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Abstract: Dendritic cell (DC) vaccines for cancer immunotherapy have been actively developed to
improve clinical efficacy. In our previous report, monocyte−derived DCs induced by interleukin
(IL)−4 with a low−adherence dish (low−adherent IL-4−DCs: la−IL-4−DCs) improved the yield
and viability, as well as relatively prolonged survival in vitro, compared to IL-4−DCs developed
using an adherent culture protocol. However, la−IL-4−DCs exhibit remarkable cluster formation and
display heterogeneous immature phenotypes. Therefore, cluster formation in la−IL-4−DCs needs
to be optimized for the clinical development of DC vaccines. In this study, we examined the effects
of cluster control in the generation of mature IL-4−DCs, using cell culture vessels and measuring
spheroid formation, survival, cytokine secretion, and gene expression of IL-4−DCs. Mature IL-
4−DCs in cell culture vessels (cluster−controlled IL-4−DCs: cc−IL-4−DCs) displayed increased
levels of CD80, CD86, and CD40 compared with that of la−IL-4−DCs. cc−IL-4−DCs induced
antigen−specific cytotoxic T lymphocytes (CTLs) with a human leukocyte antigen (HLA)−restricted
melanoma antigen recognized by T cells 1 (MART−1) peptide. Additionally, cc−IL-4−DCs produced
higher levels of IFN−γ, possessing the CTL induction. Furthermore, DNA microarrays revealed the
upregulation of BCL2A1, a pro−survival gene. According to these findings, the cc−IL-4−DCs are
useful for generating homogeneous and functional IL-4−DCs that would be expected to promote
long−lasting effects in DC vaccines.

Keywords: immunotherapy; dendritic cells; vaccine; cluster formation; cluster control; BCL2A1

1. Introduction

Dendritic cells (DCs) are antigen−presenting cells (APCs) that play a central role in
the immune response to pathogenic antigens and autologous tumor antigens [1]. DCs
take up tumor antigens and migrate into the lymph nodes, where antigens are presented
through major histocompatibility complexes on DCs to naïve T cells via T−cell receptors.
The naïve T cells primed with DCs become cytotoxic T lymphocytes (CTLs) and memory
T cells [2,3]. DC−based cancer vaccines, which induce tumor antigen−specific immune
responses, have been evaluated in clinical trials and other studies against various cancer
types [4–6]. Clinical trials using DC vaccines to target tumor−specific antigens combined
with immune checkpoint inhibitors (such as tremelimumab and nivolumab) have attracted
attention in recent years [7,8]. Moreover, the identification of neoantigens that arise from
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altered tumor proteins as a result of gene mutations in individual cancers is under rapid
development through next−generation sequencing. Neoantigen−loaded DC vaccines are
under investigation for their deployment in precision medicine clinical trials [9,10]. DC
vaccination could provide a therapeutic with a low incidence of grade 3 and 4 adverse
events [4,11].

Clinical DC vaccine research has focused on optimizing a combination of GMP−grade
cytokines and adjuvants. The protocol for generating interleukin (IL)−4−DCs using an adher-
ent culture (ad−IL-4−DCs) was standardized in a clinical trial [12]. In conventional ad−IL-
4−DC preparation, adherent monocytes are stimulated with granulocyte−macrophage
colony−stimulating factor (GM−CSF) and IL-4 to differentiate them into immature DCs,
which are matured via cytokines and adjuvants [13]. Various methods are available for DC
maturation, including the addition of cytokines such as tumor necrosis factor (TNF)−α and
interferon−gamma (IFN−γ), prostaglandin E2 (PGE2), adjuvants such as lipopolysaccha-
rides (LPS, components of the outer membrane of the cell wall of Gram−negative bacteria),
and a cocktail of streptococcal preparations (OK−432) [14–16]. Since immature DCs can
induce regulatory T cells, causing a risk of immune tolerance [17–19], the generation of
homogeneous, mature, and functional DCs is critical for cancer immunotherapy. A revised
protocol for DC vaccine manufacturing will be critical in cancer vaccination [5,6,20,21].

The DC vaccine release criteria have been proposed by the iSBTc−SITC/FDA/NCI
Workshop on Immunotherapy Biomarkers [22]. Accordingly, a minimum of 70% viability,
MHC class II expression, and CD86 expression in at least 70% of the cells must be detected.
The additional expression of proteins including MHC class I, CD80, CD83, and CCR7 is
required for clinical research using characterized DCs. An antigen−presenting ability
was detected in both immature and mature DCs, and it was confirmed to be increased in
mature DCs, concomitant with their mature HLA−ABC, HLA−DR, CD80, CD83, and CD86
phenotypes [23]. Furthermore, we previously reported that a low dose of recombinant
human granulocyte colony−stimulating factor (rhG−CSF) exposure in vivo for 16–18 h
was useful to increase the yield of CD11c+CD14−CD80+ DCs [13]. DC vaccines primed
with a low dose of rhG−CSF in vivo induced a higher DC/monocyte ratio in patients
with antigen−specific CTLs than that expected for the development of immunogenicity
in cancer immunotherapy. Therefore, the viability, yield, purity, and DC phenotype are
critical quality verification attributes for the development of DC vaccines. However, several
aspects remain unresolved in the protocol for generating ad−IL-4−DCs through a manual
procedure. In ad−IL-4−DCs, the viability and yield of DCs are reduced by scraping
during the harvesting of adherent cells. It is reported that bone−marrow−derived DCs,
consisting of nonadherent and adherent cells, may potentiate either tolerogenicity or
pro−tumorigenic responses [24]. The heterogeneity of DCs leads to their uncertain efficacy
in cancer immunotherapy.

Therefore, we established monocyte−derived DCs induced by IL-4 in low−adherent
dishes (low−adherent IL-4−DCs: la−IL-4−DCs) in our previous study [25]. Although DCs
have increased low−adherence viability and yield, they display a decreased expression
of CD80 and PD−L2 with remarkable cluster formation. It has been reported that the use
of low−adherent dishes in DC generation led to a significant reduction in expression of
CD14 and CD83 and an increase in the expression of CD86 compared with adherent culture
dishes [26]. DCs cultured in low−adherent culture dishes have significantly reduced
DC−SIGN and PD−L2 expression levels. In addition, Sauter et al. reported that an
increase in homotypic cluster formation correlated with the use of low−adherent surfaces.
The expression of crucial maturation markers such as CD80, CD86, CCR7, and PD−L1
on DCs was significantly different between two immunogenic maturation cocktails and
between adherent and low−adherent culture dishes [27]. Cluster formation regulation
in monocyte−derived DCs grown in low−adherent dishes has considerable potential to
further improve DC quality.

In recent years, the effect of regulating cell cluster formation in stem cells has been actively
analyzed [28–30]. Compared to conventional two−dimensional culture, three−dimensional
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(3D) culture improves cell–cell interactions, cell–cell signaling, cell–cell scaffolding, and
other in vivo aspects such as differentiation induction and cell survival rates [31–34]. There
are limitations to the 3D culturing of mesenchymal stem cells (MSCs), as aggregation
causes a reduced size−dependent diffusion of waste products and nutrient and oxygen
depletion in the center [31,35]. Furthermore, the 3D culture of pluripotent stem cells
(hiPSCs) affected their capability to be differentiated into hepatic lineage cells depending
on spheroid size [36,37]. Little is known about the effect of cluster control in DC generation.
This study aimed to evaluate the effect of cluster control on the phenotypic profile and
clinical potential of monocyte−derived IL-4−DCs.

2. Materials and Methods
2.1. Subjects and Ethics Statement

This study was approved by the Ethics Committee of Kanazawa Medical University
(approval numbers: G131 and I489). All cellular materials were obtained from patients
after written informed consent in accordance with the Declaration of Helsinki. The human
peripheral blood mononuclear cell (PBMC)−rich fraction was collected from blood samples
of patients via leukapheresis with a Spectra Optia® cell separator (Terumo BCT, Inc., Tokyo,
Japan). Mononuclear cell fractions enriched by leukapheresis were purified by density
gradient centrifugation using Ficoll−Plaque Premium (Global Life Sciences Solutions USA
LLC, Marlborough, MA, USA). The DC vaccination study (approval number PC4160014,
10 June 2016) was approved by the Kanazawa Medical University Certificated Committee
for Regenerative Medicine (Class III technologies, approval number of the Committee
NB4150006) according to the Act on the Safety of Regenerative Medicine introduced in
Japan on 25 November 2014 [38]. All investigations were performed in accordance with
the Declaration of Helsinki.

2.2. DC Generation

IL4−DCs were generated using previously reported low−adherence cell culture
maturation protocols [25]. PBMCs from patients were suspended in AIM−V medium
(serum−free medium, Thermo Fisher Scientific, Inc., Waltham, MA, USA), placed into
adherent dishes (Primaria, BD Biosciences, San Jose, CA, USA), and incubated for 18–24 h.
After removing non−adherent cells, 100 ng/mL of GM−CSF and 50 ng/mL of IL-4 (Mil-
tenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany) were added the following day.
Cells were cultured for 5 days to generate immature DCs. Immature DCs were differen-
tiated by matured by stimulation with OK−432 (10 µg/mL, streptococcal preparation;
Chugai Pharmaceutical Co., Ltd., Tokyo, Japan), PGE2 (10 ng/mL; Kyowa Pharma Chemi-
cal Co., Ltd., Toyama, Japan), 20 µg/mL of the WT1 peptides reconstituted with dimethyl
sulfoxide (DMSO) (for WT1−235 killer peptide: CYTWNQMNL, residues 235–243: for
WT1−34 helper peptide: WAPVLDFAPPGASAYGSL, residues 34–51; Peptide Institute,
Inc., Osaka, Japan) for 24 h in either Prime surface (Sumitomo Bakelite, Tokyo, Japan) for
the low−adherent dish or EZSPHERE (AGC TECHNO GLASS Co., Ltd., Shizuoka, Japan)
for the cluster−controlled dish.

2.3. Morphological Cell Analysis

Mature DCs were observed by fluorescence microscopy (EVOS®FL Cell Imaging
System; Thermo Fisher Scientific, Inc.). Cell cluster size was measured using Image J
software [39], and cell cluster size distribution was analyzed in each experiment.

2.4. Cell Survival Analysis

Cell survival was assessed using trypan blue staining at each timepoint after the
preparation of DC vaccine. Frozen mature DCs were thawed, washed with saline, and then
suspended in saline at 1 × 107 cells/mL. The ratio of the percentage of live cells at each
time point to that at 0 h was determined as the cell survival rate.
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2.5. Surface Marker Analysis of the la−IL-4−DCs and Cluster−Controlled IL-4−DCs

To examine the expression of DC surface markers, cells from each condition were har-
vested and counted, and aliquots of 1 × 105 cells were prepared in the FACSFlow TM (BD Bio-
sciences). Cells were treated with human FcR Blocking Reagent (Miltenyi Biotec B.V. & Co.
KG) for 10 min at room temperature. Each aliquot was incubated with the following mouse
IgG anti−human monoclonal antibodies conjugated to fluorescein isothiocyanate (FITC),
phycoerythrin (PE), and allophycocyanin (APC): FITC−conjugated anti−CD80 mAbs (BD
Biosciences), PE−conjugated anti−CD86 mAbs (eBioscience, Inc., San Diego, CA, USA),
PE−conjugated anti−CD83 mAbs (eBioscience, Inc.), APC−conjugated anti−CD83 mAbs
(BioLegend, Inc., San Diego, CA, USA), FITC−conjugated anti−CD40 mAbs (eBioscience,
Inc.), PE−conjugated anti−CD197 (CCR7) mAbs (Research and Diagnostic Systems, Inc.,
Minneapolis, MN, USA), FITC−conjugated anti−HLA−ABC mAbs (BD Biosciences),
PE−conjugated anti−HLA−DR mAbs (eBioscience, Inc.), FITC−conjugated anti−CD14
mAbs (eBioscience, Inc.), and PE−conjugated anti−CD11c. After incubation, cells were
washed with FACSFlowTM (BD Biosciences) and centrifuged at 500× g, at 4 °C for 5 min.
Cells were resuspended in FACSFlowTM containing propidium iodide (PI; Sigma−Aldrich,
Steinheim, Germany) or 7−amino−actinomycin D (7−AAD; BD Biosciences) for dead cells.
The live cells, defined as negative for PI or 7−AAD, were gated on forward scatter (FSC)
and side scatter (SSC) without the lymphocyte population (Figure S1, Supplementary Ma-
terials). Gated cells were examined for immunophenotyping. All analyses were performed
on a flow cytometer (FACS Calibur, Becton Dickinson, USA), and data were analyzed with
the Flowjo software (BD Biosciences).

2.6. CTL Induction In Vitro

Immature DCs generated from HLA−A*02:01 PBMCs as described in Section 2.2 were
matured using a maturation cocktail and 20 µg/mL HLA−A*02:01 melanoma antigen
recognized by T cells 1 (MART−1) peptides (ELAGIGILTV; synthesized by GeneScript,
Nanjing, China). After 24 h, DCs were collected as stimulator cells, divided into aliquots,
and cryopreserved. CD8+ T cells were separated from HLA−A*02:01−autologous PBMCs
by using CD8 microbeads (Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany)
and were applied as responder cells. Stimulator and responder cells were cocultured in a
96−well U−bottom plate at a ratio of 1:10 in AIM−V medium (Thermo Fisher Scientific,
Inc.) supplemented with 5 ng/mL IL−2 (PeproTech, Inc., Rocky Hill, NJ, USA), 5 ng/mL
IL−7 (Research and Diagnostic Systems, Inc.), 10 ng/mL IL−15 (PeproTech, Inc., Rocky
Hill, NJ, USA), and 50 µM 2−mercapto−ethanol (Bio−Rad Laboratories, Inc., Hercules, CA,
USA) as stimulation medium. After 3 days of cultivation, AIM−V media supplemented
with 5% human AB serum (Biowest, Nuaillé, France) and 50 µM 2−mercapto−ethanol were
added as expansion medium. Thereafter, DC stimulation and cell expansion were repeated
twice with a 3 day interval. Cocultured cells were collected 14 and 21 days after the first
stimulation, and 1 × 106 cells were stained with FITC−conjugated anti−CD8 (Beckman
Coulter, Inc., Brea, PA, USA), APC−conjugated anti−CD3 (eBioscience, Inc., San Diego, CA,
USA), and PE−conjugated T−Select HLA−A*02:01 MART−1 Tetramer−ELAGIGILTV
(Medical & Biological Laboratories Co., Ltd., Nagoya, Japan) to detect MART−1−specific
CTLs. Dead cells were excluded by 7−AAD staining through flow cytometry.

2.7. Cytokine Production

Immature IL-4−DCs were seeded at a cell density of 2 × 106 cells/mL with a matura-
tion cocktail onto low−adherence or cluster−controlled dishes. After 24 h of maturation,
the supernatant was subjected to Bio−Plex for the quantification of the following cytokines:
IL−6, IL−10, IL−12 (p70), IFN−γ, and TNF−α. All measurements were performed in
duplicate using the Bio−Plex assay kit (Bio−Rad Laboratories, Inc., Hercules, CA, USA)
according to the manufacturer’s protocols.
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2.8. RNA Extraction and Microarray Analysis

RNA extraction was performed on la−IL-4−DCs and cc−IL-4−DCs for microarray
analysis. Total RNA was isolated using the RNeasy Mini Kit (Qiagen, Hilden, Germany), ac-
cording to the manufacturer’s instructions, and quantified with a NanoDrop 2000 (Thermo
Fisher Scientific, Inc.). Total RNA quality was evaluated through RNA integrity number
using Agilent RNA 6000 Nano Kit (Agilent Technologies Japan, Ltd., Tokyo, Japan) with
Bioanalyzer RNA analysis (Agilent Technologies Japan, Ltd., Japan). The labeled and
amplified cDNA obtained using the GeneChip™ WT Amplification Kit (Thermo Fisher
Scientific, Inc. ) was hybridized in a GeneChip™ Hybridization Oven 645 (Thermo Fisher
Scientific, Inc.) using a GeneChip™ Human Gene 2.0 ST Array (Thermo Fisher Scientific,
Inc.), washed and stained with GeneChip™ Fluidics Station 450 (Thermo Fisher Scientific,
Inc.), and scanned using GeneChip™ Scanner 3000 7G (Thermo Fisher Scientific, Inc.). Sig-
nal intensity was quantified with the expression console software (Thermo Fisher Scientific,
Inc.) and analyzed in Genespring ver.14.9.1 (Agilent Technologies Japan, Ltd.).

2.9. Real−Time Reverse Transcription−PCR

Complementary DNA (cDNA) was generated by SuperScript®® III Reverse Transcrip-
tase (Thermo Fisher Scientific, Inc.) for real−time quantitative PCR. For the TaqMan assay,
the mix of primers and probes (TaqMan™ Fast Universal PCR Master Mix) was obtained
from Applied Biosystems (US). TaqMan Universal PCR master mixture containing cDNA
template, primer, and the probe was treated as follows: denaturation at 95 °C for 1 s,
followed by annealing and extension at 60 °C for 20 s, 40 cycles. The expression levels of
BCL2A1, BCL2, and BAX as genes of interest (GOI) and GAPDH as an endogenous control
were monitored by ABI StepOnePlus Real−Time PCR System (Applied Biosystems). The
expression level of GOI, normalized against GAPDH, was quantified by the comparative
2−∆∆CT method. All experiments were performed in duplicate.

2.10. Enzyme−Linked Immunospot (ELISpot) Assays

We acquired PBMCs before initiating vaccination and after administering the seventh
vaccine. ELISpot assays were performed using the precoated human IFN−γ ELISpot PLUS
Kit (Mabtech, Inc., Nacka Strand, Sweden) for assessing WT1−specific IFN−γ production
by T cells (CTLs). A total of 1 × 106 PBMCs were seeded in 96−well plates along with 10 µM
HLA−A*02:01 (WT1126–134, RMFPNAPYL), HLA−A*24:02 (WT1235–243, CYTWNQMNL),
or MHC class II (WT1332–347, KRYFKLSHLQMHSRKH) peptide in AIM−V medium sup-
plemented with 10% FBS. As a negative control, we used 10 µM HLA−A*02:01 HIV gag
(SLYNTVAL, amino acids 77–85; MBL, Nagoya, Japan), HLA−A*24:02 HIV env (RYL-
RDQQLL, amino acids 584–592; MBL, Nagoya, Japan), HLA−DRB1*01:01 HIV gag (DYV-
DRFYKTLRAE, amino acids 295–307; MBL, Nagoya, Japan), or DMSO. After 18–20 h
of incubation, signals were analyzed with the ELISpot reader (Autoimmun Diagnostika
GmbH, Strassberg, Germany). Peptide−specific spots were calculated from duplicated
wells by subtracting control peptide spots from those of the WT1 peptides and repre-
sented as the mean number of peptide−specific spots per 1 × 106 PBMCs. We identified
the presence of WT1−CTLs on the basis of (1) a minimum of 15 WT1−specific spots per
1 × 106 PBMCs, and (2) a minimum of a 1.5−fold increase in WT1−specific spots compared
to those in the negative control [40].

2.11. Statistical Analysis

The Wilcoxon signed−rank test was used to compare differences among groups.
Two−way analysis of variance (ANOVA) with Sidak’s multiple comparison was used
to compare the various experimental groups, and two−way ANOVA was used to com-
pare the independent variables between groups. The chi−squared test was used for
cross−tabulation. All statistical analyses were performed using Graph Pad Prism (ver-
sion 8; GraphPad Software Inc., San Francisco, CA, USA). Differences were considered
statistically significant at a p−value <0.05.
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3. Results
3.1. The Effect of Seeding Density and Total Cell Number on Cluster Formation and Phenotype of
IL-4−DCs during Maturation

Our previous report established a protocol for generating IL-4−DCs from monocytes
in low−adherent conditions [25]. The use of low−adherent dishes during the maturation
process increased the recovery and survival rates of IL-4−DCs, and the CTL induction
capacity was comparable with that seen for ad−IL-4−DCs. However, remarkable clus-
ter formation was observed with a decrease in the expression of CD80 and PD−L2. To
optimize the maturation conditions, we evaluated the effect of seeding density and to-
tal cell number on cluster formation and IL-4 DCs phenotype. After maturation with
OK−432, prostaglandin E2 (PGE2), and WT1 peptides, the DC morphology was observed
by phase−contrast microscopy before harvesting (Figure 1). The retrospective analysis
of previous clinical studies indicated that DC maturation marker (i.e., CD80 and CD83)
levels strongly correlated with the detection of antigen−specific CTLs using ELISpot assays
(Table S1 and Figure S2, Supplementary Materials). A few studies have reported that
the levels of surface molecules, such as CD80, CD83, and CD86, necessary for antigen
presentation were found to be higher in mature DCs to stimulate T cells in vitro [13,41].
As a substitute analysis for their antigen−presenting ability, the phenotypes of IL-4−DCs
matured at high seeding density (high density) or low seeding density (low density) were
analyzed using flow cytometry. Expression levels of CD80, CD86, CD83, CD40, CCR7,
HLA−ABC, HLA−DR, CD11c, and CD14 were analyzed (Table 1). The percentage of cells
expressing the markers analyzed (positive cells) tended to be high in low−seeding−density
cells when analyzing CD80 and CD83 levels (median of % positive in CD80: 68.9% in high
density and 73.5% in low density; CD83: 55.3% in high density and 68.6% in low density).
The expression levels, indicated as ∆ median fluorescence intensity (∆MFI), were also
evaluated. The ∆MFI of low−seeding−density cells tended to be high in CD80 (11.0 in
high density; 17.2 in low density), CD86 (151.6 in high density; 297.1 in low density), CD83
(7.0 in high density; 11.5 in low density), CD40 (66.0 in high density; 95.7 in low density),
HLA−ABC (137.6 in high density; 179.7 in low density), and HLA−DR (361.0 in high
density; 519.6 in low density).

After harvesting DCs prepared from the same donors and seeded at high and low
densities, cells were stained with antibodies for DC markers and analyzed by flow cytom-
etry (n = 4). The ∆ median fluorescence intensity (∆MFI) for immunophenotyping was
calculated by subtracting the isotype control value from the MFI.

Figure 1. Comparison of cluster formation at the different seeding densities and the number of cells
used during DC maturation. Observation of cluster morphology by phase−contrast microscopy
of DCs seeded at high (2 × 106 cells/mL) and low (1 × 106 cells/mL) densities. The yellow bars
indicate 1000 µm.
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Table 1. Comparison of the phenotype of DCs after maturation at high and low densities.

Surface
Markers

Median of % Positive Cells
(Minimum–Maximum)

Median Fluorescence Intensity
(∆MFI) (Minimum–Maximum)

High Density Low Density High Density Low Density

CD80
68.9 73.5 11 17.2

(41.6–78.5) (39.2–91.8) (4.0–26.6) (2.4–24.5)

CD86
97.1 97.2 151.6 297.1

(92.8–98.1) (91.3–97.6) (75.2–367.0) (56.6–305.9)

CD83
55.3 68.6 7 11.5

(53.4–60.9) (46.5–69.9) (7.0–14.1) (5.3–17.1)

CD40
98.2 96.8 66 95.7

(94.9–98.5) (93.1–99.3) (43.0–151.8) (42.1–153.1)

CCR7
33.7 36.7 2.7 3.3

(26.1–38.8) (22.9–62.0) (2.0–5.6) (1.8–6.8)

HLA−ABC
99.2 99.4 137.6 179.7

(96.2–99.7) (98.6–99.8) (52.7–174.8) (149.1–206.6)

HLA−DR
99.3 99.8 361 519.6

(89.0–99.8) (99.1–99.9) (54.9–798.3) (99.1–1059.0)

CD11c
99.8 99.5 204.9 193.6

(99.6–99.9) (99.4–99.8) (136.0–312.0) (161.4–282.0)

CD14
29.2 20.9 3.2 1.8

(8.1–44.3) (13.0–27.2) (1.0–5.1) (1.2–3.6)

3.2. Control of Cell Cluster by Culture Dish Increased Expression of Maturation Markers in DCs

As shown in Figure 1 and Table 1, mature DCs at low seeding density showed small
cluster formation and a tendency to highly express maturation markers based on ∆MFI.
These results highlighted a possible relationship between clustering and DC phenotype
and led to the establishment of a protocol using a cluster control dish (EZSHERE) for the
strict cluster size during maturation control (Figure 2a). Cluster control dishes have evenly
designed microwells on their surface. Following incubation of immature DCs in microwells
for 24 h, uniformly sized clusters were observed (Figure 2b). Compared with la−IL-4−DCs,
cc−IL-4−DCs showed homogeneous cluster sizes (Figure 2c: la−IL-4−DCs; median of
24.0 µm2; 25th–75th percentile, 26.0–40.0 µm2, cc−IL-4−DCs; median of 24.5 µm2; 25th–
75th percentile, 10.8–21.0 µm2). There were no significant differences in viability and yield
between la−IL-4−DCs and cc−IL-4−DCs before cryopreservation (Figure 2d; median
viability and yield: la−IL-4−DCs, 93.8% and 8.8%; cc−IL-4−DCs, 91.05% and 11.4%).
Next, we evaluated the survival rate in cc−IL-4−DCs after freeze–thawing by trypan blue
staining in three patients. Interestingly, attenuation waveform results displayed viable
cell rates with an alternation−related curve indicating an increased long−term survival in
cc−IL-4DCs. We determined the relationship of cell survival rate across two parameters
(different type of culture dishes and each timepoint) using a two−factor repeated ANOVA
on the conditions; however, there were no significantly different interactions (interaction
p−value = 0.9989, Figure 2e and Figure S3, Supplementary Materials).
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Figure 2. Cont.
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Figure 2. Cluster−controlled IL-4−DC preparation. (a) low−adherent−IL-4−DCs (la−IL-4−DCs) and cluster−controlled
IL-4−DCs (cc−IL-4−DCs) were generated from monocytes that were purified from PBMCs as described in Section 2.2.
(b) Image of cells observed by phase−contrast microscopy before harvesting by washing with media. The yellow bar
indicates 1000 µm. (c) A box plot shows the semiquantitative analysis of the cell area. The total cell cluster area was
calculated using Image J software by averaging areas in each experiment (n = 3). Quantification of cell area from microscopic
images is represented as the minimum and maximum areas (n = 3). The thickness of cluster size at the DC maturation phase.
Z−stacking analysis with XZ and YZ orthogonal views on cell cluster in la−IL-4−DCs and cc−IL-4−DCs. The yellow bar
indicates 100 µm. (d) Live and dead cells were measured before cryopreserved by trypan blue staining to compare viability
and yield of the DC/monocyte ratio (n = 10). The horizontal bars in graphs show the median of each parameter. (e) The
analysis of cell survival in la−IL-4−DCs and cc−IL-4−DCs as described in Section 2.4 (n = 3). The horizontal bars in graphs
represent the median of each parameter.

To determine the effect of cluster control on IL-4−DCs, we used flow cytometry to
analyze DC marker levels (Figure 3 and Figure S1 and Figure S4, Supplementary Mate-
rials). cc−IL-4−DCs had a higher number of cells expressing maturation markers than
la−IL-4−DCs (CD80, 69.3% and 79.7%; CD86, 98.6% and 99.5%; CD83, 75.3% and 83.9%;
CD40, 98.7% and 99.9%; CCR7, 34.8% and 37.0%, in la−IL-4−DCs and cc−IL-4−DCs,
respectively). The ∆MFI of CD80 was 64.5 in la−IL-4−DCs and 70.6 in cc−IL-4−DC,
whereas other ∆MFIs were as follows: CD86, 752.8 and 1074.3; CD83, 234.6 and 384.4; and
CD40, 349.3 and 376.0, in la−IL-4−DCs and cc−IL-4−DCs, respectively. These levels were
significantly higher in cc−IL-4−DCs than in la−IL-4−DCs.
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Figure 3. Comparison of low−adherent−IL-4−DCs (la−IL-4−DCs) and cluster−controlled IL-
4−DC (cc−IL-4−DCs) phenotypes. After harvesting la−IL-4−DCs and cc−IL-4−DCs prepared
from the same donors, DCs were stained with antibodies for DC markers and analyzed by flow
cytometry. The results are shown as the median percentage of positive cells and ∆MFI. The ∆ median
fluorescence intensity (∆MFI) was calculated by subtracting the isotype control MFI values from
observed values. * p < 0.05, ** p < 0.01 indicate a statistically significant difference compared to
cc−IL-4−DCs (n = 13). The horizontal bars in graphs represent the median of each parameter.



Vaccines 2021, 9, 533 11 of 19

3.3. cc−IL-4−DCs Exhibited the Ability of Presenting Antigens to CD8+ T Cells

To investigate the antigen−presenting abilities of generated DCs to CD8+ T cells,
antigen−specific CTLs were sensitized with cc−IL-4−DCs using a MART−1 peptide.
MART−1−specific CTLs were detected by MART−1 tetramer analysis on days 7, 14, and 21.
The cc−IL-4−DCs showed that the number of MART−1 tetramer+ CTLs slightly increased
on days 14 and 21 compared with that of la−IL-4−DCs in two patients (Figure 4a; #6, #7).
A few differences in the induction of MART−1 tetramer+ CTLs were detected in Case #6,
while superior levels of MART−1 tetramer+ CTLs were revealed in Case #7. Conversely, a
lower induction was found in Case #8 (Figure 4a). The relative alteration of the ratio of
fluorescence intensity of maturation markers was higher in cc−IL-4−DCs in Cases #6 and
#7. There were few such alterations in Case #8 (Figure 4b).

Figure 4. Comparison of MART−1 specific CTL induction in low−adherent IL-4−DCs (la−IL-4−DCs) and
cluster−controlled IL-4−DCs (cc−IL-4−DCs). la−IL-4−DCs or cc−IL-4−DCs were cocultured with autologous T cells at a
ratio of 1:10 DCs:T cells (a) Seven to 21 days after the start of the co−culture, MART−1 specific CTLs were detected by
CD3, CD8, and MART−1+ tetramer via flow cytometry. The number of MART−1 tetramer+ CTLs in the culture period
is presented in line graphs (n = 3). (b) Comparison of DC maturation markers in the groups with MART−1 specific CTL
induction detected by flow cytometry.
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3.4. cc−IL-4−DCs Promoted Higher IFN−γ Production Compared with That of la−IL-4−DCs

To further evaluate the improvement in the maturation profiles of cc−IL-4−DCs,
cytokine levels released from DCs were analyzed. The levels of cytokines involved in
the induction of cytotoxic T cells (cytotoxicity T lymphocytes, CTLs) and inflammatory
cytokines were measured by using multiplex assays (Figure 5). cc−IL-4−DCs indicated
significantly higher IFN−γ production compared with la−IL-4−DCs (median level in
la−IL-4−DCs and cc−IL-4DCs, 17.6 pg/mL and 23.1 pg/mL, respectively); however, no
differences in IL−12 (p70), IL−10, IL−6, and TNF−α were found between la−IL-4−DCs
and cc−IL-4DCs (IL−12 (p70), 843.1 pg/mL and 517.4 pg/mL; IL−6, 5538.4 pg/mL and
5824.6 pg/mL; TNF−α, 23,440.1 pg/mL and 15,974.7 pg/mL; IL−10, 175.3 pg/mL and
171.9 pg/mL, in la−IL-4−DCs and cc−IL-4DCs, respectively).

Figure 5. Comparisons of cytokine levels in low−adherent−IL-4−DCs (la−IL-4−DCs) and
cluster−controlled IL-4−DCs (cc−IL-4−DCs). The culture supernatant after maturation was sub-
jected to cytokine level measurements in la−IL-4−DCs and cc−IL-4−DCs. The amount of IFN−γ,
IL−12 (p70), IL−10, IL−6, and TNF−α was determined with a Bio−Plex multiplex assay (n = 9). The
horizontal bars in the graphs show the median of each parameter. * p < 0.05.

3.5. BCL2A1 Gene Expression in cc−IL-4−DCs Compared with la−IL-4−DCs

As shown in Figure 2e, although we found that controlling cell clusters through culture
dishes tended to show a high survival rate, it is unclear whether cluster−controlling IL-
4−DCs affect gene expression profiles involved in cell survival. Comprehensive analyses
of gene expression profiles were carried out in la−IL-4−DCs and cc−IL-4−DCs using
microarray analysis of three patients. The expression of the pro−survival gene BCL2A1
was higher (fold change >1.3) in cc−IL-4−DCs than in la−IL-4−DCs (Table 2). There were
no differences in the expression of other BCL2 family genes. The differential expression of
BCL2, BAX, and BCL2A1 analyzed by DNA microarray analysis was corroborated using
quantitative real−time PCR analysis for la−IL-4−DCs and cc−IL-4−DCs. cc−IL-4−DCs
displayed a significant increase in BCL2A1 mRNA expression (*p < 0.05) (Figure 6).
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Table 2. Comparison of representative expression of BCL2 genes in low−adherent−IL-4DCs and cluster−controlled IL-
4DCs.

Gene
Symbol

Patient #1 Patient #2 Patient #3

DC Preparation Fold
Change vs.
Controls

DC Preparation Fold
Change vs.
Controls

DC Preparation Fold
Changevs.
Controls

la−IL-
4−DCs

cc−IL-
4−DCs

la−IL-
4−DCs

cc−IL-
4−DCs

la−IL-
4−DCs

cc−IL-
4−DCs

BCL2 138.5 162.9 1.2 82.1 81.6 1.0 158.5 141.9 0.9
BCL2L1 94.8 97.9 1.0 80.2 80.4 1.0 53.3 50.0 0.9
BCL2L2 91.6 74.7 0.9 70.2 77.2 1.1 73.2 50.1 0.7
MCL1 610.8 686.3 1.1 879.6 772.1 0.9 906.7 913.8 1.0

BCL2A1 695.0 977.8 1.4 486.9 650.4 1.3 233.3 447.3 1.9
BAX 99.9 100.1 1.0 94.6 95.8 1.0 87.7 81.6 0.9
BOK 24.4 27.4 1.1 24.9 25.0 1.0 27.2 24.9 0.9
BAK1 125.3 124.2 1.0 124.0 138.8 1.1 134.6 135.3 1.0

Figure 6. Comparison of BCL2, BCL2A1, and BAX mRNA expression levels and the ratio of
BCL2/BAX expression in DCs matured in low−adherence and cluster−controlled dishes. After 24 h
of maturation, the gene levels of BCL2, BCL2A1, and BAX were detected using real−time PCR analy-
sis in low−adherent IL-4−DCs (la−IL-4−DCs) and cluster−controlled IL-4−DCs (cc−IL-4−DCs).
The horizontal bars in graphs show the median of each gene expression experiment conducted in
duplicate (n = 7). * p < 0.05.
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4. Discussion

In this study, we examined the effects on phenotype, CTL induction, cytokine secretion,
and gene expression of cluster control by using cell culture dishes in the generation of
mature IL-4−DCs. The viability, yield, purity, and DC phenotype are considered critical
quality verification attributes for the development of DC vaccines. Therefore, a minimum
of 70% viability must be detected in the release criteria of DC vaccines. cc−IL-4−DCs
formed homogeneous cluster sizes and displayed no significant differences in viability and
yield compared with la−IL-4−DCs. On the other hand, cc−IL-4−DCs expressed higher
levels of maturation markers, such as CD80, CD86, CD83, and CD40, than la−IL-4−DCs. In
addition, cc−IL-4−DCs exhibited evident antigen−presenting ability in vitro as presumed
as per maturation markers. The production of IFN−γ was significantly higher in cc−IL-
4−DCs. The cc−IL-4−DCs exhibited a relative long−term survival in vitro. Furthermore,
a pro−survival gene, BCL2A1 was highly expressed in cc−IL-4−DCs.

We previously established the protocol for manufacturing IL-4−DCs in an optimized
manner using low−adherence dishes [25]. Despite the increase in viability and yield
compared with ad−IL-4−DCs, the la−IL-4−DCs showed remarkable cluster formation.
In contrast, the expression levels of costimulatory molecules such as CD80 and PD−L2
on la−IL-4−DCs were relatively low compared to those on ad−IL-4−DCs. Therefore,
during maturation, the cell culture environment might be a critical factor affecting the
phenotype and function of DCs. As shown in Figure 1 and Table 1, the seeding density and
cell number during maturation affected cluster size and phenotype. Both percentages of
positive cells and expression levels of maturation markers such as CD80, CD86, CD83, and
CD40 tended to be high in the low−density condition. Cell cluster formation in high−
and low−density conditions exhibited heterogeneous cluster sizes individually (Figure 1).
These results suggested that a heterogeneous cluster size affected IL-4−DC phenotype.

We examined the effect of cluster size control using cluster−controlled dishes in IL-
4−DCs (Figure 2b,c). Homogeneous small cluster formation in cluster−controlled dishes
slightly increased the expression levels and ∆MFI of the maturation markers CD80, CD86,
CD83, and CD40 (Figure 3). cc−IL-4−DCs exhibited the ability to present antigens to CD8+

T cells (Figure 4), producing higher levels of the cytokine IFN−γ (Figure 5).
Mature DCs express cell surface molecules necessary for antigen presentation, such

as CD80, CD83, CD86, and CD40, and their expression levels are higher than those of
immature DCs. Additionally, mature DCs are known to stimulate T cells in vitro [42].
As shown in Figure S2 (Supplementary Materials), CD80 and CD83 on DCs were clini-
cally presumed to detect antigen−specific CTLs induced by a DC vaccine with potential
antigen−presenting ability. Recently, we reported a higher level of CD80 expression on
DCs subjected to rhG−CSF, linking the acquisition of immunity with CD80 antigen ampli-
fication on DCs [13]. In addition, Cindy et al. reported that the downregulation of CD83
expression on human DCs results in a weaker induction of allogeneic T−cell proliferation,
reduced IFN−γ secretion from established T cells, and decreased priming of functional
tumor antigen−specific CD8+ T lymphocytes [43]. Thus, it is suggested that higher levels
of CD80 and CD83 on DCs would confer a superior antigen presentation ability, leading
to immune acquisition. As shown in Figure 4, the increased levels of CD80 and CD83 on
cc−IL-4−DCs were partially associated with the antigen−presenting ability evaluable in
two of three patients (donor #6 and #7). However, one of the three patients showed lower
levels of CTL induction without differences in the expression of maturation markers. These
results suggested that the expression levels of maturation markers on DCs may partially
affect their antigen presentation ability. Therefore, further study is required to reveal the
effect of these differences on antigen presentation. Moreover, these findings indicated the
enhancement of DCs in cluster−controlled dishes under maturation cocktails. The presence
of OK−432 in maturation cocktails promotes the maturation of immature DCs through the
engagement of Toll−like receptors (TLRs, TLR2, TLR4, and TLR9) [44–46]. We suggest that
homogeneous cell cluster formation by cluster−controlled dishes improved the efficiency
of TLR−mediated signaling in OK−432. Further studies are needed to clarify whether
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a homogeneous cell cluster would affect the responsiveness of TLR/NF−κB signaling
to OK−432.

Analyses of cytokine production at the 24 h timepoint in cc−IL-4−DCs and la−IL-
4−DCs (n = 9) revealed the same levels of IL−12 (p70), IL−10, IL−6, and TNF−α, while
a significant increase was found in the production of IFN−γ (which has an essential
role in the activation of CTLs) in cc−IL-4−DCs. Increasing the sample size may be use-
ful to evaluate cytokine levels. Kaitlin et al. reported that secretion of proangiogenic
and anti−inflammatory factors increases with spheroid size in inflammatory stimulated
MSCs [47]. MSC spheroid function is dependent on the culture environment used to form
these aggregates, and it is suggested that a similar phenomenon is seen in cc−IL-4−DCs.
Pan et al. reported that TLR/NF−κB activation through OK−432 led to increased IFN−γ

and IL−12 (p70) production in DCs [16]. Another study reported increased that IFN−γ

secretion at the 72 h timepoint by purified monocyte−derived DCs with OK−432 requires
earlier IL−12 (p70) secretion at the 24 and 48 h timepoints after maturation [14]. Addi-
tionally, exposure to OK−432 during DC maturation induces NF−κB activation, which is
partially related to IL−12 (p70) production. The phase of IFN−γ release from DCs occurs
after IL−12 (p70) secretion. However, our results showed that there was no significant
difference in IL−12 (p70) level at the 24 h point. These results presumed that the opti-
mization of cluster control with a culture dish might promote exposure to OK−432 to
activate TLRs in DCs and that a higher level of IFN−γ following temporal IL−12 (p70)
stimulation would be shortened by cluster control. The IL−12 (p70) and IFN−γ levels
depending on cluster size should be detected by a time−course analysis. Further studies
are needed to determine the time−dependent increase in IFN−γ in cc−IL-4−DCs affecting
CTL induction in vitro.

As shown in Figure 2e, cell cluster control by cluster−controlled dishes relatively
increased survival rates in vitro. In general, cryopreserved DC vaccines thaw at 37 ◦C
and are suspended in saline before being packed in tubes. Tubes with DC vaccines are
shipped at 4 ◦C. Therefore, increased survival of IL-4−DCs would be desirable for their
long−lasting viability in clinical applications, further validated by further investigation.
MSC spheroid cultures showed an improved in vivo survival compared to MSC monolayer
cultures due to upregulation of the antiapoptotic molecule BCL2 and downregulation of
the proapoptotic molecule BAX [34]. The BCL2 family consists of proapoptotic proteins,
such as BAX and BAK, and antiapoptotic proteins, such as BCL2, MCL, and BCL2A1.
BCL2A1 inhibits the activation of BAX and BAK. Bhang et al. reported that the different
spheroid sizes in human cord blood MSCs under hypoxia conditions influences antiapop-
totic BCL2 expression [34]. DNA microarray screening revealed the expression level of
BCL2A1 in cc−IL-4−DCs (Table 2). Further validation of gene expression by RT−qPCR
showed that BCL2A1 gene expression was upregulated in all samples of cc−IL-4−DCs
(Figure 6). BCL2A1 belongs to the BCL2 family and is regulated by NF−κB downstream of
TLR and CD40 signaling to exert pro−survival functions and prevent cell death [48,49].
The mRNA and protein levels of BCL2A1 in DCs are upregulated by the NF−κB signaling
pathway [50]. Our results showed that cluster control induced significantly higher levels of
CD40 in ∆MFI (Figure 3), and that activation of NF−κB through both TLR and CD40 sig-
naling might contribute to the increased BCL2A1 gene expression using the cluster control
method. Olsson et al. reported that an increase in BCL2A1 gene expression is involved in
the long−term survival of DCs [50]. An investigation of the relationship between BCL2A1
and TLR or CD40/ NF−κB signaling in cluster control IL-4−DCs would be required to
elucidate the mechanism underlying pro−survival functions in DC vaccines. Thus, further
study is needed to confirm the relationship between BCL2A1 expression levels and survival
in the DC vaccine. Moreover, research on the mechanisms underlying the effects of BCL2A1
and NF−κB siRNA on cell survival in cc−IL-4−DCs is warranted.

Recent studies reported that a cluster−size−dependent promotion of differentiation
efficiency in MSCs and iPS cells was limited by oxygen deprivation and nutrient depletion
in the center of the cell mass [34,35,37]. Torizal et al. reported that optimization of size
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in hiPSC spheroids enhanced their capability to differentiated into hepatic linage cells, as
a function of increased expression of albumin and CYP3A4 and a lower level of a fetal
hepatic marker (AFP) [37]. Thus, optimization of spheroid size may affect gene expression
to increase the efficiency of hepatic differentiation. A similar phenomenon is expected
from cluster control in DC differentiation. As shown in Figure 2c, cluster control dishes
decreased cluster thickness during DC maturation. Therefore, the control of optimal cluster
size using culture dishes may be key in the development of cc−IL-4−DCs. Our results
showed no significant difference in the gene profile involving TLR and CD40 signaling
using microarray analysis (data not shown). NF−κB activation in OK−432−treated DCs
reached a maximum level within 30 min and decreased gradually thereafter [14]. Therefore,
the early response of cluster control on the genetic profile of DCs should undergo a
time−dependent analysis by DNA microarray. On the other hand, Qun et al. reported that
a hypoxic environment suppresses the expression of CD80 and CD86, maturation markers,
MHC class II, and proinflammatory cytokines such as IL−1, IL−6, and TNF in murine DCs.
Re−exposure of the hypoxia−differentiated DCs to saturated oxygen led to a recovery
of DC maturation markers and functions [51]. Further studies are needed to clarify the
impact of optimal cluster size related to hypoxia and nutrient depletion in cell clusters
during DC maturation.

To summarize, elucidating the effects of cluster formation in DCs is expected to
improve their maturity and functions. The IL-4−DC vaccine manufacturing process
using cluster−controlled dishes in this study proposes revised methods for developing
DC vaccines. Manufacturing of therapeutic IL-4−DC vaccines can be available using
cluster−controlled dishes. However, this processing requires using validated materials
in compliance with the Good Gene, Cellular, and Tissue−based Products Manufacturing
Practice [38]. Closed systems should be carefully selected to meet the specific requirements
for manufacturing clinical−grade DC vaccines.

5. Conclusions

In conclusion, we developed a standardized protocol for manufacturing DC vaccines
by controlling cluster formation. It was observed that cc−IL-4−DCs showed long−term
survival in vitro, and increased levels of CD80, CD86, CD83, and CD40 were detected.
cc−IL-4−DCs functionally possessed the ability of presenting antigens to CD8+ T cells
in vitro. A cluster−controlled manufacturing process induced higher IFN−γ levels and
exhibited high level of BCL2A1 gene expression in cc−IL-4−DCs. It is expected that
cc−IL-4−DCs will be useful for developing DC vaccines with a long−lasting effect. As DC
vaccines for patients with cancer require safety and immunogenicity in vivo, prospective
clinical trials will be essential to prove the efficacy of acquired immunity in response to
cc−IL-4−DC vaccines.
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DC phenotype in 10 cancer patients.; Figure S2: The comparison of DC maturation markers in the
groups detected with ELISpot assays.; Figure S3: The analysis of cell survival in low−adherent
IL-4−DCs and cluster−controlled IL-4−DCs.; Figure S4: Phenotypic change of surface markers using
a cluster−control dish for DC maturation.
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