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Abstract: Polymeric membranes with embedded nanoparticles, e.g., nanotubes, show a significant
increase in permeability of the target component while maintaining selectivity. However, the question
of the reasons for this behavior of the composite membrane has not been unequivocally answered to
date. In the present work, based on experimental data on the permeability of polymer membranes
based on Poly(vinyl trimethylsilane) (PVTMS) with embedded CNTs, an approach to explain the
abnormal behavior of such composite membranes is proposed. The presented model considered
the mass transfer of gases and liquids through polymeric membranes with embedded CNTs as a
parallel transport of gases through the polymeric matrix and a “percolation” cluster—bound regions
around the embedded CNTs. The proposed algorithm for modeling parameters of a percolation
cluster of embedded tubular particles takes into account an agglomeration and makes it possible to
describe the threshold increase and subsequent decrease permeability with increasing concentration
of embedded particles. The numerical simulation of such structures showed: an increase in the
particle length leads to a decrease in the percolation concentration in a matrix of finite size, the
power of the percolation cluster decreases significantly, but the combination of these effects leads to a
decrease in the influence of the introduced particles on the properties of the matrix in the vicinity of
the percolation threshold; an increase in the concentration of embedded particles leads to an increase
in the probability of the formation of agglomerates and the characteristic size of the elements that
make up the percolation cluster, the influence of individual particles decreases and the characteristics
of the percolation transition determine the ratio of the sizes of agglomerates and matrix; and an
increase in the lateral linear dimensions of the matrix leads to a nonlinear decrease in the proportion
of the matrix, which is affected by the introduced particles, and the transport characteristics of such
MMMs deteriorate.

Keywords: CNT; percolation; mixed matrix membrane

1. Introduction

The addition of nanoparticles into polymers is one of the methods for obtaining
nanocomposite materials with new functional properties, which are determined both by the
properties of the particles and the polymer and by the structural characteristics of clusters
of embedded particles [1,2]. Carbon nanotubes (CNTs) are one of the most promising
types of nanoparticles, which, due to the unique variety of geometric, structural, and
physical characteristics, make it possible to obtain composite materials with a wide range
of changes in properties from structural, strength, and electromagnetic, to optical. Of
particular interest is the experimentally-confirmed significant change in the transport and
selective properties of liquids and gases in polymeric membrane materials with CNTs.
The properties of such mixed matrix membrane (MMM) materials allow the solving of
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the unique problems of separation and purification of gases and liquids in petrochemistry,
medicine, food production, processing of household, and industrial waste, etc.

Changes in the transport properties of polymers with increasing CNTs concentration
in the simplest case are proportional to the CNTs concentration. In this case, both an im-
provement in properties and a decrease in the permeability of materials are possible, which
is associated with the influence of polymer regions modified due to interaction with CNTs.
For example, when CNTs with concentrations of 0, 1, 2.5, 5, 10, and 15 wt.% are introduced
into poly(bisphenol A-co-4-nitrophthalic anhydride-co-1,3-phenylene diamine) (PBNPI),
the permeability of various gases (H2, CO2, and CH4) increases without compromising
selectivity [3]. The introduction of CNTs with concentrations of 0.5 and 2% leads to an in-
crease in the permeability of water through poly(vinyl alcohol) (PVA); the authors attribute
this effect to an increase in the hydrophilicity of the polymer regions near the CNTs [4].
The mass transfer of a water/ethanol mixture in the mode of pervaporation through PVA
increases with an increase in the concentration of CNTs [5]. As the authors explain, a strong
interaction between the polymer and CNTs leads to a decrease in the mobility of polymer
chains and the degree of swelling. Also, the observed monotonic increase in the perme-
ability coefficient is explained by the possible transport of molecules along the internal
channel of the CNT. A deterioration of permeability was found for polydimethylsiloxane
(PDMS) samples with CNTs concentrations from 0 to 10% (wt.) during the transport of
air mixtures with different contents of H2 and CH4. The authors attribute this increase in
the diffusion path to an increase in the energy of interaction between CH4 molecules and
a polymer with embedded CNTs [6]. The water flow in polyethylene glycol (PEG) with
a molecular weight of 10,000 (PEG10000) decreased with increasing CNTs concentration
from 0 to 7 wt.%, which the authors attributed to a decrease in the polymer pore size in the
vicinity of the CNTs surface (pore blocking effect) [7].

However, in a significant number of experiments, a nonlinear change in the transport
properties of MMMs is observed, and the permeability coefficient increases at low CNTs
concentrations and stops changing or decreases when a certain critical concentration is
reached [8–12]. For example, in the polymers of intrinsic microporosity (PIM) PIM-1
polymer, the permeability of O2, N2, and CH4 at a CNTs concentration from 0 to 2%
increased by 80%, 29%, and 193%, respectively, but at a concentration of 3% it decreased for
these gases. At the same time, for CO2, the permeability at a CNTs concentration from 0
to 2% increased by 54%, while at a concentration of 3% it remained unchanged [11]. The
authors explained this result by a decrease in the permeability coefficient associated with
CNTs agglomerations. In PEG6000/CNTs with concentrations from 1 to 13% (wt.), the
water flow increased up to a concentration of 10% and then decreased. The authors explain
this effect by the formation of a CNTs network upon reaching a certain concentration, which
connects the polymer pores, and a further decrease occurs during CNTs agglomeration [7].
When CNTs were introduced into PVA at concentrations of 0.5 to 2.5% (wt.), the increase
in the permeability of the benzene/cyclohexane mixture increased at concentrations up
to 2%, leading to a threefold increase in permeability, and a further increase in CNTs
concentration leads to a decrease in permeability. The authors attribute this effect to
a change in the free volume through which mass transfer occurs [13]. Similar effects
were observed in experiments with other polymers [14–17]. Recent studies of the CNTs
introduction into the polymers report the overcoming of the Robeson upper bound [18–21]. For
example, the addition of 0.5% surface-engineered multi-walled carbon nanotubes into the
PVA/PEG nano-composite membranes shows maximum CO2 permeability and CO2/N2
and CO2/CH4 selectivity [18]. In another work [19], CO2 permeability was increased
up to 369.1 barrer with CO2/N2 selectivity of 110.8 for a hybrid CNTs-PEG membrane
containing 3 wt.% of CNTs. The different additives, functional groups (–COOH, –NCO,
and –NH2) on the surface of multi-walled carbon nanotubes (MWCNTs), which were
then incorporated as fillers in the poly(ether-block-amide) (PEBA) polymeric matrix, also
improved gas selectivity and permeability [20]. A similar result was observed for the
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introduction of non-covalently-functionalized MWCNTs by poly(styrenesulfonate) (PSSA)
and poly(vinylpyrrolidone) (PVP) into the poly(vinyl alcohol) matrix [21].

There is no single approach to explaining such nonlinear changes in MMM properties.
There are two common approaches. In self-consistent models (for example, Maxwell,
Cahn-Jones-Nair et al. [22]), the influence of individual particles on a material is considered
without taking into account cooperative effects in the interaction between nanoparticles.
The second approach is based on the ideas of percolation theory (for example, the models
of Shen, Kripatrik, et al. [23], which take into account the interaction of nanoparticles
and consider the cooperative effect on the properties of the material of bound clusters of
nanoparticles. However, neither of these approaches explains the nonlinear changes in the
transport properties of MMMs and generally do not take into account the size effects of
embedded structures in such materials. However, most MMMs with CNTs, in which the
characteristic size of the selective layer is comparable to the size of CNTs, belong to such
systems, and the influence of size and surface effects on the bulk properties of the material
becomes significant.

In our work, we propose a model for describing the transport properties of MMMs
that takes into account the dimensional characteristics of the percolation transition, taking
into account the interfacial interaction, the geometric characteristics of CNTs, and the
parameters of the polymer matrix. For the ideal case of individual particles in a matrix, we
have shown that the ratio of membrane and particle sizes determines the concentration of
percolation cluster formation and its parameters. The obtained results of direct numerical
simulation of the parameters of a percolation cluster make it possible to describe the entire
set of known changes in transport properties and to estimate the parameters of CNTs in a
polymer. The proposed approach makes it possible to describe the nonlinear change in the
permeability of polymers when CNTs are introduced into them.

2. Calculation

An experimental study of the influence of the parameters of embedded nanoparticles
on the transport characteristics of polymers was carried out for a group of gases for MMMs
based on Poly(vinyl trimethylsilane) (PVTMS) with embedded CNTs [24]. Similar results
were obtained for MMMs based on Poly(methyl methacrylate) (PMMA) with embedded
CNTs [25].

Since CNTs with a large aspect number were used in these experiments, to describe
the observed effects, models were used in which the particle form factor is taken into ac-
count when calculating the permeability: Maxwell−Wagner−Sillar [26], Petropoulous and
Toy [27], Kang−Jones−Nair [22]. In the Maxwell−Wagner−Sillar model, the concentration
of ellipsoids (1) is calculated, which at n = 1 is converted into a classical model of a series
connection of layers, at n = 0 into a classical model of a parallel connection of layers, n = 1/3
into a Maxwell model.

Pe f f = Pc
nPd + (1 − n)Pc − (1 − n)ϕd(Pc − Pd)

nPd + (1 − n)Pc + nϕd(Pc − Pd)
(1)

where Peff is the effective permeability coefficient of the MMM, Pc is the permeability
coefficient of the continuous (polymer) phase, Pd is the permeability coefficient of the
dispersion (nanoparticle) phase, ϕd is the volume fraction of the dispersion phase, and n is
a particle shape factor, which depends on the long-to-short-axis-length ratio. For oblate
ellipsoids (the longest axis is aligned with the permeation direction), 0 < n < 1/3; for oblate
ellipsoids (the shortest axis is aligned with the permeation direction) 1/3 < n < 1 [26].

In the Petropoulous and Toy model, systems with particles of various shapes
are considered.

Pe f f = Pc

1 +
(1 + G)ϕd(

Pd/Pc+G
Pd/Pc−1

)
− ϕd

 (2)
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where G is a geometric factor accounting for the effect of dispersion shape. G equals 1 for
long and cylindrical (elongated) particles dispersed transverse to the gas flow direction. G
is 2 for spherical particles or isometric aggregates. In the case of planar (laminate) particles,
G tends to infinity if the dispersed particles are oriented in lamellae parallel to the gas
flow direction, minimizing resistance to flow. Conversely, G tends to zero if the dispersed
particles are oriented in lamellae perpendicular to the gas flow direction, maximizing the
impedance of flow [27].

The Kang-Jones-Nair model describes tubular particles and the equation for concen-
tration (3) takes into account not only the permeability of the dispersed phase but also the
orientation of tubular particles

Pe f f

Pc
=

[(
1 − cosθ

cosθ + 1
α sinθ

ϕ f

)
+

Pc

Pd

(
1

cosθ + 1
α sinθ

)
ϕd

]−1

(3)

where α = l/d is the aspect ratio of tubular fillers and θ is the filler orientation angle with
respect to the membrane transport direction, varying from 0 to π/2 radians.

Figure 1 shows the experimental data and calculation by classical models on the
permeability of gases (N2, O2, CH4, and C3H8) through PVTMS with a CNTs concentration
of up to 1.5% (mass). It can be seen that for all gases there is a sharp increase in permeability
at CNTs concentrations from 0.3 to 0.5% and a slight change in permeability with a further
increase in concentration. Similar results were obtained in a number of works [8–12,14–21].

By the Maxwell−Wagner−Sillar model with a dimension factor of n = 0 (parallel
connection model) and a CNTs permeability coefficient of 4000 barrer for nitrogen and
oxygen and 7000 barrer for methane and propane, it is possible to describe for all gases
an increase in the permeability coefficient at a volume concentration of CNTs from 0
to 1.5% by several times, but the gas permeability coefficient linearly depends on the
concentration of CNTs, and this does not allow us to describe the absence of the effect of
the introduction of CNTs at CNTs concentrations from 0 to 0.3%, and the absence of an
increase in the permeability coefficients with increasing concentration from 0.6 to 1.3%.
At n = 1 (serial connection model), 1/3 (Maxwell model), 0.04 (prolonged ellipsoids) and
permeability coefficient for all gases from 1 to 1013 barrer, the change in gas permeability
coefficients observed in the experiment could not be described. In calculations according
to the Petropoulous and Toy model, the geometry factor varied from 1 to 17,000, and
the permeability coefficient varied from 1 to 100,000 barrer, this model allows describing
the increase in the gas permeability coefficient at CNTs concentrations from 0 to 1.5%, at
G = 17,000 and Pd = 4000 barrer for nitrogen, oxygen, and propane and Pd = 7000 barrer for
methane. The model of Petropoulous and Toy does not allow describing the absence of the
effect from the introduction of CNTs at CNTs concentrations from 0 to 0.3%, and the absence
of an increase in permeability coefficients with an increase in concentration from 0.6 to 1.3%,
since at CNTs concentrations from 0 to 1.5% The gas permeability coefficients calculated
using this model depend linearly on the CNTs concentration. The Kang-Jones-Nair model
with permeability coefficients of a dispersed medium, in our case, CNTs, from 1 to 1023
and α from 1 to 40, describes the changes in gas coefficients observed in the experiment
only at CNTs concentrations from 0 to 0.3%.

All the models used, within the limits of experimental error, can describe the linear
areas of permeability change, but at the same time, the values of the permeability of
the filler lose their physical meaning, because they take too large values. However, the
threshold change upon reaching the critical concentration cannot be explained within these
models (Figure 1). In recent works [28–33] two types of description have been proposed.
One [28–31] is the numerical solution of the three-dimensional Fick’s diffusion equation
using the finite differences method or the resistance-based models under the assumption of
an ideal morphology. The second [32,33] is an assumption of non-ideal morphology and
the influence of the interfacial layer. However, the authors do not consider the formation
of bound regions, so their models do not describe a dataset where the permeability of
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polymers from CNTs concentration varies non-linearly and the effect is observed in a
narrow range of concentrations.
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To describe the observed threshold change, it is necessary to take into account the
parameters of interconnected structures of individual particles, which, when a certain
concentration is reached, form a percolation cluster. In such systems, mass transfer through
regions of three types is possible: the initial polymer; modified regions of the polymer at the
interface with CNTs; and transport through internal cavities in CNTs. In the simplest case,
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one can consider independent transport through the regions of the unmodified polymer
and transport through the percolation cluster from the regions of modified CNTs, the
fraction of which in the membrane volume is Cx:

KMMM = Kx·Cx(L, R, dR) + Kp·(1 − Cx(L, R, dR)) (4)

where Kx is the permeability coefficient of the percolation cluster, Kp is the permeability
coefficient of the polymer, and dR is the thickness of the interfacial layer. The Cx value
changes non-linearly when the concentration of nanotubes exceeds the percolation “thresh-
old”, the value of which is determined both by the geometrical parameters of the membrane
and particles and by the interaction of the polymer with the CNT surface. At concentra-
tions below the “threshold”, the percolation cluster is not formed, and transport over the
membrane regions containing CNTs can be neglected.

For most of the considered MMMs, the CNTs size is comparable to the thickness of the
selective layer or membrane, and it is necessary to take into account the dispersion of the
CNTs threshold concentration in systems of finite size. To determine the parameters of a
percolation cluster of CNTs in systems of finite size, a software package was developed and
the parameters of the percolation transition were modeled in a wide range of membrane and
CNTs sizes and particles with different size and shape distributions: sphere, sphere with
an impermeable core, spherocylinder, and spherocylinder with an impermeable core, etc.
Let us consider the algorithm for calculating the parameters of a percolation cluster using
the example of spherocylinders with impermeable cores (Figure 2). Each spherocylinder
is randomly placed in space (using the pseudo-random number generator “Mersenne
vortex” [34]) and surrounded by a layer (shell) of a modified polymer, thickness dR = R − R0.
When the shells intersect, a channel (cluster) is formed, which, when the opposite faces
of the matrix are connected, forms a percolation cluster. For each concentration of CNTs,
1000 iterations were carried out. By varying the geometrical parameters of the matrix,
particles, shell, and the number of particles, it is possible to determine the parameters of
emerging clusters and percolation conditions.
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For various parameters of particles and matrix, the volume concentration of particles
was determined:

Cx =

(
4·π

3
·R3

0 + π·R2
0·L
)
·N/V (5)
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where R0 is the radius of the impermeable core, L is the length of the impermeable core,
N is the number of capsules, and V is the volume of the matrix. The percolation cluster
power is:

P∞ =
V∞

V
(6)

where V∞ is the volume fraction of particles in the percolation cluster and V is the volume
fraction of all added spherocylinders. The average value of the volume fraction occupied
by high-permeability regions of the polymer is:

Cx =

(
4·π

3
·(R3 − R3

0) + π·(R2 − R2
0)·L

)
·NX

V
(7)

where NX is the number of capsules in the percolation cluster. To verify the algorithm
and program, the percolation threshold was calculated for various geometric objects as
presented in Table 1 (the data have been rounded to 3 decimal places).

Table 1. Percolation threshold for various geometric objects.

Source Circle Square Segment Sphere

[35,36] 1.122 [35] 0.982 [35] 5.637 [35] 0.032 [36]
Our software 1.127 ± 0.001 0.981 ± 0.001 5.636 ± 0.001 0.031 ± 0.01

3. Result and Discussion

To study the influence of the geometric dimensions of CNTs (length) on the parameters
of the percolation cluster, calculations were carried out for spherocylinders with an inner
radius R0 = 0.025 and an outer radius R = 0.125 in a cubic system of dimensions 25 × 25 × 25,
their volume concentration varied from 0.1 to 0.5% (the number of spherocylinders from
2000 to 50,000), the length varied from 2 to 5. An increase in the CNTs length by 2.5 times
leads to an inversely proportional decrease in the CNTs concentration by a factor of 2 (from
0.4 to 0.2%), at which a percolation cluster is formed with a probability of 100%. An increase
in the length of CNTs from 2 to 5 leads to an increase in the power of the percolation cluster
at the same concentration of CNTs, for example, for a concentration of 0.35%, the power of
a percolation cluster increases from 10% to 87%, and at a concentration of 0.3% for CNTs
with a length of 2 the percolation cluster will not be formed, while for length 2.5 it will be
formed, and increasing the length from 2.5 to 5 will increase the power from 10% to 80%.

To study the influence of the CNT diameter on the parameters of the percolation
cluster, calculations were carried out for spherocylinders with length l = 2 and outer radius
R = 0.125 in a cubic system of dimensions 25 × 25 × 25, their volume concentration varied
from 0.3 to 1.0% (the number of spherocylinders was from 11,000 to 47,000), the inner
radius varied from 0.025 to 0.004. An increase in the CNT radius by 60% (from 0.05 to
0.08 a.u.) leads to a 2.5-fold increase in the CNTs concentration (from 0.4 to 1.0%), at
which a percolation cluster is formed with a probability of 100%. An increase in the CNTs
diameter from 0.05 to 0.08 leads to a decrease in the probability of formation and power of
a percolation cluster from 100 to 0% at a volume concentration of spherocylinders of 0.4%.
The power of the percolation cluster also decreases; for example, at a concentration of 0.9%,
an increase in diameter from 0.05 to 0.08 leads to a decrease in the power of the percolation
cluster from 90% to 10%. An increase in the CNTs diameter can occur due to agglomeration
and leads to an increase in the critical value of the CNTs concentration in the polymer at
which a percolation cluster is formed.

To study the influence of the thickness of the CNTs interfacial layer on the parameters
of the percolation cluster, calculations were carried out for spherocylinders with a length
l = 4 and an inner radius R0 = 0.025 in a cubic system of dimensions 25 × 25 × 25,
their volume concentration varied from 0.1 to 1.5% (the number of spherocylinders from
3000 to 30,000), the outer radius changed from 0.050 to 0.125. A 4-fold decrease in the
thickness of the interfacial layer (from 0.100 to 0.025 a.u.) leads to a 3.7-fold decrease in the
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CNTs concentration (from 0.92 to 0.25%), at which a percolation cluster is formed with a
probability of 100%. This leads to a decrease in the power of the percolation cluster; for
example, for a volume concentration of 0.8%, the power of the percolation cluster decreases
from 90% to 10%.

To study the influence of the geometric dimensions of the matrix on the parameters of
the percolation cluster of CNTs, calculations were carried out for spherocylinders with a
length l = 4 and an inner radius R0 = 0.025, an outer radius R = 0.125 in systems of the same
thickness and different widths and lengths 25–250 × 25 × 25–250, the volume concentration
of spherocylinders varied from 0.1 to 0.5% (the number of spherocylinders varied from
3000 to 350,000). The transition from an isotropic to an anisotropic system by a factor of
4 increase in the length and width of the system leads to a decrease in the concentration
of CNTs, at which a percolation cluster is formed with a probability of 100%, from 0.25
to 0.22 and to a decrease in the power of the percolation cluster by 9.6 times (from 48 to
5%). A change in the ratio of linear dimensions to the thickness of the matrix also leads to
a decrease in the concentration of formation and the power of the percolation cluster. As
can be seen from Figure 2, an increase in the ratio of the length and width of the film to the
thickness from 1 to 10 leads to a decrease in the power of the percolation cluster almost
to zero.

These results show that particle agglomeration (an increase in particle diameter) leads
to a decrease in the size of the percolation cluster. On the other hand, as the ratio of matrix
thickness to particle size decreases, the size (strength) of the percolation cluster decreases.
Agglomeration, as a result of which the particle size in the percolation cluster increases,
leads to a decrease in the thickness and volume fraction of the percolation cluster. The
permeability of polymer membranes with embedded carbon nanotubes will depend not
only on the geometric dimensions of the CNTs and the thickness of the interfacial layer that
forms between the CNTs and the polymer but also on the ratio of the geometric dimensions
of the polymer matrix. The ratio of the sizes of the matrix and particles significantly affects
the fraction of particles belonging to the percolation cluster, which is determined by the
cluster power.

The experimental results of gas permeability [24] were calculated for the MMM model
with the following parameters: matrix size 25 × 25 × 25 (film thickness 25 µm), spherocylin-
ders length 2, and diameter R0 = 0.05, with shell thickness—0.100, the volume concentration
of CNTs varied from 0 to 1.4% (number of spherocylinders from 0 to 50,000).

Figure 3 shows the parameters of the percolation cluster. With the chosen parameters,
the probability of the formation of a percolation cluster is equal to zero when the volume
fraction of CNTs is less than x < 0.3, and when x > 0.4 it reaches 100%. In this case, the power
of the percolation cluster and the fraction of the membrane occupied by the percolation
cluster also change abruptly. Since the permeability of such membranes in (4) is determined
by the volume fraction of Cx, a percolation cluster in the polymer matrix, the model allows
one to choose the values of the permeability of gases for percolation regions (Table 2) and
describe the observed experimental results.

Table 2. Experimental and calculated gas permeability coefficients and Knudsen diffusion coefficient
for the studied gases.

Gase Kp,
Barrer

Kx,
Barrer

Dp,
m2/s

Dx,
m2/s

Dkn,
m2/s

N2 11 429 3.8 × 10−11 1.52 × 10−9 ~10−6

O2 44 507 7.6 × 10−11 8.8 × 10−10 ~10−6

CH4 18 702 1.1 × 10−11 3.9 × 10−10 ~10−6

C3H8 2 335 7.8 × 10−12 1.3 × 10−9 ~10−6
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However, as can be seen from Figure 4, at fixed values of the permeability, with an
increase in the concentration of particles (CNTs), there is a significant discrepancy between
the model and experimental values of the permeability (Figure 5).
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We assume that this is due to the agglomeration of CNTs in the polymer, which occurs
due to the interaction between the side walls of CNTs with an increase in the concentration
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of particles, which leads to a decrease in the power of the percolation cluster at a given
concentration of particles. Therefore, with increasing concentration, it is necessary to take
into account the change in particle diameter and the corresponding decrease in the volume
fraction of the percolation cluster and the permeability of the system.

For the previously obtained values of the permeability coefficients of PVTMS/CNT
membranes, estimates were made of the change in the volume fraction of the percolation
cluster with an increase in the average particle size (for single wall CNTs = 0.62, 0.82, and
1.24%) (Figure 5).

Figure 6 shows that an increase in the average diameter by 1.5–2 times (equivalent to
an increase in the CNTs diameter from 52 to 100 nm) leads to a decrease in the permeability
of all gases due to a decrease in the volume fraction of the percolation cluster. At the same
time, the permeability coefficient of nitrogen, oxygen, methane, and propane through such
membranes decreases by more than two times for all the studied gases. Taking into account
the obtained modeling results, according to expression (4), the permeability of membranes
at high concentrations was calculated (Figure 6). Within the error, the simulation results
coincide with the experiment.
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The calculated values of the gas permeability coefficients in such percolation systems
correspond to the values of the diffusion coefficients of the studied gases over the CNTs
surface calculated by the molecular dynamics method [37,38]. This result confirms our
assumption about the mechanism of gas transport in such MMMs (Table 2).

4. Conclusions

In this work, we have shown that conventional models cannot describe the set of
experimental data on the nonlinear change in the transport properties of MMMs with
a change in the concentration of particles. These effects are sensitive both to the size of
the matrix and to the characteristics of the introduced particles. In the model presented
in this paper, the mass transfer of gases and liquids through polymeric membranes with
embedded CNTs is considered as a parallel transport of gases through the polymer matrix
and a percolation cluster—bound regions around the embedded CNTs. For the first time,
a method for describing the transport characteristics of MMMs is proposed, taking into
account the geometric characteristics of embedded particles and the finite dimensions of
the matrix. The numerical simulation of such structures showed a significant change in the
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parameters of the percolation cluster with a change in the characteristic dimensions of the
embedded particles and the linear dimensions of the matrix:

• An increase in the particle length leads to a decrease in the percolation concentration
in a matrix of finite size. However, in this case, the power of the percolation cluster
decreases significantly as does the fraction of the matrix in which the transport proper-
ties change. The combination of these effects leads to a decrease in the influence of the
introduced particles on the properties of the matrix in the vicinity of the percolation
threshold.

• An increase in the concentration of embedded particles leads to an increase in the
probability of the formation of agglomerates and the characteristic size of the elements
that make up the percolation cluster. In this case, the influence of individual particles
decreases, and the characteristics of the percolation transition determine the ratio of
the sizes of agglomerates and matrix. As the simulation showed, such an allowance
for the increase in size makes it possible to describe the observed nonlinear changes in
the permeability of the MMM, with the rest of the model parameters fixed. In addition
to explaining the experimentally observed effects, this simulation makes it possible to
describe the structure of the percolation cluster and MMM.

• An increase in the lateral linear dimensions of the matrix leads to a nonlinear decrease
in the proportion of the matrix, which is affected by the introduced particles, and
the transport characteristics of such MMMs deteriorate. Therefore, when scaling
such systems, the conditions of the percolation transition and the structure of the
percolation cluster will change. This effect must be taken into account when choosing
embedded particles.

The obtained results allow us to take a different look at the effect of a nonlinear
change in the properties of MMMs with an increase in the concentration of nanoparticles.
In contrast to most models of transport in MMM, in which the main parameter is the
concentration of embedded nanoparticles, our model has shown that the macroscopic
changes are provided by the particles included in the percolation cluster. Therefore, when
modeling the properties of such systems, it is necessary to focus on the parameters of the
percolation cluster, taking into account the actual dimensions of the membrane and the
introduced nanoparticles.

It should be noted that in this work we did not take into account the influence of the
matrix on the percolation cluster of individual particles and considered only experimental
data for MMMs with CNTs (both open and closed). Undoubtedly, the characteristics of the
polymer and the interaction of nanotubes with the polymer are also essential for the prop-
erties of the MMM. The polymer can affect both the structure of the percolation cluster and
the transport characteristics of the MMM. However, in this work, we studied the influence
of only the geometric characteristics of the system in the region of the percolation transition.
In this case, due to nonlinear changes in the region of the percolation transition, fluctuations
in the macroscopic properties of such systems should be observed in such systems.
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