with Mtb or previously vaccinated with BCG. 

Ad infection can be dangerous in immunosuppressed individuals. Although the risk is certainly 

much lower with replication defective Ads, after the injection of a recombinant Ad vaccine, the patient 

should avoid as much as possible contacts with immunosuppressed persons and naïve infants or 

children during 2 weeks. There are no drugs approved to treat specifically Ad infections. Nevertheless 

some antiviral drugs are used in the clinic [95]. 

5. Conclusions and Perspectives 

Success of TB vaccines currently evaluated in clinical trials is unpredictable and in this respect, 

2013 has been disappointing. Evidence for efficacy of most of the vaccine candidates is poor compared 

to BCG vaccine, including in animal models of pre-clinical studies. In March 2013 the results of the 

MVA-85A-AERAS-485 phase IIb clinical trial (NCT00953927) were published [46]. In this trial, 
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which was conducted in South Africa, healthy infants (aged 4–6 months) that were previously vaccinated 

with BCG received one intradermal dose of MVA-85A or an equal volume of Candida skin test antigen 

as placebo. Though the primary objective of this trial was safety, also efficacy evaluation against TB 

disease (diagnosed by microbiological, radiological and clinical criteria) or Mtb infection (defined by 

QuantiFERON TB Gold In-tube conversion) was performed in a defined group of participants. Safety 

results were satisfactory, while no improved efficacy was observed in the group of infants that were 

BCG-primed and MVA-85A-boosted vs. BCG-primed and placebo-boosted infants. 

In retrospect, a number of factors can explain lack of improved efficacy of this vaccination  

scheme [123]. In our opinion, the main point is related to the population that was evaluated in this 

study, namely infants that had been BCG vaccinated early after birth. Indeed, in this population, BCG 

is performing well in terms of protective efficacy against childhood forms of TB. In addition,  

MVA-85A proved modestly immunogenic when levels of vaccine-induced cellular immunity were 

compared to the levels achieved when BCG-vaccinated adults are vaccinated with MVA-85A as a 

booster vaccine. Hence, the efficacy results obtained in this trial do not exclude the possibility that a 

boost with MVA-85A administered to adults that have been vaccinated with BCG during infancy or 

that are latently infected with Mtb might prove efficient in terms of reduction of TB morbidity in 

ongoing and future clinical trials. Concerning the modest immunogenicity observed in infants boosted 

with MVA-85A, it is worth mentioning that a number of clinical trials are ongoing to improve this 

aspect. In these trials, MVA-85A has been either modified by fusing Ag85A to the oligomerization 

domain IMX313 (NCT01879163) or vaccination protocols combining MVA-85A with other viral-vectored 

sub-unit vaccines are being tested. Such being the case in clinical trial NCT01683773 in which booster 

immunization with AERAS-402 (Crucell Ad35) is followed by a second booster vaccination with 

MVA-85A, or clinical trial NCT01829490 in which ChAdOx1 85A (based on a chimpazee adenoviral 

vector expressing Ag85A) is followed by a second booster vaccination with MVA-85A.  

In addition, it is important to emphasize that NCT00953927 was the first phase IIb trial for a TB 

vaccine conducted in a high-burden setting and the solutions, which were implemented for this trial 

will be of value in the planning of efficacy trials of other TB vaccine candidates [45]. 

Nevertheless, as success of the TB vaccines currently evaluated in clinical trials is unpredictable, it 

is also essential to continue fundamental and pre-clinical research to better understand protective 

immunity to Mtb and to identify novel TB vaccine candidates that might prove more efficient than the 

candidates currently under clinical evaluation. 

Promising novel ―BCG replacement‖ candidates are either based on genetic modification of BCG or 

on genetic attenuation of virulent Mtb. Some examples of interesting recombinant BCG candidates are 

the genetically modified BCG ∆zmp1 [62] and BCG ∆sapM [61]. Both deletions involve genes that 

negatively regulate the process of phagosome maturation. Hence their deletion should favor antigen 

escape from the phagosomal compartment to increase cross-presentation of mycobacterial antigen over 

those achieved by parenteral BCG. Indeed, the zinc metalloprotease 1 (Zmp1) is required to arrest 

phagosome maturation and SapM is a secreted acid phosphatase, which plays a critical role during 

phagosome maturation.  

Concerning candidates based on attenuation of Mtb, strains lacking the SapM gene have been 

described as well as pantothenate auxotrophs strains [124,125]. In addition, two highly attenuated Mtb 

mutants, MGM1991 and Mtb∆hma::hyg (HMA) have recently been proposed as potential vaccine 
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candidates against TB [126]. These strains lack all oxygenated mycolates in their cell wall, which are 

Mtb glycolipids that have been associated with Mtb pathogenesis in mice, in part through effects on the 

inflammatory activity of trehalose dimycolate (cord factor). As compared to vaccination with BCG, the 

subcutaneous vaccination of C57BL/6 mice with either of the two mutants induced stronger Th1 (IFN-γ, 

IL-2 and TNF-α) and IL-17 responses. In addition, compared with BCG vaccination, significantly 

higher number of mycobacteria-specific IFN-γ producing CD4
+
 and CD8

+
 T cells were detected and 

stronger protection against Mtb challenge was observed in mice vaccinated with the Mtb mutants. For 

the Mtb-based vaccine candidates the risk assessment procedure will need to thoroughly assess any 

virulence and possible virulence reversion, as it has been described for MTBVAC vaccine candidate. 

Besides safety and efficacy of the novel vaccine candidates against TB, biosafety should also be 

considered when this vaccine is composed of a GMO. Biosafety focuses on the protection of public 

health and the environment from an intended or unintended exposure to the GMO-based vaccine by 

implementing adapted containment measures during handling of the GMO. The risk assessment of 

future clinical trials with new GMO-based vaccine candidates will follow the same procedure of risk 

analysis as that followed for current clinical trials using GMO-based vaccines: what are the intrinsic 

characteristics of the parental micro-organism (or recipient organism), what is the function of the 

transgene or the mutated gene in the GMO and what are the characteristics of the final GMO? In case 

of an accidental release into the environment, what could be the consequences of an exposure of the 

environment, the human being or of animals to this GMO? Identification of potential risks of handling 

the GMO vaccine and the probability of their occurrence should define the risk management of the 

clinical trial. It has to be noted that at each step of the development of a GMO vaccine the risk 

assessment should take into account any new data generated by the previous steps. 

Concerning the risk assessment procedure for new BCG- and Mtb-based candidates, it is important 

to note that these recombinant vaccines have been designed by targeted inactivation of endogenous 

genes and not by expression of heterologous virulence genes (as it has been the case for VPM1002 or 

for AERAS-422). Hence, the risk assessment procedure will need to take into account the genetic 

stability of the vaccine candidates. Particular attention is required with live vaccines based on 

attenuated pathogens on their capacity of virulence reversion as well as on their capacity to multiply 

and propagate in the vaccinated host and in the environment. 

The successful use of viral vector vaccines against TB has not been demonstrated so far.  

However research is still ongoing and this review has discussed the biosafety issues which need to be 

considered carefully when performing clinical trials with recombinant Adenovirus or MVA. Although 

a case-by-case risk assessment should be performed on each clinical trial involving GMO-based 

vaccines, the same general methodology can be applied. 
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