

Supplementary Material: How insertion of a single tryptophan in the N-terminus of a cecropin A-melittin hybrid peptide changes its antimicrobial and biophysical profile

Ana Rita Ferreira, Cátia Teixeira, Carla F. Sousa, Lucinda J. Bessa, Paula Gomes, and Paula Gameiro

Peptidea	BP100	W-BP100
Sequence ^b	KKLFKKILKYL	WKKLFKKILKYL
No. amino acids	11	12
MW calc. (DA) ^c	1419.97	1606.05
MW found (DA) ^c	1419.80	1606.87
Retention time (min)	11.2	12.4
Purity (%)	97.6	98.0
Net charge ^d	+ 6	+ 6
Hydrophobicity (H) ^e	0.427	0.579
Hydrophobic moment (µH) ^e	0.847	0.964

Table S1. Properties of peptides BP100 and W-BP100.

^a All peptides were produced as C-terminal amides.

^b Amino acids residues represented by the single letter code as defined by the IUPAC-IUBMB

guidelines on nomenclature and symbolism for amino acids and peptides.

^cCalculated and experimentally found molecular weight (MW) of peptides.

 $^{\rm d}$ Total charge from lysine residues and the N-terminal amine at pH 7.4.

e Calculated in the HELIQUEST web server [1].

Figure S2. ESI-IT MS spectrum of peptide BP100.

Figure S3. Chromatogram of peptide W-BP100 acquired by analytical HPLC.

Figure S4. ESI-IT MS spectrum of peptide W-BP100.

Figure S5. Absorption spectra of peptides BP100 and W-BP100. Representative absorption spectra of increasing concentrations of (**A**) BP100 and (**C**) W-BP100 in aqueous solution (10 mmol dm⁻³ HEPES, 150 mmol dm⁻³ NaCl, pH 7.4), at 25 ± 0.1 °C. Lambert-Beer law of (**B**) BP100 (λ = 275nm) and (**D**) W-BP100 (λ = 280nm).

Figure S6. Fluorescence emission spectra of peptides BP100 and W-BP100. Representative fluorescence emission spectra of increasing concentrations of (**A**) BP100 and (**B**) W-BP100 in HEPES buffer (10 mmol dm⁻³ HEPES, 150 mmol dm⁻³ NaCl, pH 7.4), at $25 \pm 0.1^{\circ}$ C.

Figure S7. Fluorescence emission spectra of titration of anionic LUV with W-BP100 to evaluate membrane saturation. Representative fluorescence spectra of titration of 0, 15, 30, 60 and 100 μ mol dm⁻³ POPC:POPG (1:1) LUV, in the presence of 100 mmol dm⁻³ acrylamide, with increasing concentrations of W-BP100, at 25 ± 0.1 °C. Arrows represent the increase of W-BP100 concentration.

Figure S8. Fluorescence emission spectra of peptide's quenching by acrylamide. Representative fluorescence spectra of 9 μ mol dm⁻³ BP100 and W-BP100 in the presence of increasing concentrations of acrylamide in (A) HEPES buffer, (B) POPC:POPG (1:1) and (C) POPC LUV, at 25 ± 0.1 °C. Arrows represent the increase of acrylamide concentration.

Figure S9. Intensity-weighted size distribution of anionic LUV in the presence of peptides. Intensity-weighted size distribution of 100 μ mol dm⁻³ POPC:POPG (1:1) LUV in (**A**) absence and (**B**) presence of 0–15 μ mol dm⁻³ BP100 and (**C**) W-BP100. *d* stands for vesicle diameter. Data are the mean ± SD of at least three independent experiments.

Figure S10. Intensity-weighted distribution of zwitterionic LUV in the presence of peptides. Intensity-weighted size distribution of 100 μ mol dm⁻³ POPC LUV in (**A**) absence and (**B**) presence of 0–12 μ mol dm⁻³ BP100 and (**C**) W-BP100. *d* stands for vesicle diameter. Data are the mean ± SD of three independent experiments.

Figure S11. Number-weighted distribution of zwitterionic LUV in the presence of peptides. Number-weighted size distribution of 100 μ mol dm⁻³ POPC LUV in (**A**) absence and (**B**) presence of 0–12 μ mol dm⁻³ BP100 and (**C**) W-BP100. *d* stands for vesicle diameter. Data are the mean ± SD of three independent experiments.

Reference

1. HELIQUEST. Availabe online: https://heliquest.ipmc.cnrs.fr (accessed on January 25, 2020).