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Abstract: Background: The substandard vaccine case of that broke out in July 2018 in China triggered an
outburst of news reports both domestically and aboard. Distilling the abundant textual information is
helpful for a better understanding of the character during this public event. Methods: We collected the
texts of 2211 news reports from 83 mainstream media outlets in China between 15 July and 25 August
2018, and used a structural topic model (STM) to identify the major topics and features that emerged.
We also used dictionary-based sentiment analysis to uncover the sentiments expressed by the topics
as well as their temporal variations. Results: The main topics of the news report fell into six major
categories, including: (1) Media Investigation, (2) Response from the Top Authority, (3) Government
Action, (4) Knowledge Dissemination, (5) Finance Related and (6) Commentary. The topic prevalence
shifted during different stages of the events, illustrating the actions by the government. Sentiments
generally spanned from negative to positive, but varied according to different topics. Conclusion:
The characteristics of news reports on vaccines are shaped by various topics at different stages. The
inner dynamics of the topic and its alterations are driven by the interaction between social sentiment
and governmental intervention.
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1. Introduction

Vaccination is the most effective medical approach that can be used to eliminate suffering from the
health and financial burdens caused by large-scale infectious disease transmission. While vaccination
usually accompanies wide societal concern, the mass media also plays an influential role on its
acceptance [1–3]. The Strategic Advisory Group of Experts on Immunization Working Group on
Vaccine Hesitancy listed communication and media environment as a key influence on vaccine
hesitancy [4,5]. From a research perspective, news reports are a very important vessel for information,
as they convey the knowledge, attitudes, and sentiments of a society [6–9]. Such an abundance of
information has been acknowledged by many researchers in the area of vaccines, and studies have tried
to reveal the underlying factors that influence vaccination acceptance based on the trace implications
of news texts. For example, Becker et al. measured confidence in vaccinations using a multinational
media surveillance system [10], and Faasse et al. analyzed the influence of news coverage and Google
searches on Gardasil adverse event reporting [11], among other approaches.

Vaccine incidents or related events are an important aspect of vaccine research, particularly when
covered by the media and reflecting extensive concern from the society [12–14], as they can have a
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potential impact on vaccination confidence [15,16]. These events can cause average citizens with little
professional knowledge on vaccinations to worry, particularly for their children [17–19]. On 15 July
2018, a scandal broke out when the Changchun Changsheng Biotech Co. Ltd., one of the major vaccine
manufacturers in China, was confirmed to have fabricated production and inspection records and
arbitrarily changed process parameters and equipment during its production of freeze-dried human
rabies vaccines [20]. Within a week, a huge wave of concern and discussion was raised from mass
media. This event drew the attention of the Chinese President Xi Jinpin, who characterized the scandal
as “veiled in nature and shocking” and demanded a thorough investigation on 24 July [21]. In the
meantime, the World Health Organization also addressed the importance of vaccinations, and called for
actions on regulation [22]. The case reached a conclusion on 16 August when the standing committee
of the Communist Party of China, the top power authority of China, held more than 40 government
officials accountable, including seven at the provincial or ministry level [23], and the Changsheng
Limited was ordered to pay about 9.1 billion yuan (USD 1.3 billion) in penalties on 16 October [24].

As a shocking incident, the case of the substandard vaccine by the Changchun Changsheng
Company (referred to as the “Changsheng case” for short) triggered an outburst from news reports
both in China and aboard, and the incident provides an opportunity to inspect how the media reacts
to a sensational public health event. To investigate the large scale and great diversity of the news
reports, we employed computer-assisted text mining tools to review the news texts directly. We believe
such innovative method could potentially reduce laborious human review or coding work, and could
lead to a better presentation of the characteristics of the reporting on the Changsheng case from a
holistic perspective.

Topic is an important entry point to inspecting the characteristics of news reports [25–27].
In regards to the Changsheng case, the news reports comprised a great variety of topics such as vaccine
safety, weak regulating systems, as well as the financial misconduct of the company. Such topics,
characterized by proportion, temporality, and sentiment, are helpful to understanding the inner
structure, temporal variation, and sentiment of the reports. Specifically, we want to focus on the
following research questions:

RQ1: What topics emerged in the news reports during the Changsheng case, and how were they
are featured in terms of prevalence and key words?

RQ2: How did the different topics change over time?
RQ3: What sentiments were expressed through the media and how did they change over time

from a topical perspective.
In this paper, we first introduce the methods used for analyzing the news report texts. Then we

examine the media presentation of the event, including the major topics that emerged from the news
reports and their distribution over time. Sentiments present in the news reports were identified based
on keywords from temporal and topical perspectives. Finally, we interpret the research findings and
draw conclusions.

2. Materials and Methods

Text mining approaches were used in this study to characterize news reports of the Changsheng
case. Specifically, we tried retrieving the quantified features, like topic prevalence, temporal alteration
and sentiment propensity, and demonstrated the features statistically to provide a full picture of
the case. Retrieving information from news texts can be challenging, as it is highly unstructured
compared with other semi-structural text sources such as legal documents [28], patent documents [29],
or electronic health records [30]. In this case, we used a topic modeling approach to deconstruct the
news contents, and a lexicon-based method to analyze the news sentiments. We tried to analyze
a broad selection of the mainstream newswires inside China to reduce preference or bias from any
individual news source.



Vaccines 2020, 8, 0691 3 of 14

2.1. Materials

We designated the data collection period between 15 July and 25 August 2018, which covered
the break out of the event until the official conclusion. We identified 2211 news articles related to
the Changsheng case from 384,254 pieces of news published by 83 media outlets in China during
the specified period (see Supplementary Materials for detail). The news texts were processed by
conventional natural language processing procedures including word segments, removals of numbers,
punctuation, and stop words [31]. The minimum word length was kept to two. The final corpus
contained the columns of title, date, source, and content for each included news article.

2.2. Topic Model: Primary Analytical Approach

2.2.1. Overview of Topic Model

Topic model analysis is an important approach by which to inspect a large quantity of textual
data [32]. It provides an intuitive way of identifying what topics potentially exist in the corpus and
captures quantities of interest [33]. Such identification can transfer the unstructured textual data into a
low-dimension quantitative feature, and could be combined with other methods such as regression [34],
time series [34], and sentiment analysis [35].

The topic model method assumes that there are a number of potential topics available during the
collection of documents, and that each document or word belongs to a certain topic with a different
probability [36]. The classical topic model, basing on latent dirichlet allocation (LDA), assumes
that specific document is generated by first nominating a topic from the potential topic-document
distribution, then selecting a word from the potential word-document distribution, as shown in Figure 1.
Assuming there are N documents, K topics, and V words in the whole corpus, θ is the length-K per
document-topic distribution for document d, β is the length-V per topic-word distribution for a certain
k-th topic, and Zd,n is the selected topic from which the observed words Wd,n are chosen [36]. α and η
are the hyperparameters initially set for model fitting.
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Figure 1. Textual data generative mechanism of the Topic Model [33].

The mathematic definition of the classic topic model proposed by Blei et al. is as follow:

θ ∼ Dir(α)

β ∼ Dir(β)

Zd,n
∣∣∣θd ∼Mutinomial(θd)

Wd,n
∣∣∣Zd,n ∼Multinomial

(
βZd,n

)
Fitting the topic model helps us identify the parameters from a given corpus. For domain-specific

research, the most interesting measured quantity is the θ: the proportion of topics relevant to a certain
document [33]. Using a statistical aggregation, we can calculate the prevalence of the topics in the
whole corpus then probe the semantic structure of the corpus [33].
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2.2.2. Structural Topic Model-Based Data Analyses

Topic models are widely applied to a variety of text formats such as newspapers [37,38], patent
contents [29], social media [39,40], research articles or reports [41,42], and so on. As an extension of
the topic model, the recently developed structural topic model (STM for short) could provide a way
of quantifying the effects of document properties (e.g., time of creation, sources) to a specific topic’s
prevalence, which is useful for exploring the features of the topics [33,43]. Robert et al., the author of
the STM, proposed the model as follows:

θd

∣∣∣∣(Cd,γ, Σ
)
∼ LogisticNorm

(
Cd,γ, Σ

)
βd,k ∝ exp

(
m + kk + kg,d + kkg,d

)
Zd,n
∣∣∣θd ∼Multinomial(θd)

Wd,n
∣∣∣Zd,n ∼Multinomial

(
βZd,n

)
The format and data generation mechanisms are similar between the LDA and STM. The major

difference is the change in topic prevalence from Dirichlet distribution into logistic normal distribution,
which can incorporate covariates. The parameters kk, kg,d, kkg,d

represent the specific deviations of the
topics, covariates, and interaction topic-covariates, respectively.

In this paper, we used the STM to investigate: (1) what topics emerged from the news reports
that were related to the Changsheng case, (2) the quantitative prevalence of the topics from all the
reports, and (3) how topic prevalence changed over time. Selecting the suitable number of topics
(K) is a challenge in topic model analysis. Despite this, there are quantitative criteria to support
selection [32,37], and most studies eventually rely on human judgement [34,37,41]. In this study,
we followed the method of Roberts et al. [33], using the build Semantic Coherence and Exclusivity to
get an overview of the coverage of topics under different K, then determined the final topic number by
manually reviewing the results.

2.2.3. Sentiment Analysis

Sentiment polarity and strength [44] on the news reports of the Changsheng case were calculated
from both time and topical perspectives to describe the overall sentiment expression and its variation
across the whole event. We also identified the top sentiment terms that contributed to the news text [45].
In this paper, we employed a lexicon-based analysis [46] to calculate the quantitative sentiment
propensity of the news report. The lexical dictionary created by the Dalian University of Science and
Technology (DUST) [47] was used in this study with minor adaptations. For example, we removed
the word “Changsheng” (which means “long life” in Chinese), a very positive word in the DUST
dictionary, while incorporating new terms that appeared in the reporting on Changsheng case such as
“violated the moral bottom line” (mentioned by Premier Li Keqiang) as a passive word [47].

The above works were implemented using the R (3.4.4) programming language and packages.
Specifically, the fitting and visualization of the topic model were conducted using the stm [48] and
stminsights [49] packages, while the sentiment analysis was implemented using the tidytext package [50].

3. Results

3.1. News Occurrence of the Case

The first chart in Figure 2 shows the change in the amount of news reporting over the time period
that the study sample covered (15 July to 25 August 2018) in the Chinese context. Compared to Google
Trends, which shows the popularity of topics on the internet (second chart), and the Weixin Index
(the most popular social media mobile application similar to WhatsApp in China), which shows the
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popularity of items on the mobile internet (third chart), the time distribution of the news reports
included in this study matched that of the internet and mobile internet closely.
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Figure 2. Temporal trends of the news reports included in the study with the corresponding Google
trends and Weixin index, indicating the social attention to this incident.

3.2. Topics that Emerged from the Corpus

3.2.1. Overall Topical Presentation

Table 1 shows the 17 topics that automatically emerged from fitting the STM, as well as their
proportion in the corpus. We listed the top 10 words (ranked by β_k in Figure 1) belonging to each
topic, added a representative label to each topic, and categorized them into six groups.

To discover how the topics of news reporting changed over time, we divided the observation
period into three-day intervals to calculate the proportional distribution of the 17 reporting topics
within each interval. Based on the topic distribution, we categorized reports into four periods, namely,
the initial period, outbreak period, continuation period, and ending period (Figure 3).
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Table 1. Topics and keywords in the news reports on the Changsheng Bio case.

Category Label of Topics Key Words Proportion

Media Investigation

1. Case exposure counterfeit, manufacturing, pharmaceutical, corporation, sales, product,
Changsheng Bio. 0.034

2. Background investigation of Changsheng Bio Changsheng Bio, company, BioKangtai, shareholding, life sciences,
100 million-yuan, transfer, Changchun High & New Tech Industry Inc 0.036

3. Investigation of the vaccine production chain Changsheng Bio, sales, 100 million yuan, e10,000-yuan, sales expenditure,
Changchun Changsheng, company 0.03

4. Investigation of the problematic vaccines DPT, issuance, off grade, potency, manufacturing, Wuhan Institute of
Biological Products Co. Ltd., inspection 0.036

Response from the Top Authority
5. Commands from the top leader work, adamant, conduct, case, investigation team, investigation, State Council 0.063

6. Final ruling made by the top leader regulation, meeting, pharmaceutical, problematic, work, case, safety, company 0.073

Government Action

7. Bulletin of the NMPA’s investigation corporation, manufacturing, underway, NDA, batch, DPT, company,
Changchun Bio 0.083

8. Shangdong Provincial CDC affected journalist, Shandong, procure, Changsheng Bio, Changchun Changsheng,
DHPPi, injection 0.023

9. Charged by the regulatory authority company, Changsheng Bio, bulletin, Changchun Changsheng, disclose,
provision, Changsheng Bio 0.081

10. Clarification from provinces Changsheng Bio, DPT, case, problematic, vaccination, response, off grade 0.048

11. Explanation of the flow of the problematic vaccines revaccination, vaccination, DPT, children, off grade, work, dose, immunization 0.063

12. Revaccination arrangement vaccination, rabies vaccine, Changchun Changsheng, company, revaccination,
observation, CDC, national 0.108

Q&A 13. Information dissemination and consultation vaccination, DPT, children, tetanus, kids, pertussis, off grade, batch number 0.053

Finance Related

14. Operations of Changsheng Bio affected Changsheng Bio, company, Changchun Changsheng, manufacturing, product,
freeze-dried human rabies vaccine, pharmaceutical 0.107

15. Disturbance regarding Capital investment project, account, Changsheng Bio, Changsheng, company, capital,
journalist, investment, 0.022

16. Delisting crisis of Changsheng Bio Stock Changsheng Bio, fund, delisting, company, valuation, Changsheng,
limit down 0.085

Commentary 17. Media commentary problematic, case, regulation, corporation, general public, China, counterfeit,
manufacturing, media 0.056

Note: The Key Words and Proportion columns are automatically created by the STM algorithm, and indicate the significance of the keywords within specific topics, and the semantic
proportion of specific topics among the whole corpus, respectively. The Category and Label of Topics columns are annotated by the authors. Q&A: questions and answers. DPT: diphtheria,
pertussis, tetanus. NMPA: National Medical Products Administration. CDC: Center for Disease Control and Prevention. Changsheng Bio (长生生物) and Changchun Changsheng
(长生生物): Changchun Changsheng Biotech Co. Ltd. In Chinese.
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During the initial period (15–20 July), most news reports were case investigations, and the topics of
more than half the reports regarded Operations of Changsheng Bio affected (Shenzhen Stock Exchange)
and Case Exposure (53.51%).

During the outbreak period (21–25 July), the amount of reporting increased rapidly once the
president addressed the case, and the distribution of each topic was fairly similar. Some of the major
topics were Changsheng Bio Charged in the Investigation (12.07%), Commands from the Top Leader
(10.14%), Clarification from Provinces (8.78%), Explanation of the Flow of the Problematic Vaccines
(8.24%), and Media Commentary (7.79%). Government entities at all levels and various sectors in
society were highly concerned with the Changsheng case during this period. The peak of media
attention lasted for five days, then the number of news reports started to decrease on 26 July.

During the continuation period (26 July–12 August) the dominant topics of reporting shifted
towards Results of the Investigation of the National Medical Products Administration (NMPA) and
Revaccination Arrangement of the National Health Commission (NHC). The number of reports on
these two topics grew rapidly and became mainstream. During ending period (after 13 August),
the amount of reporting on the Changsheng case experienced little fluctuation, and the major topic
remained Final Ruling (42–61%). Once the State Council published the progress of their investigation
into the Changsheng case on 6 August, and the amount of reporting decreased rapidly.

3.2.2. Time Trends of the Topic Categories

Figure 4 shows the trends of topic categories over time to further illustrate the progress of the case.
During the observed period, the prevalence of topics in the Media Investigation category decreased
steadily over time. The prevalence of topics in the Commentary category increased rapidly during the
initial period, reaching its peak on 22 July (eight days after the case exposure), then decreased rapidly
afterwards and remained at a low level towards the end. The prevalence of the Q&A of Vaccination
topics fluctuated over time, peaking when the authorities officially announced the investigation results,
then decreasing steadily after the second peak. The category of Finance Related received a lot of media
attention at the beginning of the initial period, but the prevalence of topics in this category decreased
and fluctuated afterwards.
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The prevalence of topics in the Response from the Top Authority and Government Action category
increased following the initial case exposure. Three peaks in the prevalence of Response from the Top
Authority appeared around the 10th, 20th, and 35th days following exposure, which corresponded to
the critical time points when the president issued commands, the State Council published the progress
of the investigation, and the president announced the final ruling, respectively. The third peak indicates
that the final ruling from the president almost dominated news reporting at that time, after which the
media attention to this case would start to dissipate. The prevalence of topics in Government Action
increased steadily and peaked on the 25th day following exposure.

3.3. Sentiment Analysis of the Case

3.3.1. Daily Sentiment Score

We found that, despite some fluctuation, sentiment was mostly negative during the first 23 days
following the initial case exposure, and that the absolute values of the negative sentiment scores were
exceptionally high on the 1st, 6th, 17th, 19th, and 20th days, when there was extensive discussion in
the media. Following the 24th day, sentiment became increasingly positive, and there was a sharp
increase in positive sentiment towards the end of the observation period (Figure 5).
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3.3.2. Sentiment by Topic

According to our sentiment analysis by topics (Figure 6), the news reports on Revaccination
Arrangement, Explanation of the Flow of the Problematic Vaccines, and Final Ruling Made by the
Top Leader expressed positive sentiment, particularly those on Final Ruling. Such topics included
the confirmative attitudes of the government, such as “guarantee”, “adamant”, and “crystal clearly”,
among others. While news reports on the rest of the topics mostly expressed negative sentiment,
particularly on Operations of Changsheng Bio Affected (Shenzhen Stock Exchange), Changsheng Bio
was Charged by the Regulatory Authority, Clarification from Provinces, and Media Commentary.
These results reflected the strong negative attitudes from the government, society, and media towards
the Changsheng case.
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3.3.3. Most Frequently Used Sentiment Words

Figure 7 shows the most frequently used sentiment words from the news texts. In terms of negative
sentiment, the most frequently used words were “off grade”, “suspected”, “bribery”, and “moral
bottom line”, with contributions of −0.086, −0.078, −0.052, and −0.039, respectively. In terms of positive
sentiment, the most frequently used words were “guarantee”, “adamant”, “health”, and “ensure”,
with contributions of 0.075, 0.059, 0.57, and 0.056, respectively (Figure 7).

Vaccines 2020, 8, x  11 of 16 

 

 

 

 

 

Figure 7. Sentiment words used most frequently in the corpus. 

3.3.4. Temporal Alteration in the Contribution of the Sentiment Words 

To show at what point during the observation period each word was most relevant, we analyzed 

how the three-day average score of each sentiment word changed over time. Figure 8 shows that 

negative sentiment was dominant during the initial period, with words such as “hidden peril”, 

“panic”, “suspected”, “zero tolerance”, and “violate” being used. During the outbreak period, both 

positive and negative sentiments coexisted. Once the continuation period began, the overall 

sentiment started to turn positive, with words such as “guarantee”, “ensure”, “health”, and “pass the 

inspection” emerging more frequently. The appearance of negative sentiment words such as 

“challenge”, “panic”, and “violate” fell rapidly to almost zero towards the end of the continuation 

period, particularly after 6 August. Since the dominating news topic was Final Ruling Made by the 

Top Leader during the ending period, the sentiment of the media was mostly positive, and the words 

“spirit”, “adamant”, “guarantee”, “earnest”, and “strict” appeared with high frequency. 

Figure 7. Sentiment words used most frequently in the corpus.



Vaccines 2020, 8, 0691 10 of 14

3.3.4. Temporal Alteration in the Contribution of the Sentiment Words

To show at what point during the observation period each word was most relevant, we analyzed
how the three-day average score of each sentiment word changed over time. Figure 8 shows that
negative sentiment was dominant during the initial period, with words such as “hidden peril”, “panic”,
“suspected”, “zero tolerance”, and “violate” being used. During the outbreak period, both positive
and negative sentiments coexisted. Once the continuation period began, the overall sentiment started
to turn positive, with words such as “guarantee”, “ensure”, “health”, and “pass the inspection”
emerging more frequently. The appearance of negative sentiment words such as “challenge”, “panic”,
and “violate” fell rapidly to almost zero towards the end of the continuation period, particularly after
6 August. Since the dominating news topic was Final Ruling Made by the Top Leader during the
ending period, the sentiment of the media was mostly positive, and the words “spirit”, “adamant”,
“guarantee”, “earnest”, and “strict” appeared with high frequency.Vaccines 2020, 8, x  11 of 15 
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This section may be divided by subheadings. It should provide a concise and precise description
of the experimental results, their interpretations, and the experimental conclusions that can be drawn
from them.

4. Discussion

In this study we used quantitative textual analysis to show how the media reported on the
Changsheng case. While many existing studies have analyzed the news coverage of vaccination issues
on a long-term scale [14,51], we focused on the response to a bursting vaccine incident over a short
time span only. We began by examining the temporal trends of the incident based on news volume,
and distinguished the four phases, namely, the initial period, the outbreak period, the continuation
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period, and the ending period (Figures 2 and 3). This is in line with the life cycle of news reporting on
an emergency incident, according to journalism and communication studies [52–54].

We further deconstructed the topics and references to the Changsheng case in a mainstream media
context, and identified 17 topics falling into six categories covering Media Investigation, Response
from the Top Authority, Government Action, Q&A on Vaccination, Finance Related, and Commentary.
The results show that the Changsheng case, amplified by news reports, went far beyond the health
sector and attracted the wide attention of the whole society [55]. This implies that the vaccine issue is
not only a health issue, but a public affair that relates to politics, the economy, public security, social
mentality, and so on. Further research would help determine the wider implications of the results.

Interesting findings emerged by combining the temporal and topic modeling, and illustrated a
shift in focus by the media over time. For instance, news reporting focused on company investigations
and business affairs during the initial period, then shifted to multiple topics during in the outbreak
period, and finally narrowed their focus to topics of politics and government actions in the continuation
and ending periods (Figures 3 and 4). Such a shifting partly illustrates the attention of society towards
the incident, and is reflective of the governmental intervention towards the case.

It is not surprising that most of the news topics during the Changsheng case had a negative
sentiment propensity (Figure 5), but sentiment towards different topics also varied. Temporal sentiment
shifted over the observation period, with increased negative sentiment appearing in the earlier stage of
the incident (Figures 5 and 8). After President Xi expressed strong resolution to stop the counterfeit and
problematic production of vaccines, overall sentiment gradually turned positive, especially towards
the end of the event.

In terms of policy implications, the Changsheng case was an influential public incident for
which decisive governmental action and intervention were crucial, and the news reports reflected the
governmental actions throughout the event. As we can see, government-related topics had the largest
proportion, including confirmation of an investigation, information dissemination, immunization
consultation, revaccination arrangement, and others. Such findings confirm the research of Guofeng
Wang, who showed how a top-down perspective can be adopted to legitimize the ruling party and
sustain social stability during a crisis [56]. The outbreak period was the window of opportunity
for government intervention, and there was a quite sharp increase in news report volume during
the outbreak (see Figure 2) that then dissipated quickly. This contributed to timely and adamant
government action.

From a research perspective, this study shows the potential of text mining methods for vaccine
related research. Compared to existing studies on the Changsheng case that have used text mining
methods such as word embedding [57], conventional topic models [58], qualitative discourse
analysis [56], or human-coded key phrases [59], our research employed an enhanced topic model
approach with minimal subjective judgement, and combined quantified topic proportion values
with temporal and sentiment features. By analyzing qualitative textual data in a quantitative way,
such methods are particularly applicable to large-scale corpora when human inspection is impossible.
This sheds new light on vaccine communication studies as more and more textual data emerges on
the internet.

5. Conclusions

Using a text mining approach, this study explored the characters of news reports on a sensational
vaccine case in the context of China. It showed that there were four stages in the media life cycle of the
vaccine case, in which the earlier period was the opportunity window for governmental intervention.
With the decisive governmental action, news reporting sentiments became increasingly positive.
We presented the potential for text mining to analyze vaccine-related news text, which is also applicable
to other public health issues. In terms of limitations, we only focused on official news reports and did
not include other data sources such as social media, which contain more information from the user
side. Furthermore, the topic model was not precise enough to incorporate more specific information at
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the individual level. In this case, deep learning-based natural language processing approaches would
be useful for the further studies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-393X/8/4/0691/s1,
1. Table S1: Media sources of the news reports that are included in this paper. Figure S1: Semantic coherence and
exclusivity of topic number 8–30.
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