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Abstract: The synergistic mechanism of photocatalytic-assisted dye degradation has been demonstrated
using a hybrid ZnO-MoS2-deposited photocatalytic membrane (PCM). Few layers of MoS2 sheets
were produced using the facile and efficient surfactant-assisted liquid-phase exfoliation method.
In this process, hydrophilic moieties of an anionic surfactant were adsorbed on the surface of MoS2,
which aided exfoliation and promoted a stable dispersion due to the higher negative zeta potential
of the exfoliated MoS2 sheets. Further, the decoration of ZnO on the exfoliated MoS2 sheets offered
a bandgap energy reduction to about 2.77 eV, thus achieving an 87.12% degradation of methylene
blue (MB) dye within 15 min of near UV-A irradiation (365 nm), as compared with pristine ZnO
achieving only 56.89%. The photocatalysis-enhanced membrane filtration studies on the ZnO-MoS2

PCM showed a complete removal of MB dye (~99.95%). The UV-assisted dye degradation on the
ZnO-MoS2 PCM offered a reduced membrane resistance, with the permeate flux gradually improving
with the increase in the UV-irradiation time. The regeneration of the active ZnO-MoS2 layer also
proved to be quite efficient with no compromise in the dye removal efficiency.

Keywords: photocatalytic membrane; hybrid ZnO-MoS2 layer; surfactant-assisted exfoliation; surface
modification; membrane filtration; dye degradation

1. Introduction

The membrane filtration process is one of the most versatile and effective means of
water/wastewater treatment technologies, owing to its reduced energy consumption and operating
costs. The sustainable design of membrane processes is recently gaining more attention, especially with
a focus to overcome the fundamental limitations on reject disposal associated with any membrane-based
treatment [1]. Indeed, there are several evidences on integrating different unit operations or chemical
processes with membrane separation, yet reject disposal remains challenging in terms of the economic
and energy aspects [2,3]. Photocatalysis is one of the promising processes to be integrated with
membrane separation for its advantage of the incomplete decomposition of organic pollutants
under UV/visible light irradiation. Novel process designs in photocatalytic membrane reactors are
continuously emerging to realise the maximum benefit from both photocatalysis and membrane
filtration processes [4]. However, there are associated limitations with slurry/submerged or continuous
photocatalytic membrane reactors in terms of photocatalyst regeneration, poor photocatalytic activity,
excessive membrane resistance [5] and fouling [6,7]. Photocatalytic membranes (PCM) enable to
overcome the above-mentioned limitations wherein the active photocatalytic layer is immobilised on
the surface of the membrane rather than the bulk incorporation [8].
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As an attempt to utilise the maximum photocatalytic efficiency, the membrane surface can be
inherently tailored with desired multi-functionalities. By identifying a suitable material constituting
photocatalytic, anti-fouling and selective separation properties, a hybrid PCM with a well-controlled
structure and high performance could be developed. The recent advent of high-performance
two-dimensional (2D) materials has been a significant impact on developing robust photocatalytic
membrane materials [9,10], thanks to the advancements in material chemistry. Several research
studies highlighted the photocatalytic activity of novel transition metal chalcogenides (TMDs) and 2D
nanomaterials-based semiconductors [11–13]. However, studies related to developing membranes
with photocatalytically active TMD-based semiconductor nanomaterials are limited.

The present work is central to achieving the desired surface functionality of the polymeric
membranes by incorporating an active TMD layer with a photocatalytic property to perform a
UV-assisted membrane filtration process. Special interest also lies in introducing heterojunctions
between photocatalytic semiconductors and exfoliated 2D materials to realise a photocatalytic-enhanced
membrane treatment. Emerging 2D TMDs, like MoS2, typically prepared based on liquid exfoliation [14],
or particularly using solvents [15,16] and surfactants [17], hold greater potential in terms of
nano-structural stability and permeation capability higher than that of its counterparts like graphene
oxide, and has also been evidenced to offer membrane integrity towards pressure-driven water filtration
applications [18,19]. As the present work necessitates the incorporation of exfoliated layers on MoS2,
a facile and environmentally friendly surfactant-assisted exfoliation method [20] has been adopted
to prevent any damage of the membrane substrate against solvent exposure and at the same time
improve the stability of exfoliated MoS2 sheets. MoS2 can be effectively integrated as an active layer
on the surface of the membrane by taking advantage of the robust van der Waals structure with
a stable/narrow interlayer of MoS2 in an aqueous environment [21]. Robust surface modification
strategies to beneficially utilize the multi-functional properties of MoS2 without altering the desired
molecular channels within its interlayer spacing would hence bring breakthrough advances in the field
of photocatalytic membranes.

Hybrid photocatalytic membranes constituting a selective and photocatalytic surface layer tend
to offer synergistic benefits as well as mitigate the trade-off existing between the productivity and
rejection efficiency of the membrane. Improved filtration properties and membrane life will be
rendered while reducing the typical limitations of membrane filtration concerning reject disposal and
fouling. The present study deals with developing a photocatalytically active polyvinylidene difluoride
(PVDF) polymeric nanocomposite membrane with few layers of 2D hybrid ZnO-MoS2 deposited on its
surface. Methylene blue (MB) dye was chosen as a model pollutant to investigate the efficiency of the
photocatalytic-assisted membrane filtration performance of a pristine ZnO-MoS2 powder and hybrid
ZnO-MoS2 PCM, respectively. Chemically exfoliated MoS2 (E- MoS2), having a shorter conduction
band gap energy, activates the electron transfer rate of the ZnO semiconductor by suppressing the
faster recombination of its electron–hole pairs [1,22] which enable enhanced membrane properties
such as surface adsorption, hydrophilic properties and membrane filtration performance [23,24].

2. Materials and Methods

2.1. Materials

Bulk MoS2 powders (mesh size <2 microns), sodium dodecylbenzene sulfonate (SDBS) and
methylene blue (MB) were purchased from Sigma Aldrich, Dublin, Ireland. N-methyl pyrrolidone
(NMP) was purchased from Fisher Scientific Limited, Loughborough, UK. PVDF membrane (pore
size ~0.2 microns) substrate was procured from Sterlitech Corporation, Kent, WA , USA. Zinc oxide
(ZnO) nanopowders were obtained from Nanostructured & Amorphous Materials, Inc., Katy, TX, USA.
All chemicals used were of analytical grade. Deionised water was produced in the laboratory using a
Vision 250 deioniser, Veolia Ireland, Dublin, Ireland.
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2.2. Surfactant Assisted Exfoliation of Bulk MoS2

Bulk MoS2 (50 mg) was added to a solution of deionised water (50 mL) and SDBS (25 mg).
The solution was magnetically stirred while being heated to 45 ◦C for 20 min. The mixture was then
ultra-sonicated for 3 h using a solid probe sonicator (Sonics, Newtown, CT, USA) with a 750W power
output set at a 20 kHz frequency and maximum amplitude of 25%. In order to control the temperature,
sonication was performed in a jacketed beaker with water circulation and the sonicator was set at a
pulse rate of 7 s on and 2 s off [20,25]. The resultant dispersion containing the exfoliated (E-MoS2)
and bulk unexfoliated (B-MoS2) was separated by two-step centrifugation. Initially, the dispersion
was centrifuged at 4000 rpm for 1 h, and an upper green liquid part of the dispersion containing the
exfoliated layers of MoS2 was collected while leaving the larger flakes’ sedimented residue for disposal.
The collected supernatant was then centrifuged again for 30 min at 4000 rpm to avoid further bulk
residues sedimented at the bottom of centrifuge tubes. Finally, the as-obtained E-MoS2 dispersion was
used for the membrane modification and further characterisation, as shown in Figure 1.
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Figure 1. Schematic illustration of E-MoS2 and hybrid ZnO-MoS2 photocatalyst.

2.3. Preparation of Hybrid ZnO-MoS2 Nanocomposite

Twenty mg of ZnO nanopowder was taken per 10 ml of the E-MoS21 dispersion (1 mg/mL
concentration) and stirred for 20 min. Sonochemical-assisted doping of E-MoS2 was carried out by
ultra-sonicating the entire solution for 30 min. A greenish white turbid dispersion was obtained,
which was stirred further for 2 h [26]. The resultant dispersion was dried in a vacuum oven at 70 ◦C
for 12 h, followed by heating for 2 h at 200 ◦C to collect the dried ZnO-MoS2 nanocomposite [27,28].
The as-obtained hybrid ZnO-MoS2 (Figure 1) was characterised and employed in pristine form to
study its photocatalytic activity.

2.4. Characterisation of E-MoS2 Dispersion and MoS2 Doped ZnO

The stability of E-MoS2, ZnO and the hybrid ZnO-MoS2 nanocomposite was compared by
measuring its zeta potential using a zetasizer nano ZS (Malvern Panalytical Ltd.,Worcestershire, UK).
ZnO and the as-prepared dried samples of the hybrid ZnO-MoS2 were prepared using deionised
water (pH 7.6) at a concentration of 3 mg/mL, and the dispersion of E-MoS2 was centrifuged and
later re-dispersed in deionised water at a similar concentration. All measurements were performed in
triplicates to determine the average zeta potential. Raman spectra of E-MoS2 and the hybrid ZnO-MoS2

photocatalyst were collected by means of a non-resonant 532 nm cw laser. The full-spectrum was
recorded while placing the samples on a standard XY motorised stage and a coupled microscope
objective (20×with 3 µm laser spot size) helped in scanning and collecting the back-scattered light using
a grating spectrometer. Optical analysis was performed using UV–vis spectroscopy (Perkin-Elmer
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lambda 1050 spectrophotometer, Waltham, MA, USA) to measure the band gap energy of the prepared
photocatalyst by means of the well-known Tauc relation, Equation (1).

hν = A (hν − Eg)n (1)

where h refers to the Plank constant, ν is the incident of light frequency, A is the absorbance, Eg is the
bandgap and n equals to 1

2 , which refers to the direct band gap energy of the E-MoS2 dispersion.

2.5. Modification of PVDF Membrane with Hybrid ZnO-MoS2 Photocatalysts

For the surface modification, 20 mL of the prepared dispersion of the hybrid ZnO-MoS2 (3 mg/mL
concentration) was deposited on a PVDF membrane with the help of a pre-assembled filtration set-up
(Sartorius Filtration apparatus, Microsart®, Göttingen, Germany) operated by a peristaltic pump.
Deposition of the synthesised ZnO-MoS2 dispersion was confirmed by visualising the clear permeate
through the membrane. Finally, the ZnO-MoS2 PCM was rinsed with deionised water, dried at 85 ◦C
and immersed in deionised water for further use.

2.6. Characterisation of ZnO-MoS2 PCM

2.6.1. Hydrophilicity Characteristics

The contact angles of the virgin PVDF and modified ZnO-MoS2 PCM were measured using an
assembled goniometer set-up (First Ten Angstroms, FTÅ12, Cambridge, UK) to study its hydrophilicity
characteristics. The static sessile drop method was adopted wherein a water droplet of 10 µl was
placed on the membrane surface using a Gilmount syringe to measure the equilibrium water contact
angle. The average of five readings of the equilibrium water contact angles was then calculated and
reported as the mean contact angle of the prepared membranes.

2.6.2. Morphological Characteristics

The morphologies of the hybrid ZnO-MoS2 photocatalyst and modified membranes were examined
using a field emission scanning electron microscope (Zeiss Ultra plus, Carl Zeiss, Oberkochen, Germany).
The membrane was initially pre-treated with gold (Au) sputtering to impart the electrical conductivity
to get top surface and back-scattered micrographs of its cross-section morphology. The ZnO-MoS2

photocatalyst was inherently conductive, and sample imaging was performed using a high-resolution
lens at an accelerating voltage of 20 kV without gold sputtering.

2.6.3. Structural Characteristics

The surface structural characteristics of the ZnO-MoS2 PCM were studied by performing X-ray
photoelectron spectroscopy (XPS) (VG Scientific ECSA lab Mk II system) using Al Kα X-rays (1486.6 eV)
under ultra-high vacuum conditions (<5 × 10−10 mbar). Survey and elemental spectra were recorded
while setting the analyser pass energy to 200 eV. An electron flood gun was employed for the charge
compensation, and the binding energy scale of the adventitious carbon 1s core-level was referenced at
284.8 eV.

2.7. Studies on Photocatalytic Degradation of MB dye

2.7.1. Hybrid ZnO Doped MoS2 Photocatalysts for MB Dye Treatment

An amount of 100 ml of 20 ppm MB solution was stirred in two different beakers with 100 mg each
of ZnO and the hybrid ZnO-MoS2 photocatalyst. The solutions were initially left in the dark under
stirring for 1 h to allow them to reach the absorption–desorption equilibrium. UV irradiation was
then exposed while placing the solutions within an enclosed chamber. Sampling was done at every
15 min for hours, and collected samples were then centrifuged at 14,000 rpm for 10 min to remove any
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traces of the residual photocatalyst. The MB dye concentration was then determined by measuring the
absorbance peak of the samples at 665 nm. The obtained data on the difference between the initial and
final concentration were plotted against time to investigate the photocatalytic activity of ZnO and the
hybrid ZnO-MoS2.

2.7.2. Photocatalysis Assisted Membrane Filtration Studies for MB Dye Treatment

A laboratory scale photocatalytic membrane reactor was set up, as shown in Figure 2. A UV
lamp (Phillips-UVA, 9 W, RS Radionics, Dublin, Ireland) emitting a near-UV radiation of 365 nm
wavelength was placed at about 3 cm above the membrane filtration set-up (Sartorius filtration
apparatus, Microsart®, Göttingen, Germany) and kept together enclosed in a closed chamber as shown
in Figure 2. The ZnO-MoS2 PCM, having a diameter of 47 mm, was mounted in the filtration set-up
connected to the peristaltic pump. The feed solution containing 20 ppm concentration of MB dye was
pumped into the microfiltration set-up while irradiating the ZnO-MoS2 PCM. Samples were collected
every 30 min while recirculating the permeate back into the feed tank. All trials pertaining to the
photocatalytic-assisted filtration performance evaluation and reusability of the ZnO-MoS2 PCM are
studied using the same experimental set-up.
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Figure 2. Schematic representation of UV-assisted membrane filtration set-up for the MB dye treatment.

Initially, deionised water was passed through the virgin PVDF and ZnO-MoS2 PCM to compare
the steady-state pure water flux. MB dye filtration studies were performed on the above-mentioned
filtration set-up by employing (1) the virgin PVDF membrane, (2) the surface-modified ZnO-MoS2

PCM with filtration under dark (UV off) and (3) a UV-assisted filtration on the ZnO-MoS2 PCM.
The permeate was collected to determine the flux and dye concentration to compare the efficiency
and rejection ability of the virgin PVDF and modified ZnO-MoS2 membranes. The flux through the
membranes was calculated using the following Equation (2):

J =
V

A× ∆t
(2)

where J represents the permeate flux (Lm−2h−1), V is the volume of the filtered water (m3), A is the
active membrane area (m2) and ∆t is the working time (h).
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The dye rejection efficiency was quantified based on the concentration of the initial feed (Ci) and
obtained permeate concentration (Cp) using the below Equation (3):

Rejection efficiency =

(
1−

Cp

Ci

)
× 100% (3)

3. Results and Discussion

3.1. Morphology of ZnO-MoS2 Photocatalyst

The surface morphology of the ZnO-MoS2 photocatalyst characterised by SEM is shown in
Figure 3, wherein exfoliated few layers of MoS2 sheets have been decorated with ZnO on the surface.
Upon exfoliation, it could be observed that the lateral size of the MoS2 sheets has decreased due to
the sonication-induced scission. The size reduction of the lateral edges plays a significant role in
rendering beneficial properties to the exfoliated 2D layers of MoS2, which in the present application
have turned the ZnO-MoS2 sheets catalytically more active than the bulk. The reduction in the lateral
size of ZnO-MoS2 is beneficial for photocatalytic applications as edge sites rather than basal planes of
MoS2 are known to be catalytically active [29].
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Figure 3. SEM images of the ZnO-MoS2 hybrid photocatalyst (a) at 500×; (b) at 1000×; (c) magnified
porous surface at 3000×.

It is significant to visualise the dense surface porous structure of the MoS2 sheets, which
would certainly offer improved permeability, owing to the higher cumulative porosity of the
ZnO-MoS2-deposited membranes [30]. Other superior functionalities, including the catalytic activity
and wettability, are expected to enhance by taking advantage of the surface pores [31].

3.2. Raman Spectral Analysis of MoS2 and ZnO-MoS2 Photocatalyst

Raman spectra for the bulk and exfoliated MoS2 dispersion are shown in Figure 4 and the
displayed two MoS2 peaks are the in-plane E1

2g and the out-of-plane A1g. Peak positions at 383 cm−1
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for E1
2g and 407 cm−1 for A1g confirm the presence of MoS2 [32,33]. The presence of a blue shift on the

E1
2g peak implies that a degree of exfoliation has occurred. The absence of the A1g red shift, which is

typically more responsive to reducing the layer number, could be a result due to SDBS, which adhered
to the basal planes of the MoS2 as it stabilises the dispersion through its ionic charge. When comparing
the bulk and exfoliated MoS2, there is a blue shift from 381 to 383 cm−1 on the in-plane E1

2g peak which
is attributed to the reduction in the number of layers [34].
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The Raman spectra of the hybrid ZnO-MoS2 (Figure 4) show the characteristic peak of the A1g

mode specific to the exfoliated sheets of MoS2 which have turned remarkably sharper, attributed to the
improved crystallinity due to the formation of ZnO and MoS2 heterojunctions. Moreover, the presence
of a weaker E2 (H) vibrational band exhibited at wavenumber 440 cm−1 represents the incorporation of
a hexagonal wurtzite crystal structure of ZnO in the hybrid ZnO-MoS2 composite [27,35]. The reduction
in the Raman shift occurring at the vibrational modes of the E2g and A1g peaks has also confirmed the
2H-hexagonal crystal plane of MoS2 with a reduced number of layers [36]. However, a more plausible
rationale behind the reduced shift is attributed to the extent of exfoliation, which has been successful
to only a few layers rather than a monolayer exfoliation. The Raman peak positions of the few layers
of MoS2 are known to converge on its bulk profile when the layer number ≥4, as reported [37], thus
suggesting the thickness of the obtained E-MoS2 sample has possibly around four layers.

3.3. Band Gap Energy and Stability Analysis of ZnO-MoS2 Photocatalyst

The zeta potential of E-MoS2 and the ZnO-MoS2 hybrid was found to be −38 mV and −33 mV,
respectively, thus confirming its better stability in the SDBS exfoliation medium. Indeed, a higher
negative value of the ZnO-MoS2 hybrid relative to ZnO (−3.8mV) confirms the anchoring of MoS2.
Further, the negative zeta potential value is attributed to the negatively charged SDBS, which rendered
the ionic charge stability to the hybrid ZnO-MoS2 dispersion through its electrostatic repulsions
between the sheets [20]. Another factor is the tendency of the surfactant to absorb at the interface of the
ZnO and MoS2 sheets wherein the aromatic ring of SDBS attaches only to the basal plane and leaves
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the catalytically active edge site of MoS2 free [38], thereby retaining the stability and improving the
photocatalytic activity of ZnO-MoS2.

The optical band gap was estimated using the Tauc plot, by extrapolating a line from the linear
region on the plot of (αhν)2 vs. (hν), as indicated in Figure 5. The band gap of E-MoS2 was estimated
to be ~1.55 eV; this value is in conjunction with the Raman data implying the exfoliation with most
MoS2 sheets is achieved when lying between two and six layers. As is obtained from the energy band
gap analysis shown in Figure 5b, it is confirmed that the wide band gap of ZnO ~3.2 eV [39] has been
shortened to ~2.77 eV upon doping E-MoS2, which typically holds a narrow direct band gap energy of
1.9 eV [40,41]. The addition of the narrow indirect gap p-type E-MoS2 to ZnO has decreased its band
gap through the creation of a p–n heterojunction [42]. The resultant energy band structure positively
influenced the charge transfer of the photoinduced electrons in the conduction band of MoS2 to ZnO,
thus leaving behind photogenerated electron–hole pairs to produce hydroxyl and superoxide free
radicals [43]. The rapid generation of those free radicals eventually helped in the MB dye degradation
at a rate relatively faster than employing pristine ZnO.
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Figure 5. (a) Tauc plot for E-MoS2, (b) Tauc plot for ZnO and ZnO-MoS2.

3.4. Effect of ZnO-MoS2 Photocatalyst Deposition on PVDF Membrane Properties

3.4.1. XPS Structural Analysis

The chemical structural analysis of the modified PVDF surface of the ZnO-MoS2 PCM, as identified
through XPS measurements, is shown in Figure 6. The survey scan of PVDF/MoS2-ZnO indicates the
presence of Zn 2p, O 1s, Mo 3d, S 2p and C 1s peaks, which are compared against the virgin PVDF
showing a prominent peak for F 1s. The deconvoluted S 2p binding energy peak at 160 represents the
presence of sulphide and clearly demarcates it from the peak at 168 which corresponds to a sulfate
molecule from the SDBS dispersion medium. The presence of the S 2p peak at the binding energy
of 160 eV is indexed to the S2− ions in the Mo–S bonding of disulfide in MoS2. Moreover, peaks at
the binding energies of 1020 eV and 1045 eV are characteristic of 2p 3/2 and 2p1/2, respectively, of Zn
2p, together corresponding to ZnO [44]. It is also important to mention that there is no doublet peak
corresponding to Mo-3d, confirming no existence of Mo-O bond on the surface of the photocatalytic
membrane [45].
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3.4.2. Influence of ZnO-MoS2 on Morphological Characteristics

The SEM image, as shown in Figure 7a, compares the virgin PVDF membrane, with its surface
modified, with the ZnO-MoS2 photocatalyst shown in Figure 7b.

Membranes 2020, 10, x FOR PEER REVIEW 9 of 18 

 

1400 1200 1000 800 600 400 200 0

S 2p

O 1s

Zn 2p

PVDF/ZnO-MoS
2

PVDF/ZnO

1060 1050 1040 1030 1020 1010

Zn 2p

Binding Energy (eV)

Zn 2p 1/2

Zn 2p 3/2

 

 

Binding Energy (eV)

172 168 164 160 156

Sulfite (S2-)

S 2p

Binding Energy (eV)

Sulfate (SO4)

PVDF

Zn 2p

In
te

n
si

ty
 (

a.
u

.)

 

Figure 6. XPS binding energy spectrum of the virgin and the modified PVDF. 

3.4.2. Influence of ZnO-MoS2 on Morphological Characteristics  

The SEM image, as shown in Figure 7a, compares the virgin PVDF membrane, with its surface 

modified, with the ZnO-MoS2 photocatalyst shown in Figure 7b.  

 

Figure 7. Top and cross-section morphology of (a) PVDF and (b) ZnO-MoS2 membrane. 

The random restacking of the MoS2 layered structure enables the size reduction of the larger 

pores, which helps to shorten the channel through which the water solute traverses. The average 

(a) 

(b) 

Figure 7. Top and cross-section morphology of (a) PVDF and (b) ZnO-MoS2 membrane.



Membranes 2020, 10, 106 10 of 18

The random restacking of the MoS2 layered structure enables the size reduction of the larger pores,
which helps to shorten the channel through which the water solute traverses. The average height of
the active ZnO-MoS2 was identified to be nearly ~6 microns based on the cross-section SEM imaging
on the prepared ZnO-MoS2-modified PVDF membrane, which enabled us to infer a uniform thickness
of the photocatalytic layer on the membrane surface. Hence, the orientation of a few layers of MoS2

has altered the pore morphology of the PVDF membrane for achieving improved filtration properties.

3.4.3. Influence of ZnO-MoS2 on Hydrophilicity and Porosity Characteristics

The contact angle was recorded to investigate the wettability of the surface-modified PVDF
membrane against its unmodified counterpart. The average contact angle of the modified membrane
is 41.04◦, which is lower than the virgin PVDF having the highest average contact angle of 72.24◦ due
to its inherent hydrophobic nature. Images shown in Figure 8 further illustrate the higher hydrophilic
membrane surface of the ZnO-MoS2 PCM. The significant reduction in the contact angle of the modified
membrane is attributed to the hydrophilic nature of SDBS and ZnO, which has also contributed free
hydroxyl groups on the surface of the ZnO-MoS2 PCM.
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photocatalytic membrane (PCM).

The mean flow pore size was also calculated to be 0.20 µm and 0.33 µm for the virgin and the
modified PVDF membranes, respectively (Figure 9). In contrast to the virgin PVDF, the distribution
of the cumulative porosity was across a wider pore diameter for the ZnO-MoS2 PCM. The improved
pore volume could subsequently influence the permeation of the ZnO-MoS2-based PCM for filtration
applications. The wet flow characteristics of the modified PVDF membrane achieving a higher porosity
is due to the surface hydration of the MoS2 sheets, confirming the intercalation of –OH molecules.
The inherent free volume of ZnO-MoS2 and intricate pores of the hybrid catalyst on the PVDF surface
have offered enhanced porosity, as witnessed by the improved hydrophilic properties of the modified
membrane. Moreover, the layered random orientation of the MoS2 nanosheets has also resulted in
mitigating the larger pores/channels.
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3.5. Performance Evaluation of ZnO-MoS2 on MB Dye Degradation

The photocatalytic activity of the raw ZnO-MoS2 powder was evaluated by the photodegradation
of MB dye (10 ppm) under a long-wave 365 nm UV-A light. Based on the correlation between the
absorbance recorded for the MB concentration and wavelength (~660 nm), as shown in Figure 10a,
the residual MB concentration as a function of illumination time was determined and plotted, as shown
in Figure 10b, to study the photocatalytic activity of pristine ZnO and ZnO-MoS2 for two cycles. Under a
long-wave UV light, the photocatalytic efficiency of the ZnO-MoS2 composite is higher compared
with pure ZnO with ZnO-MoS2 achieving 97.21% degradation and ZnO achieving 89% after 180 min,
and the hybrid ZnO-MoS2 displayed a better initial efficiency of 87.12% compared with ZnO showing
only 56.89% after 15 min, resulting from its improved adsorption of MB on to its surface. The efficient
contact between the interface of the heterojunction of ZnO and MoS2 enables the charge separation
of the electron–hole pairs owing to the diffusion of electrons in the ZnO nanoparticles to MoS2 at
the interface [23]. The improved charge carrier density gradient and subsequent generation of an
internal electrostatic field together influence the charge separation of the photogenerated electron−hole
pairs in the hybrid ZnO-MoS2 composite, thus leading to an enhanced photocatalytic performance in
the MB dye degradation. The photocatalytic degradation of MB by ZnO-MoS2 has been reported to
follow pseudo first-order kinetics [46], governed by the rate equation − ln

(
C

C0

)
= kt where k is the rate

constant (min−1), and t is the illumination time in minutes. Figure 10c shows the plot of − ln
(

C
C0

)
vs.

The irradiation time from which the overall rate constants for the ZnO and ZnO-MoS2 degradations
were found to be 0.029 min−1 and 0.041 min−1, respectively, with the second run of ZnO-MoS2 showing
quite a closer rate constant of 0.021 min−1.
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Figure 10. (a) Plot showing absorbance vs. wavelength for the MB degradation using hybrid ZnO-MoS2

photocatalysts. (b) Effect of hybrid ZnO-MoS2 photocatalysts on the MB dye degradation. (c) MB
degradation kinetics for pure ZnO and ZnO-MoS2 across the entire irradiation time.

3.6. Performance Evaluation of ZnO-MoS2 Deposited Photocatalytic Membrane

3.6.1. Flux Performance

In complementary to the improved hydrophilicity and porosity, the pure water permeability of
the ZnO-MoS2 PCM has increased 25% relative to the virgin PVDF as shown in Figure 11. There has
been a steady flux decline, which is evident as a result of the membrane compaction under a hydraulic
pressure. It is also apparent that the interlayer spacing of the stacked MoS2 in its completely hydrated
state has exhibited a substantial improvement of the water flux and transport nature. Similarly, the flux
values from the MB dye treatment, as shown in Figure 12, indicate that the MB dye permeation from the
ZnO-MoS2 PCM is ~70.86% higher than the virgin PVDF membrane, which is attributed to the smooth
MoS2 nanochannels causing a lower hydraulic resistance [19]. After exposure to UV illumination at
60 min, the MB flux of the ZnO-MoS2 PCM has exhibited a considerable increase of about 20% at
the end of the 2 h of UV exposure. This prominent effect is certainly attributed to the photocatalytic
activity of the hybrid ZnO-MoS2 layer that eventually reduced the fouling layer resistance caused by
the MB dye solutes [47]. The surface-deposited layer has offered to overcome the membrane resistance
and enabled to improve the productivity while rejecting the MB feed solution. The effect of the surface
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properties of the ZnO-MoS2 PCM in overcoming the trade-off between permeability and rejection [48]
is evident from the MB dye rejection performance discussed in further sections.
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3.6.2. Synergistic Effect of ZnO-MoS2 PCM for Improved MB Dye Treatment

In order to realise the synergistic effect of photocatalysis and membrane filtration performance, the
as-prepared ZnO-MoS2 PCM was subjected to only pressure-assisted filtration under dark. After 1 h,
the MB dye rejection rate of the virgin PVDF and ZnO-MoS2 PCM was found to be about 8.5% and
27%, respectively, thus markedly indicating no significant influence of a photocatalytic layer under
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dark. When exposed to UV illumination, the MB concentration reduced to about 0.12 mg/mL in 30 min
with a maximum degradation of about 99.95% in 2 h (Figure 13).
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This clearly shows a significant improvement in the MB rejection performance of the ZnO-MoS2

PCM and evidences the pronounced synergism of photocatalysis and filtration. The catalytically
active edges of MoS2 induced the photocatalytic production of radicals which bind to the pollutants,
thus resulting in a complete mineralisation [29]. The enhanced photocatalytic performance of
PVDF/MoS2-ZnO is attributed to the catalytically active site of MoS2 wherein stacking few layers of
the hybrid ZnO-doped MoS2 sheets [21] on the PVDF membrane substrate has offered advantageous
effects on improving the photocatalytic-assisted dye filtration when compared with a randomly packed
or reaggregated ZnO-MoS2 dispersion suspended in an MB dye solution. Further, the influence of
surface-selective pore characteristics has also been evident from the extent of the rejection rate of about
45.5% achieved by the ZnO-MoS2 PCM membrane under no UV irradiation, as against the virgin
PVDF membrane exhibiting only a 25% rejection.

3.6.3. Reusability of ZnO-MoS2 PCM

In order to evaluate the reusability of the ZnO-MoS2 PCM, a UV-assisted membrane filtration
was performed on the same membrane back washed with water for 10 min and fed with the fresh
MB dye solution. The performance, as measured by the permeate flux during the second run, has
shown a decrease of about 30% compared with the initial run. The reduction in MB flux rate to
about 118 Lm−2h−1 has been observed during the second run as against 134 Lm−2h−1 obtained for
the initial filtration run. However, the rejection rate of the reused ZnO-MoS2 PCM has only reduced
marginally (~1%), thus demonstrating the stability and restoration of the photocatalytic efficiency
of the ZnO-MoS2 layer (Figure 14), reaching nearly a 99.45% removal of MB dye. The reusability of
the prepared ZnO-MoS2 PCM is much faster, unlike using the hybrid ZnO-MoS2 in powder form,
where additional steps like centrifugation and drying are required to recover the photocatalyst [49].
This confirms that the reusability of the ZnO-MoS2 PCM is quite facile and efficient upon a comparison
with the hybrid ZnO-MoS2 photocatalyst in powder form.
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4. Conclusions

This photocatalytic membrane fabrication by depositing the exfoliated dispersion of the hybrid
ZnO-MoS2 photocatalyst implicates the proof of the concept of utilising the highly stable organic
polymeric substrate with a simultaneous catalytic activity for an overall improvement of a water/
wastewater treatment. The influence of catalyst immobilisation on the PVDF membrane substrate has
offered superior surface functional properties. Photocatalytic degradation studies have also proved
that the heterogeneously structured ZnO-MoS2 nanocomposite is photocatalytically more efficient
than pristine ZnO. Robust advances in membrane surface modification strategies enable to utilise the
multi-functional properties of MoS2 without altering its desired molecular channels to eventually result
in breakthrough advances in the field of membrane separation processes. The current work also brings
scope for research studies on precisely tuning the physico-chemical properties of surface-modified
photocatalytic membranes to design scalable and continuous photocatalytic membrane reactors.
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