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Abstract: This paper assesses the performance of an integrated multistage laboratory-scale plant,
for the treatment of poultry slaughterhouse wastewater (PSW). The system was comprised of an
eco-flush dosed bio-physico pre-treatment unit for fats, oil, and grease (FOG) hydrolysis prior to the
PSW being fed to a down-flow expanded granular bed reactor (DEGBR), coupled to a membrane
bioreactor (DEGBR-MBR). The system’s configuration strategy was developed to achieve optimal
PSW treatment by introducing the enzymatic pre-treatment unit for the lipid-rich influent (PSW)
in order to treat FOG including odour causing constituents such as H2S known to sour anaerobic
digestion (AD) such that the PSW pollutant load is alleviated prior to AD treatment. This was
conducted to aid the reduction in clogging and sludge washout in the DEGBR-MBR systems and to
achieve the optimum reactor and membrane system performance. A performance for the treatment
of PSW after lipid reduction was conducted through a qualitative analysis by assessing the pre- and
post-pre-treatment units’ chemical oxygen demand (COD), total suspended solids (TSS), and FOG
concentrations across all other units and, in particular, the membrane units. Furthermore, a similar
set-up and operating conditions in a comparative study was also performed. The pre-treatment
unit’s biodelipidation abilities were characterised by a mean FOG removal of 80% and the TSS and
COD removal reached 38 and 56%, respectively. The final acquired removal results on the DEGBR, at
an OLR of ~18–45 g COD/L.d, was 87, 93, and 90% for COD, TSS, and FOG, respectively. The total
removal efficiency across the pre-treatment-DEGBR-MBR units was 99% for COD, TSS, and FOG.
Even at a high OLR, the pre-treatment-DEGBR-MBR train seemed a robust treatment strategy and
achieved the effluent quality set requirements for effluent discharge in most countries.

Keywords: down-flow expanded granular bed reactor (DEGBR); expanded granular sludge bed
(EGSB); membrane bioreactor (MBR); poultry slaughterhouse wastewater (PSW)

1. Introduction

Millions of litres of poultry slaughterhouse wastewater (PSW) are generated annually
from a series of process steps used for bird processing for meat, which includes the
slaughtering process, meat handling, and cleaning of facilities and equipment [1]. From
this, the contaminated wastewater contains a high concentration of organic matter from
blood, skin, fats, including nutrients and the chemical pollutants from detergents used
to clean holding facilities, bird urine, and faecal matter, thus, making the disposal of this
high-strength wastewater perilous [1,2]. Beyond the risks linked to the deterioration of the
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environment, pollution is one of the most pressing environmental health priorities requiring
intervention. Similarly, the strength of PSW has been proven to be much higher than
domestic wastewater and reduces water-dissolved oxygen, thus, affecting water-dependent
species when released into receiving sources untreated [3,4]. While poultry slaughterhouses
have employed wastewater treatment units, most are outdated and incapable of achieving
suitable contaminant and nutrient reduction as per the set regulations. Overtime, the
discharged wastewater may result in sewer line damage, the contamination of water
bodies, the pollution of land, and the possible emission of harmful gases from the nutrients
and contaminants contained therein [5].

Furthermore, the urgency for effective treatment methods for PSW lie not only in the
need for continued wastewater treatment research but can have financial benefits due to
the escalating growth demand for poultry products that is aided by the South African
agro-economy expansion. However, for such growth to be sustainable, the devastating
effect the wastewater has on the environment, growing water use, and demand, water
conservation and recycling should be implemented worldwide. Hence, in the efforts to
conserve water reserves in an already stressed water scarce country, i.e., South Africa
(SA), researchers have since employed various technologies in the pursuit of effective PSW
treatment options.

All around the world, biological treatment systems have been explored for PSW treat-
ment due to their efficiency, i.e., nutrient and organic matter removal abilities, using several
technologies. Furthermore, these systems are appreciated for their simplicity and reduced
hydraulic retention times (HRTs) while handling high organic loading rates (OLRs) [6].
These biological systems contain anaerobic, aerobic, or facultative microorganisms that
degrade organics in the PSW [7,8]. However, others [9] substantiated the superiority of
anaerobic digestion in comparison to aerobic digestion as a secondary treatment unit,
whereby an aerobic system was compared to an anaerobic system in a comparative study
using a series of case studies that looked at the up-flow anaerobic sludge blanket (UASB),
an activated sludge process, among others. In addition, the study concluded that aerobic
systems are recommended for post-treatment, particularly in bigger plants for nutrient
removal and further PSW purification to meet the general limit for effluent discharge than
as primary systems for PSW [9,10]. Furthermore, some [10] continued and attested aerobic
technologies as better post-treatment technologies to best treat the solubilised organics in
FOG laden effluent, utilising a system comprised of an anaerobic baffled reactor (ABR)
seeded with activated sludge (AS). The study’s observations attested to additional organic
reduction from 128 and 132 mg/L to 0.1 and 0.4 mg/L for total organic carbon (TOC)
and COD, respectively. In another research study by [11], an anaerobic–aerobic system
using an EGSB coupled with a membrane bioreactor (MBR) was evaluated. The bioreactor
achieved a COD average removal of 63% and, when combined with a MBR, an average
of 96% removal was achieved, thus signifying that the anaerobic–aerobic set-up can be
effectively used for PSW treatment. This was substantiated by [10], using a concept of pre-
and-post-treatment.

The anaerobic process has limitations such as high temperature sensitivity, inability to
efficiently remove nutrients, and depending on the configuration and operating conditions,
clogging of the granular bed due to solids and FOG settling over the bed. Additionally, low
to moderate effluent quality and longer start up periods from the acclimation period for the
organic matter decomposing microorganisms, were identified as the main drawbacks [12].
Table 1 lists a summary of technologies used and the achieved COD, TSS, and FOG removal
efficiency using the anaerobic reactors for the lipid-rich PSW treatments to date.
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Table 1. Achieved effluent quality from past studies for PSW treatment.

Reactor Technology Year of Development Reactor Development
Rationale and Challenges Performance Results Reference

Expanded Granular
Sludge Bed

(EGSB)
-

Side recycle stream improves
efficiency due to the increase

in sludge expansion.
Up-flow configuration

resulted in sludge washout
during high FOG and TSS
loading, thus resulting in
methanogen loss, which

reduced biological
degradation.

65% tCOD removal [1]

Static Granular Bed
Reactor
(SGBR)

2000

An SGBR with a down flow
configuration was developed.
Challenges include clogging

of the underdrain. Hence,
requiring periodic alleviation

through backwash,
disturbing the underdrain
and granular bed build-up.

95% COD removal, 95%
TSS removal, 90% FOG

removal
[13,14]

Down-flow Expanded
Granular Bed Reactor

(DEGBR)
2019

A hybrid of EGSB and SGBR,
with down/top feeding

configuration and a recycle.

99,6% COD removal,
93,7% FOG removal [8]

Despite the positive advances taken, several researchers found that high protein
wastewater (such as PSW) results in the production of free ammonia during anaerobic
digestion [13]. They recommended a pre-treatment stage to treat the wastewater character-
istics for enhanced anaerobic digestion (AD) performance without producing detrimental
by-products such as ammonia. Additionally, the authors of [10] indicated that anaerobic
processes require pre- and post-treatment steps for the appropriate removal of solids,
nutrients, and FOG that tend to clog the AD reactor and piping system thereof, resulting in
a reduced reactor performance and an accelerated reactor failure. Furthermore, in up-flow
reactors, periodic sludge washout due to suspended solids and high lipid content has been
observed [1,12].

To date there have been several pre-treatment methods developed from the findings
conducted for AD. Table 2 lists a summary of the effective pre-treatment methods coupled
with AD in numerous studies. From the results, it is also evident that a pre-treatment unit
can remove some of the contaminants.

Table 2. Developed pre-treatment technologies and their COD, FOG, and TSS removal efficiency.

Pre-Treatment
Technology

Reactor Coupled with the
Pre-Treatment Unit Limitations Performance Results Study of

Reference

Thermal
Autoclaving -

Additional physical
separation of the clear
liquid and semi solid
sludge is necessary.

81% COD removal, 59%
FOG removal, 43% TSS

removal.
[14]

Chemical
Dissolved Air Flotation

(DAF)
UASB

System showed
instability due to the

varying PSW influent.
Additionally, system
efficiency is highly

affected by chemical
used.

43% ± 15% suspended
solids (SS) removal and

49% ± 8% oil and grease
(O&G) removal.

[15]
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Table 2. Cont.

Pre-Treatment
Technology

Reactor Coupled with the
Pre-Treatment Unit Limitations Performance Results Study of

Reference

Biological
Enzymatic

Pre-treatment
-

Optimal enzyme dose
is not yet established.

Though the increase in
dose results in

increased free fatty acid
and VSS treatment, the

dose has an optimal
point where higher

doses do not contribute
to increased

effectiveness.

Increase in free fatty acids
and 10% hydrolysis

promotion due to lipase,
88% COD reduction in

PSW.

[13,16,17]

Hydrodynamic
Cavitation -

Optimum conditions
included addition of

Fenton reagent.

Increased COD treatment
to 44.2%. Biological

oxidation treatment time
reduction from 60 to 36 h.

[18]

Similarly, there are post-treatment technologies that can be used, among which mem-
brane bioreactors are the most researched. These reactors sometimes consist of activated
sludge and membranes that contain distinct pores that remove dissolved organic and
inorganic contaminants by providing a physical barrier that filters out pollutants and
bacteria [19]. Many studies have included membrane bioreactors as a tertiary treatment
stage achieving exceptional results as high as 98–>99% removal efficiency [19,20].

Similarly, post AD, a membrane unit was installed for the further purification of the
formed by-products during the AD process [8], subsequently assisting in the further reme-
diation of the wastewater. Submerged membranes are well known for fouling primarily in
high FOG wastewater such as that from poultry slaughterhouses. As per the Membrane
Bioreactor Task Force of the Water Environment Federation (WEF) (2012), MBR requires
coarse influent screening, grit removal, fine screening, and primary clarification, all of
which are pre-treatment technologies. Therefore, studying the effectiveness of a combined
pre-treatment, an AD bioreactor, and a submerged membrane system is, therefore, crucial
for this study. As shown in Figures 1 and 2, a set-up as illustrated was used in this study
for the treatment of PSW.
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[1,22]. From the identified gaps, this research included a performance review on a biolog-
ical pre-treatment stage using a commercial product, i.e., Eco-flushTM as an additive 
providing active enzymes for FOG hydrolysis. With the pre-treatment process in place, 
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Figure 1. Lab-Scale Treatment Plant for PSW [21]—Reprinted from Membranes, vol 11, Meyo,
H.B.; Njoya, M.; Basitere, M.; Ntwampe, S.K.O.; Kaskote, E., “Treatment of Poultry Slaughterhouse
Wastewater (PSW) Using a Pre-treatment Stage, an Expanded Granular Sludge Bed Reactor (EGSB),
and a Membrane Bioreactor (MBR)”. Copyright (2021), with permission from MDPI.
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From previous studies, the recommendations included a thorough pre-treatment step
to rid the PSW of solidified FOG in order to enhance the AD reactor’s performance [1,22].
From the identified gaps, this research included a performance review on a biological
pre-treatment stage using a commercial product, i.e., Eco-flushTM as an additive providing
active enzymes for FOG hydrolysis. With the pre-treatment process in place, this study
further investigated the performance of the treatment of PSW after the FOG reduction in the
pre-treatment unit. Furthermore, the efficacy of the MBRs as a post treatment technology
was also investigated.

Lastly, the performance of the full pre-treatment, AD, and MBR chain was investigated.

2. Materials and Methods
2.1. PSW Sampling

PSW was collected from a local abattoir in the Western Cape, SA. The sample was
drawn from an in-between slaughtering process and wastewater processing stage to acquire
a representative raw PSW sample. For preservation, the wastewater was stored in a
temperature-controlled unit at 5 ◦C. A representative sample was taken to study the COD,
TSS, and FOG of the raw incoming PSW in comparison to the established raw PSW average
conditions, as shown in Table 3.

Table 3. PSW Characteristics.

Parameter Units Minimum Maximum Average Reference This Study

COD mg/L 4100 9100 4317 [23] 6500–21,000
TSS mg/L 1580 3750 2800 ± 950 [23,24] 2985–8363
FOG mg/L 280 8228 1655 ± 1880 [8] 640–4500

2.2. Experimental Set-Up

The set-up configuration is as shown in Figure 2. All the units had biogas collection
ports, although this did not form part of this study.
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2.2.1. Pre-Treatment Unit Set-Up

The PSW was pre-treated by dosing 20 mL of Eco-FlushTM, supplied by Mavu Biotech-
nologies (Pty) Ltd., (Cape Town, South Africa) into a 20-litre pre-treatment tank with raw
PSW. The Eco-flushTM contained a complex mixture of microorganisms, including aerobic,
anaerobic, nitrifying, and sulphur oxidising bacteria combined with fungi and enzymes
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associated with the hydrolysis of FOG, i.e., the dissociation of bonds between the triglyc-
erides and phospholipase resulting in a glycerol and fatty acid separation. Furthermore,
not only does Eco-flushTM aid the reduction in FOG content in PSW, it also contains a
bacterial mixture that synergistically produces enzymes (in a nutrient rich environment)
that accelerate the decomposition of organic matter and oxidation of ammonia into nitrates
and nitrites [25].

A Resun air pump (Ac 9906) from Hydroponic in Cape Town, South Africa, was
used to sparge air into the pre-treatment tank using silicone tubing. The silicone tubing
used to pump air into the pre-treatment tank was connected to two diffusers to provide
sufficient micro-bubble formation into the system. This ensured that there was an adequate
dissolved air supply to create the optimum conditions for aerobic bacteria to be most
effective. The mixture was aerated for 24 h then allowed to settle for a further 24 h to
allow the Eco-FlushTM time to adequately digest the FOG and decouple proteins within
the PSW and to reduce the level of H2S, which is known to deactivate anaerobic bacteria.
The pre-treated PSW was then filtered with a 75-micrometre Madison Test sieve into a
pre-treatment tank, which feeds into both the EGSB (previous study and for comparison)
and DEGBR. The PSW to the AD systems was continuously stirred with a stirrer to keep
the feed in a homogeneous state. The treatment process is depicted in Figure 3.
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2.2.2. Bioreactor Experimental Set-Up

Laboratory scale (2 L) Polyvinylchloride (±600 × 110 cm) DEGBR and EGBS reactors,
were simultaneously set up parallel to each other, as illustrated in Figure 4. Each reactor was
connected to a feed holding tank containing pre-treated filtered feed from the Eco-flushTM

pre-treatment unit (Illustrated in Figure 4).
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The reactors were inoculated with anaerobic granules from an USAB operated at a
local brewing house situated in Newlands, Cape Town. A volume (200 mL) of 50% v/w
dry milk was used as a source of carbon and was fed to the granules, to assist with the
acclimation of the anaerobic biomass.

For optimal acclimation, mesophilic temperatures (29–36 ◦C) were maintained by
connecting an external water bath to the reactors jacket. Reactor inoculation took a period
of 72 h prior to running the reactors at 0.36 L/h and had an HRT of 5.71hr. Product released
was stored in separate holding tanks for individual performance analysis conducted at an
SANAS-accredited external laboratory, i.e., City of Cape Town Scientific Services.

2.2.3. Membrane Bioreactor Units Set-Up

• Membrane Bioreactor design

Hydrophilic polyethersulfone (PES) membranes with a 0.04-mirometre pore size and
a glycerine (20%)/sodium benzoate (3%) preservative were housed in a 315 × 182 × 69
mm polyvinyl chloride (PVC) module with a polyester (PET) drainage layer. The casts
were submerged in 100 L aerated tanks, as illustrated in Figure 5.
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tem [25]. After the 24-h aeration period, the enzyme activity had facilitated the effective 
separation of glycerol from the lipid-rich PSW through hydrolysis, thus, corroborating 
research from other studies [13], whereby it was concluded that hydrolysis promotion 
was evident in the Eco-flushTM dosed pre-treatment unit, hypothesised to be facilitated 
through lipase action. Figure 6 depicts the pre-treatment operation and FOG collected af-
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The performance of the pre-treatment stage used in this study is illustrated in Figure 
7, which depicts the variation of key water quality assessment parameters as well as their 
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Figure 5. Membrane Bioreactor Unit Set-up. (SP=sample point).

• Inoculation and Operating Conditions

The EGSB-MBR and DEGBR-MBR had identical set-up conditions. A volume (25 L)
of AD-treated PSW was filled in each tank. The aerated MBR systems acclimatised for
a period of 48 h prior to the filtration cycle start-up at low flow rates of 0.36 L/h. The
observed operated conditions included a temperature range of 5–40 ◦C and pH range
of 2–11.

2.3. Sampling Points and Analysis

The sample point is as demonstrated in Figure 3 as SP2. Samples of the pre-treated
PSW were taken every second day, while sampling points for the DEGBR were collected
from SP3 and SP5, respectively, as illustrated in Figure 4. After the MBR was inoculated, the
samples for the DEGBR-MBR systems were collected weekly at SP9, as shown in membrane
set-up unit (Figure 5).

Once collected, the samples were stored at cooling storage at 5 ◦C to avoid acidification
prior to analysis. See Table 4 for methods.

Table 4. Sample Analysis Methods.

Parameter Method

Temperature EPA method 9040C
Total suspended solids (TSS) EPA method 160.2
Total chemical oxygen demand (tCOD) EPA method 410.4
Fats, oils, and grease (FOG) EPA method 10056
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3. Results and Discussion
3.1. Pre-Treatment Performance Evaluation

The development of the treatment plant used for this study included the Eco-flushTM

dosed bio-physico aerated pre-treatment unit that encouraged FOG coagulation and hydrol-
ysis, which reduced the risk of FOG accumulation in the reactor bed and piping system [25].
After the 24-h aeration period, the enzyme activity had facilitated the effective separation
of glycerol from the lipid-rich PSW through hydrolysis, thus, corroborating research from
other studies [13], whereby it was concluded that hydrolysis promotion was evident in the
Eco-flushTM dosed pre-treatment unit, hypothesised to be facilitated through lipase action.
Figure 6 depicts the pre-treatment operation and FOG collected after coagulation.
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The performance of the pre-treatment stage used in this study is illustrated in Figure 7,
which depicts the variation of key water quality assessment parameters as well as their
removal efficiencies throughout the study. These parameters were not pre-processed to
exclude outliers that may have been identified during the experiment. To identify these
outliers, boxplots (see Figure 8a) were used. According to Figure 8a, outliers were identified
in the distribution of the inlet FOG and COD, as well as the outlet COD. These outliers
can be less clearly observed in Figure 7, which depicts the variation of these parameters
throughout the study. To identify these outliers, the interquartile range rule was used, and
they were, subsequently, replaced by the median value of respective distribution to correct
the effects of the outliers.

The boxplot redacted performance profile of the PSW pre-treatment stage is displayed
in Figure 9, from which it can be observed that this treatment stage performed well for
the removal of FOG (65 to ~92%) and TSS (~45 to ~72%), with an insignificant removal of
COD (~25 to ~52%) in comparison to the literature [13,16,17]. An evaluation of a possible
correlation between these removal efficiencies was conducted in Figure 10, which depicts a
correlation matrix with Pearson’s correlation coefficient (r) and the p-value for hypothesis
testing. Usually, an R-value above 0.75 translates to a considerable correlation between
the assessed parameters, which can be confirmed with a p-value ≤ 0.05. However, the
removal values displayed in Figure 10 showed no correlation between the COD, FOG, and
TSS removal efficiencies for the pre-treatment unit.



Membranes 2021, 11, 582 9 of 22

Membranes 2021, 11, x FOR PEER REVIEW 8 of 20 
 

 

  
(a) (b) 

Figure 6. (a) During pre-treatment; (b) Collected coagulated FOG after pre-treatment. (a) Eco-flushTM dosed pre-treatment 
during and after 24 h aeration when the enzymatic pre-treatment is employed, (b) The coagulated FOG collected from the 
top of the pre-treatment unit. 

 
Figure 7. Performance of PSW pre-treatment stage before outliers’ detection and replacement. 

  
(a) (b) 

Figure 8. Boxplots of highlighted features before and after outliers’ replacement: (a) Boxplots before outliers’ replacement; 
(b) Boxplots after outliers’ replacement. 

Figure 7. Performance of PSW pre-treatment stage before outliers’ detection and replacement.

Membranes 2021, 11, x FOR PEER REVIEW 8 of 20 
 

 

  
(a) (b) 

Figure 6. (a) During pre-treatment; (b) Collected coagulated FOG after pre-treatment. (a) Eco-flushTM dosed pre-treatment 
during and after 24 h aeration when the enzymatic pre-treatment is employed, (b) The coagulated FOG collected from the 
top of the pre-treatment unit. 

 
Figure 7. Performance of PSW pre-treatment stage before outliers’ detection and replacement. 

  
(a) (b) 

Figure 8. Boxplots of highlighted features before and after outliers’ replacement: (a) Boxplots before outliers’ replacement; 
(b) Boxplots after outliers’ replacement. 

Figure 8. Boxplots of highlighted features before and after outliers’ replacement: (a) Boxplots before outliers’ replacement;
(b) Boxplots after outliers’ replacement.



Membranes 2021, 11, 582 10 of 22

Membranes 2021, 11, x FOR PEER REVIEW 9 of 20 
 

 

The boxplot redacted performance profile of the PSW pre-treatment stage is dis-
played in Figure 9, from which it can be observed that this treatment stage performed well 
for the removal of FOG (65 to ~92%) and TSS (~45 to ~72%), with an insignificant removal 
of COD (~25 to ~52%) in comparison to the literature [13,16,17]. An evaluation of a possible 
correlation between these removal efficiencies was conducted in Figure 10, which depicts 
a correlation matrix with Pearson’s correlation coefficient (r) and the p-value for hypoth-
esis testing. Usually, an R-value above 0.75 translates to a considerable correlation be-
tween the assessed parameters, which can be confirmed with a p-value ≤ 0.05. However, 
the removal values displayed in Figure 10 showed no correlation between the COD, FOG, 
and TSS removal efficiencies for the pre-treatment unit. 

 
Figure 9. Performance of PSW pre-treatment stage after outliers’ detection and replacement. 

A further evaluation of the distribution of the removal efficiencies is depicted in Fig-
ure 11, which provides the density distribution, the skewness, the kurtosis, and the mean 
of the COD, TSS, and FOG distributions. Overall, as initially intended, the pre-treatment 
stage performed the best for FOG removal as designed, with a mean FOG percentage re-
moval of 80% (see Figure 11), while the mean percentage removal of the COD and TSS, 
were 38 and 56%, respectively. The skewness of each of these distributions was low, but 
varied with different kurtosis values, as depicted in Figure 11. 

Figure 9. Performance of PSW pre-treatment stage after outliers’ detection and replacement.

Membranes 2021, 11, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 10. Correlation matrix between removal efficiencies of the pre-treatment stage. 

 
Figure 11. Density distribution, skewness, kurtosis, and mean values of the removal efficiencies of 
the pre-treatment stage. 

Figure 10. Correlation matrix between removal efficiencies of the pre-treatment stage.



Membranes 2021, 11, 582 11 of 22

A further evaluation of the distribution of the removal efficiencies is depicted in
Figure 11, which provides the density distribution, the skewness, the kurtosis, and the
mean of the COD, TSS, and FOG distributions. Overall, as initially intended, the pre-
treatment stage performed the best for FOG removal as designed, with a mean FOG
percentage removal of 80% (see Figure 11), while the mean percentage removal of the COD
and TSS, were 38 and 56%, respectively. The skewness of each of these distributions was
low, but varied with different kurtosis values, as depicted in Figure 11.
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3.2. DEGBR Treatment Performance

The output from the pre-treatment stage was separated into two streams. The first
was supplied to the DEGBR, and the second to the EGSB. The output from both bioreactors
was further treated separately using MBR systems receiving AD-treated effluent from both
system types. Therefore, this section of the study evaluated the performance of the DEGBR
as a secondary stage for the treatment of PSW. The variation of the assessment parameters
used to conduct this evaluation is depicted in Figure 12, whereby the removal efficiencies
above 65 to ~95% were noticed for each water quality parameter evaluated (COD, FOG,
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and TSS), which exceeded the FOG removal attained by previous studies [8]. To further
consolidate these observations, the presence of outliers was also evaluated using boxplots,
as depicted in Figure 13a, whereby the presence of outliers in the distribution of TSS
concentrations was observed in the outlet stream, while for FOG concentrations, outliers
were observed in the inlet stream. As in the previous section, these outliers were replaced
by the median of the individual quality parameter distribution to produce distributions
without outliers, as depicted in Figure 13b. The replacement of these outliers resulted in a
reliable distribution depicted in Figure 14.
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A comparison of the removal efficiencies varied throughout the study (see Figure 14)
with indications that there was a slight change in the removal efficiencies between days
40 to 75 for the TSS removal. The alteration of the performance of the DEGBR for the
removal of TSS was reduced during days 56 to 70. An improvement in the performance
of the DEGBR after the outlier replacement was also noticed with the removal of FOG
during days 14 to 28, and 102 to 109. At this stage it was not clear as to the reasons why the
observed changes were observed, which is an indication that further analyses are required.

The performance of the DEGBR was further assessed for relatedness, as shown in
Figures 15–17, which showed the response of the DEGBR in terms of the removal of the
FOG, COD, and TSS, respectively, when a variation of the OLR was implemented in the
experiment. A comparison of these graphs shows a better response of the DEGBR for
the removal of COD, despite the various fluctuations of the OLR varying from ~18 to
~45 gCOD/L.d. Despite a good consistency in the evolution of the COD removal efficien-
cies, the DEGBR performance was higher at the beginning of the process for both the TSS
and FOG removal efficiencies, as displayed in Figures 16 and 17, with ranges varying be-
tween ~84 and ~98% for the TSS removal, and ~85% and ~93% for the FOG removal, which
is an indication that the AD bed acted as a bio-filter, perhaps with some hydrolysis capacity.
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Figure 17. DEGBR TSS removal with respect to the operating time and the OLR.

A feasible correlation between these removal efficiencies from the DEGBR treatment
was evaluated using a correlation display, as illustrated in Figure 18. The latter shows a
minimal correlation between the COD, FOG, and TSS removal efficiencies, as demonstrated
by the low Pearson’s correlation coefficients. A further evaluation of the quality of the
distribution of each of these removal efficiencies as well as the mean of each distribution is
depicted in Figure 19. From the latter, it can be seen that the DEGBR performed the best for
the removal of TSS with a mean removal percentage value of 93%, followed by the FOG
mean removal percentage with an averaged value of ~90%, and the COD mean removal
percentage with a value of ~87%. The distribution of the removal efficiency values was
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more skewed and tailed for the TSS and the COD removal, and less skewed and tailed for
FOG removal; overall, the DEGBR displayed a good performance for the removal of these
contaminants, which were further removed in the post-treatment stage using an MBR.
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With reference to the reactor limitations and rationale mentioned in Table 2, the
observed DEGBR performance displayed an improved performance with no signs of
clogging nor need for backwashing [13,14,22].

3.2.1. DEGBR-MBR Post-Treatment

A post-treatment stage consisting of an MBR was coupled to the DEGBR to further
decrease the concentration of contaminants from the PSW. Figure 20 provides the variation
of the concentration of the TSS, COD, and FOG both at the inlet and outlet of the MBR
throughout the study. The boxplots of the assessed parameters reveal that there were no
outliers in each distribution investigated, which indicated the consistency in the perfor-
mance of the MBR unit. The removal efficiency values of the TSS remained consistently
high after day 42 of operation, while an inconsistent variation was noticed for the COD
and the FOG, albeit with minute variations. Similarly, to the DEGBR, a minimal correlation
was found between these removal efficiencies, as depicted in Figure 21.

Figure 22 provides the density distribution, the skewness, the kurtosis, and the re-
moval efficiency values from the MBR unit. A comparison between Figures 19 and 22
shows that the DEGBR performed better than the MBR unit in terms of removal efficiency
of the TSS and FOG. The MBR unit performed slightly better than the DEGBR for the mean
removal efficiency of the COD, indicating its suitability as a polishing stage, i.e., the MBR
unit performance significantly improved the quality of the treated PSW and contributed to
the improved overall performance of the system composed of the pre-treatment stage, the
DEGBR, and the MBR units. As shown in Figure 23, it can be observed that the performance
of the overall process was >98% throughout the study.
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3.2.2. Overall Performance of Pre-Treatment-DEGBR-MBR System

The overall performance of the integrated system combining a pre-treatment stage, the
DEGBR, and the MBR is provided in Figure 23. This indicated a commendable performance
of the system, with overall removal efficiency values of the FOG, COD, and TSS being
>98% throughout the study. Although, Figure 24 indicated a minimal correlation between
the removal efficiency of the FOG, COD, and TSS in the overall system, highlighting the
suitability of such a system for the treatment of PSW or similar type of wastewater. The
integration of different stages in the process addresses the shortcomings that one stage
may have, and this can lead to overall potable water savings and perhaps the reuse of
the treated water for other purposes such as irrigation—which, at this stage, still needs to
be evaluated.

Figure 25 provides the density distribution, the skewness, the kurtosis, and the re-
moval efficiency values of the combination of the pre-treatment stage, the DEGBR, and
the MBR. A comparison between Figures 19 and 22, Figure 25 shows that the increased
removal efficiency of the combined pre-treatment-DEGBR-MBR approach which resulted
in FOG, TSS and COD removal higher than 99%.

Despite these results signifying a positive membrane unit functionality, circumventing
the typical membrane challenges such as clogging and membrane fouling, there was
evident foam build-up during aeration. Furthermore, biofilm formed at the bottom of the
membrane unit when an EGSB was used (shown in Figure 26a). The MBR operation was
stopped after operating for 5 weeks due to signs of extracellular polymeric substances
(EPS) build-up, as shown in Figure 26b. Thus, validating a re-evaluation of the sludge
retention times (SRT) and aeration rate cited in some MBR operations [26] with excessive
aeration being required, while extremely low SRTs were required due to the increased
EPS in the MBR downstream. This presented a challenge that needs to be addressed in
subsequent studies.
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4. Conclusions

The use of a commercially viable bacterial suspension has provided a significant
impactful FOG remediation strategy for PSW treatment, especially with regard to FOG
removal. The study investigated the effectiveness of the implemented bio-physico-pre-
treatment process, which has been proven to show a significant FOG concentration removal
of 80%, which, in turn, aided the AD reactor performance.

Furthermore, this study also evaluated the Pre-treatment-DEGBR-MBR unit set-up
in the form of a laboratory-plant for PSW treatment. The DEGBR achieved effective PSW
containment removal at an HRT of 5.4 h and OLR range of ~18–~44 g COD/L·h. Moreover,
the addition of the tertiary MBR stage offered a further treatment opportunity, which was
achieved by a removal amount of 99% for COD, TSS, and FOG. The resultant effluent
exceeded the set standard for effluent discharge. The system can be recommended as an
effective solution for voluminous bird slaughtering industries.
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