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Abstract: Composite membranes consisting of microporous tantalum-doped silica layers supported
on mesoporous alumina substrates were fabricated using chemical vapor deposition (CVD) in both
thermal decomposition and counter-flow oxidative deposition modes. Tetraethyl orthosilicate (TEOS)
was used as the silica precursor and tantalum (V) ethoxide (TaEO) as the tantalum source. Amounts
of TaEO from 0 mol% to 40 mol% were used in the CVD gas mixture and high H2 permeances above
10−7 mol m−2 s−1 Pa−1 were obtained for all conditions. Close examination was made of the H2/CH4

and O2/CH4 selectivities due to the potential use of these membranes in methane reforming or partial
oxidation of methane applications. Increasing deposition temperature correlated with increasing
H2/CH4 selectivity at the expense of O2/CH4 selectivity, suggesting a need to optimize membrane
synthesis for a specific selectivity. Measured at 400 ◦C, the highest H2/CH4 selectivity of 530 resulted
from thermal CVD at 650 ◦C, whereas the highest O2/CH4 selectivity of 6 resulted from thermal
CVD at 600 ◦C. The analysis of the membranes attempted by elemental analysis, X-ray photoelectron
spectroscopy, and X-ray absorption near-edge spectroscopy revealed that Ta was undetectable because
of instrumental limitations. However, the physical properties of the membranes indicated that the
Ta must have been present at least at dopant levels. It was found that the pore size of the resultant
membranes increased from 0.35 nm for pure Si to 0.37 nm for a membrane prepared with 40 mol% Ta.
Similarly, an increase in Ta in the feed resulted in an increase in O2/CH4 selectivity at the expense
of H2/CH4 selectivity. Additionally, it resulted in a decrease in hydrothermal stability, with the
membranes prepared with higher Ta suffering greater permeance and selectivity declines during 96 h
of exposure to 16 mol% H2O in Ar at 650 ◦C.

Keywords: tetraethyl orthosilicate (TEOS); tantalum (V) ethoxide; chemical vapor deposition; micro-
porous silica membrane; gas separation membrane

1. Introduction

The delivery and separation of gases are important unit operations in both small-
and large-scale chemical processes. Of particular interest are catalytic membrane reactors,
where a membrane is used in conjunction with a catalyst bed to combine reaction and mass
transfer. Catalytic membrane reactors can reduce the number of required unit operations
and increase process efficiency [1].

Membrane reactors can be classified as extractors or distributors [2]. As examples
of an extractor, in steam methane reforming, the application of either a hydrogen [3] or a
carbon dioxide [4] permeable membrane can simultaneously separate either product into a
purified steam and shift the equilibrium conversion of methane forward. As an example of
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a distributor, in propylene epoxidation with H2/O2 mixtures, the application of a hydrogen
transport membrane can feed hydrogen into the reactor and increase the conversion of
propylene while avoiding the explosive regime [5]. Other examples of distributed feed
reactors include the use of an oxygen-selective membrane to reduce the oxygen partial
pressure and avoid the overoxidation of products in the partial oxidation of methane
to syngas (POM) [6,7], the oxidative coupling of methane (OCM) [8,9], and the partial
oxidation of methane to formaldehyde [10,11]. Notably, however, a nonselective porous
MgO membrane for OCM showed no improvement in performance over a packed-bed
reactor due to the backpermeation of non-O2 gas species [12], which suggests that the
permselectivity of the desired permeation gas is critical to membrane reactor performance.

Membranes for gas separations include a variety of materials, including dense metal
membranes [13], polymeric membranes [14], and ceramic membranes [15]. Among the ce-
ramic membrane materials, microporous silica-based membranes have garnered significant
interest primarily due to their high H2 permeance and high permselectivity over larger gas
molecules [16,17]. The benefits of using microporous silica-based membranes include a low
materials cost, along with a high thermal stability and chemical resistance [18].

Silica-based membranes have a research history spanning more than 30 years since
the first reports by Gavalas et al. [19] and Okubo and Inoue [20] in 1989. Typical synthesis
techniques include chemical vapor deposition (CVD) [21] or sol–gel [22] methods to form
separation layers less than 100 nm thick on mesoporous substrates [23]. The permeation of
gases through silica-based membranes can involve several mechanisms, which are shown
in Figure 1 and described in detail elsewhere [24]. Bulk flow is unselective and occurs when
the pore diameter, dp, is much larger than the mean free path of gas molecules. Knudsen
diffusion results in selective flow that scales with the inverse ratio of the square root of
the molecular masses and occurs when the pore diameter is similar to the mean free path.
Surface diffusion can result in high selectivity and occurs when surface modifications allow
a specific gas to adsorb and diffuse more quickly than gas flow would allow. However,
these mechanisms do not control selectivity in microporous membranes. Instead, highly
permselective microporous silica membranes rely primarily on solid-state diffusion for
the smallest gases (H2, He, Ne), and gas-translational diffusion for slightly larger gases
(N2, CH4, CO, CO2) [24,25]. For the smaller gas species, pore size is not important because
permeance occurs by jumps between adjacent cavities in the silica structure (called solubility
sites), and applications have been reported such as hydrogen purification (H2/CH4) [23]
and helium recovery (He/N2) [26]. For the larger species, pore size is important and
other types of uses have been published such as carbon capture (CO2/CH4) [27] and
olefin/paraffin separations (C3H6/C3H8) [28].
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Figure 1. Schematic of gas separation mechanisms. Figure 1. Schematic of gas separation mechanisms.

One issue that continues to limit the application and utilization of silica-based mem-
branes is the instability of silica in the presence of steam. The instability arises from the
densification of the porous silica network due to the formation of hydroxyls and the hy-
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drolysis of Si-O-Si linkages [29,30]. Attempts to increase the hydrothermal stability have
involved the addition of secondary elements in an effort to stabilize the silica matrix. Alu-
mina [30], zirconia [31], cobalt [32], nickel [33], titania [34], niobia [35], tantala [36], and
magnesia [37] additions have been studied, as well as methyl group incorporation [25,38,39],
and their effect on the performance of silica-based composite membranes upon exposure to
steam is summarized in Table 1. From these data, it appears that exposure to H2O causes a
loss of H2 permeance for all membrane combinations, with declines ranging from 25% to
87%. Notably, early group transition elements (Ti, Nb, and Ta), appear to result in less H2
permeance loss than later transition elements (Co, Ni, Fe). However, Zr shows conflicting
data from several studies.

Table 1. Hydrothermal stability of various silica-based composite membranes.

Membrane
Material

Synthesis H2O Exposure H2 Permeance

Ref.
Precursors * Method Temp.

/◦C
H2O Conc.

/mol %
Time

/h
Change

/%

Final
/mol m−2

s−1 Pa−1

SiO2+Al2O3 TEOS+ATSB CVD
650 16 100 −45 3.9 × 10−8 [40]
650 16 96 −68 2.3 × 10−8 [40]
600 16 200 −39 1.3 × 10−7 [30]

SiO2+ZrO2 TEOS+ZTB
Sol–gel 500 50 30 −18 2.8 × 10−6 [31]
Sol–gel 500 13–33 30 −73 1.1 × 10−7 [41]
CVD 650 16 48 −56 1.7 × 10−7 [42]

SiO2+CO3O4
TEOS+

Co(NO3)2·6H2O
Sol–gel 500 50 60 −50 4.0 × 10−8 [32]

500 30 60 −47 1.8 × 10−7 [43]

SiO2+NiO TEOS+
Ni(NO3)2·6H2O Sol–gel 40 4.4 1680 −50 3.4 × 10−7 [33]

SiO2+Fe2O3
TEOS+

Fe(NO3)3·9H2O Sol–gel 40 4.4 840 −87 9.3 × 10−7 [33]

SiO2+TiO2 TEOS+TIP CVD 650 75 125 −30 9.1 × 10−8 [34]
SiO2+Nb2O5 TEOS+NPB Sol–gel 200 56 70 −32 2.6 × 10−8 [35]
SiO2+Ta2O5 TEOS+TaEO CVD 650 16 200 −25 3.5 × 10−8 [36]

* TEOS: tetraethyl orthosilicate, ATSB: aluminum tri-sec-butoxide, ZTB: zirconium tert-butoxide, TIP: titanium
isopropoxide, NPB: niobium penta(n-butoxide), TaEO: tantalum ethoxide.

Though additional elements influence the hydrothermal stability of silica-based com-
posite membranes, the performance varies between additives. Some elements, such as Al
and Zr, have been shown to increase hydrothermal stability, but other elements, such as
Mg, have been shown to increase the mobility of silica and lead to sintering and densifica-
tion [37]. Thus, to enhance the hydrothermal stability of silica-based composite membranes,
additive elements must be carefully selected and tested for efficacy.

Studies using Nb or Ta precursors are limited, but some reports have suggested that
these metal additions can affect the silica network pore size and resultant hydrothermal
stability. Qureshi et al. [44] reported that membranes formed using a sol–gel process
by adding Nb or Ta precursors to bis-triethoxysilylethane (BTESE) resulted in higher
permeance and a more open pore structure than membranes formed with BTESE alone.
However, hydrothermal stability was not measured. A recent study [36] reported that a
membrane formed from TEOS and TaEO showed excellent selectivity and hydrothermal
stability. Boffa et al. [35] added Nb to a silica membrane and observed an increase in
hydrothermal stability, but the permeance was significantly lower than a silica control
membrane, which may have affected the result. Thus, further investigations should be
made to understand the changes in pore size and hydrothermal stability of Ta addition.

The present paper describes the synthesis and characterization of a silica–tantala
composite membrane, prepared by mixed-precursor CVD. The permeances of He, H2, N2,
O2, and CH4 were measured for membranes fabricated with various ratios of Ta/Si, and
the hydrothermal stability performance was systematically discussed and analyzed. The
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specific selectivities of H2/CH4 and O2/CH4 were monitored due to their relevance to
membrane reactor applications in methane reforming and partial oxidation of methane.

2. Materials and Methods
2.1. Membrane Synthesis

Membranes were synthesized via a two-step procedure involving the preparation
of a γ-alumina intermediate layer by a sol–gel procedure followed by chemical vapor
deposition (CVD) of the microporous silica membrane onto a porous α-alumina sup-
port [30,34,38,42]. Initially, a small section of an asymmetric porous α-alumina support
(Noritake Co., I.D. = 7 mm, O.D. = 10 mm, length = 15 mm, nominal pore size = 60 nm)
was sealed onto two nonporous alumina tubes (Sakaguchi E.H Voc Co., Tokyo, Japan,
I.D. = 7 nm, O.D. = 10 mm, length = 200 mm) using a glass paste (GA-13/325, Nippon Elec-
tric Glass Co., Ltd., Shiga, Japan) mixed with terpineol (Nisshin Kaisei Co., Ltd., Saitama,
Japan) and fired at 1000 ◦C for 10 min with a heating and cooling rate of 5 ◦C min−1.

The sealed α-alumina support then had a γ-alumina intermediate layer applied via a
sol–gel process to further reduce the 60 nm pore size. This was done by creating boehmite
sols of 80 nm and 40 nm average particle sizes, followed by successive dip-coating and
firing of the support in the larger and smaller boehmite sol. After immersing the support
in one of the sols for 10 s, the membrane support was slowly withdrawn from the solution
and dried in a cleanroom for 4 h at room temperature before being calcined at 650 ◦C for
3 h using a heating and cooling rate of 1.5 ◦C min−1.

The 80 nm and 40 nm boehmite sols were prepared by mixing 0.3 mol of aluminum
isopropoxide (Aldrich, >98%) in 50 mL of distilled water and stirring for 24 h at 98 ◦C.
Afterwards, nitric acid (Wako, 60%) was slowly added (80 nm, H+/Al = 0.025; 40 nm,
H+/Al = 0.070) and mixed for a further 24 h at 98 ◦C to induce peptization (oligomerization).
To enhance the colloidal stability of the boehmite sol, a solution of 0.7 g polyvinyl alcohol
(Polyscience, M.W. = ca. 78,000) in 20 mL of distilled water was added. Finally, the total
volume was adjusted to 200 mL by adding distilled water and stirring at 70 ◦C for 3 h. The
particle size distributions were determined by a dynamic light scattering analyzer (Horiba
LB-550, Japan) and confirmed to have averages of 40 nm and 80 nm.

Once the γ-alumina intermediate layer was applied and calcined, the microporous
silica–tantalum membrane was prepared by CVD using tetraethyl orthosilicate (TEOS,
Aldrich, 98%) as the silica precursor and tantalum (V) ethoxide (TaEO, Aldrich, 99.98%) as
the tantalum precursor. Use was made of a CVD apparatus detailed earlier [42] to deliver
the TEOS and TaEO. The vapor pressure of each precursor was used to calculate the ratio
of TaEO to TEOS in the CVD reactor. The vapor pressure of TEOS was obtained from the
Antoine equation

log p = A− B
T + C

(1)

where p is the partial pressure of the component, T is the temperature in Kelvin, and the
coefficients are: A = 4.17312, B = 1561.277, and C = −67.572. The vapor pressure of TaEO
was calculated via the Claussius–Clapeyron relation

ln
p

pre f
=

∆Hvap

R

(
1

Tre f
− 1

T

)
(2)

where ∆Hvap is the enthalpy of vaporization (79.1 kJ mol−1), R is the ideal gas constant,
and pre f is a reference partial pressure of TaEO (pre f = 0.0133 kPa at 145 ◦C).

A summary of the synthesized membranes and relevant CVD parameters is given
in Table 2. The nomenclature reflects the Si–Ta composition and the CVD temperature.
All membranes were synthesized at 101 kPa. Synthesis of the silica control membrane
(Si-650) consisted of flowing 5 mL min−1 (3.7 µmol s−1) of Ar through the TEOS bubbler
and diluting with 15 mL min−1 (12 µmol s−1) of Ar. All flow rates are here in ml min−1

at normal conditions (25 ◦C, 101 kPa) and may be converted to µmol s−1 by division
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by 1.5. The flow of TEOS was kept constant, equivalent to 9.2 nmol s−1 of Si, for all
synthesis conditions and the 15 mL min−1 Ar dilution stream was diverted through the
TaEO bubbler as appropriate. Thus, the total flow into the reactor was constant at 20 mL
min−1 (15 µmol s−1). In this manner, the TaEO/TEOS ratio was controlled solely by the
temperature of the TaEO bubbler, which ranged from 117 ◦C to 173 ◦C. The sweep side
of the membrane was maintained at a total flow equal to the feed stream containing the
precursors (20 mL min−1). Ar was used for the higher deposition temperatures of 600 ◦C
and 650 ◦C; however, Ar was changed to O2 for the lower deposition temperatures of
400 ◦C and 500 ◦C to enhance the deposition rate by counter-flow reactive CVD.

Table 2. CVD synthesis parameters. Ar flow rates through the bubblers were constant at 3.7 µmol s−1

through TEOS (providing 9.2 nmol s−1 TEOS) and 12 µmol s−1 through TaEO.

Membrane ID Ta/(Si+Ta)
Fraction

TaEO Bubbler
Counter Flow

Gas

Reactor
Temperature CVD Time

/minTemperature Flowrate

/◦C /nmol s−1 /◦C

Si-650 - - - Ar 650 30
Si-3Ta-650 0.03 117 0.29 Ar 650 30
Si-10Ta-650 0.10 138 0.99 Ar 650 30
Si-40Ta-650 0.40 173 6.1 Ar 650 30
Si-10Ta-600 0.10 138 0.99 Ar 600 45
Si-10Ta-500 0.10 138 0.99 O2 500 30
Si-10Ta-400 0.10 138 0.99 O2 400 105

The CVD process was interrupted periodically to check the progress of deposition and
membrane fabrication by measuring pure gas permeation properties in the same apparatus
as the synthesis. Gases used in this study included Ar (99.99%), He (99.999%), H2 (99.99%),
O2 (99.5%), N2 (99.99%), and CH4 (99.99%). Permeation measurements were conducted
by flushing the feed with the gas of interest for several minutes before pressurizing to a
transmembrane pressure of 0.2 MPa; the permeate was at atmospheric pressure (0.1 MPa).
A digital flowmeter (GF1010, GL Science) was used to measure permeation flow rates
above 1 mL min−1, whereas permeation flow rates below this were measured by carrying
the permeate using a 50 mL min−1 Ar sweep flow to a gas chromatograph equipped
with a thermal conductivity detector (GC-TCD). The GC-TCD (490 Micro GC, Agilent
Technologies) was installed with a molecular sieve 5A column capable of detecting He, H2,
N2, O2, and CH4.

2.2. Membrane Characterization

The characterization of the membranes was performed after permeance testing by
fracturing the membrane tube to expose the inner surface (CVD deposition side). The
samples were stored in air between testing and characterization. Surface and cross-sectional
imaging was conducted without pretreatment using a Hitachi SU8020 scanning electron
microscope (SEM) at an accelerating voltage of 15 kV, and elemental analysis was per-
formed via an equipped energy dispersive X-ray spectroscopy (EDS, Horiba, Kyoto, Japan)
attachment. X-ray photoelectron spectroscopy (XPS) was performed with a PHI 5000 Ver-
saProbe (Ulvac-Phi Inc., Kanagawa, Japan) equipped with a monochromatized Al Kα X-ray
source (1486.6 eV). Narrow scans of the elements of choice (C1s, O1s, Al2p, Si2p, Ta4f,
and Ta4d) were conducted with a pass energy of 23.5 eV, energy per step of 0.200 eV, and
time per step of 50 ms. The X-ray source was set to a 100 µm focus size, 25 W power, and
15 kV voltage for all scans. To verify carbon was not incorporated into the silica structure,
adventitious surface carbon was removed with a 30 s Ar sputter using a 1 kV2 × 2 setting
(ca. 2 nm min−1 removal of SiO2). The depth profile XPS of membrane Si-650 used the
higher Ar sputter setting of 4 kV2 × 2 (ca. 25 nm min−1 removal of SiO2). Collected spectra
were analyzed using the MultiPak software suite.
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3. Results and Discussion
3.1. Microstructure Analysis

The microstructure of the synthesized membranes was probed using SEM. As an
example, Figure 2 shows the surface and cross-sectional images of the Si-10Ta-650 mem-
brane. The surface image (Figure 2a) shows a uniform, grainy texture with no defects. The
cross-sectional image (Figure 2b) shows the porous alumina support as a light gray region
on the right, and the sol–gel-fabricated alumina layer as a darker gray region spanning
about 1.3 µm. The thin bright region on the left is the Si–Ta CVD layer, which is estimated
to have a thickness on the order of 10 nm. A series of surface images for each membrane
can be found in Figure S1 of the Supplementary Materials.
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3.2. Elemental Analysis

Attempts were made to obtain the elemental composition of the membranes by EDS,
XPS, and XANES measurements. Although the Si and Al contents were determined, the
Ta levels could not be obtained (Figure S2) by any technique. This is not surprising. For
EDS, the Ta M-line and the Si K-lines overlap exactly [45]. For XPS and XANES, the Ta Lα1
line at 8.145 keV has an electron escape depth of ca. 5 nm [46] and this is not sufficient for
bulk analysis. Information on the samples measured and the data collected can be found
in the Supplementary Materials Section S2. XPS and EDS measurements were conducted
to quantify Si and Al in the membrane materials, and the results are presented in Table 3,
with the raw data for XPS listed in Table S1. To remove the effects of adventitious carbon,
a 30 s Ar sputter was conducted within the XPS. Again, the analytical methods used
were not able to detect Ta because of instrumental limitations. Its presence, at least at the
level of a dopant, was inferred from the systematic changes it imparted on the permeance
properties of the membranes. It has been stated that the nominal sensitivity of XPS is about
0.1 at.%. However, it has also been noted that the elemental sensitivity factors for various
elements can differ by as much as a factor of 100 [47]. Thus, the maximum levels of Ta in
the samples studied here were estimated to be 0.1–10 at.%. As is shown in later sections,
increasing Ta in the membranes resulted in a slight increase in pore size and a decrease in
hydrothermal stability.

Interestingly, a comparison of the elemental analysis by XPS and EDS showed oppos-
ing trends. The XPS results found no Al detected for the Si-650 and Si-3Ta-650 membranes;
however, at higher concentrations of Ta in the CVD mixture, the presence of Al was in-
dicated. The EDS measurements, by comparison, showed a low Si content for the Si-650
with the Si content growing with increasing Ta in the CVD mixture. One possibility is that
the presence of TaEO in the mixture impeded the deposition even though the Ta was not
greatly incorporated. This was indicated by the longer CVD time required to form the same
closed pore structure when Ta was present.
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Table 3. Atomic concentrations from XPS analysis before and after a 30 s Ar sputter, and EDS of
the surface.

XPS EDS

Membrane ID

Elemental Fraction/%
Elemental Fraction/%

Before Sputtering After Sputtering

O1s Al2p Si2p O1s Al2p Si2p O Al Si

Si-650 65 0.0 35 68 0.0 32 73 26 0.5
Si-3Ta-650 68 0.0 32 67 1.5 32 81 14 4.2

Si-10Ta-650 70 13 17 68 18 15 79 14 7.0
Si-40Ta-650 66 4.6 30 65 10 24 80 13 6.6
Si-10Ta-600 65 6.9 28 70 11 19 79 14 6.9
Si-10Ta-500 70 7.4 23 66 16 18 79 15 6.3
Si-10Ta-400 67 9.3 24 65 16 18 84 10 5.3

For the depth profile analysis, the Si-650 membrane was selected due to the initial
XPS compositional analysis not detecting any Al in the sample. It should be noted that the
sputtering rates of Si and Al are the same, while that of Ta is about 5% higher [48]. Although
the XPS penetration depth is small, the lack of Al signal suggests that the Si-650 membrane
had the thickest silica layer deposited by CVD. This is consistent with the observation,
discussed in the next section, that the addition of TaEO to the CVD mixture slowed the
permeation decline and led to a larger pore network formation. Figure 3 shows the Si2p and
Al2p peaks as a function of sputter time for Si-650. The first 3 min of sputter time detected
nearly zero Al peak intensity, and with a sputter rate of about 25 nm min−1 the thickness of
the top layer of silica was estimated to be less than 100 nm. After this period, the Al peak
intensity continued to rise while the Si peak intensity fell. The Si2p peak intensity was still
detectable after 35 min but was quite small. The CVD gases likely infiltrated the alumina
pore network during early deposition periods, leading to a small amount of penetration
and deposition of Si in the support. Although the silica may have deposited deep into the
support, the selective silica layer was likely near the top surface where Al was not detected.
This analysis provides an indication of the separation portion of the silica layer thickness
and is supported by SEM images of microporous silica layers from the authors’ previous
studies being less than 100 nm [40,42].

3.3. Effect of Increasing Tantalum Content

Increasing TaEO content in the CVD gas mixture at 650 ◦C resulted in an increase in
gas permeance for most gases tested; the gas permeance for several gases measured at
400 ◦C is shown in Figure 4. Additionally, all three membranes with tantalum ethoxide
in the CVD mixture (Si-3Ta-650, Si-10Ta-650, Si-40Ta-650) resulted in separation factors
that appeared to be based purely on the size of the gas molecules. Unfortunately, Ne was
not measured so the likely site-hopping mechanism [21,30,34] could not be established.
Nevertheless, for the larger gas species the synthesis resulted in good pore size control
during membrane synthesis and an effective molecular sieving structure. Only in the
case of the Si-650 membrane was the CH4 permeance higher than the N2 permeance,
suggesting defects in the pore size may have resulted in Knudsen flow that adversely
affected selectivity. In this case, the permeances of the larger molecules appeared to be
between Knudsen and molecular sieving, with O2 and CH4 permeances being nearly
equal. The flow of small molecules (He, H2) appeared unaffected because the contribution
of Knudsen flow from defects was expected to be less than 2% of the H2 permeance
(e.g., assuming 100% Knudsen regime for CH4 permeance would result in H2 permeance of
only 3.4 × 10−9 mol m−2 s−1 Pa−1, or 1.7% of total H2 permeance). In fact, the He and H2
were likely permeating by a solid-state site jump mechanism [21,30,34] through the dense
part of the membrane, which actually was a network of solubility sites.
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Figure 5. (a) Permeance of H2 and O2 vs. CVD time at 650 °C for the various Si/Ta precursor ratios. 

(b) Permeance of CH4 vs CVD time at 650 °C for the various Si/Ta precursor ratios. Legend: Si-650 [

■], Si-3Ta-650 [●], Si-10Ta-650 [▲], Si-40Ta-650 [▼]. 

3.4. Thermal vs. Reactive Deposition 

To better understand the deposition behavior, CVD was conducted under both ther-

mal deposition conditions involving only Ar gas and reactive deposition conditions using 

O2 gas (Figure 6). Because the Si-10Ta-650 membrane showed the highest selectivities 

(H2/CH4 of 720, O2/CH4 of 10 measured at 650 °C), the TaEO/TEOS ratio of 0.10 was used 

for these depositions. The O2 oxidized TEOS and TaEO, which significantly reduced the 

].

One potential explanation for the increase in pore size control and enhancement in
selectivity for O2, N2 and CH4 gases is that the addition of TaEO resulted in a slower
deposition rate. As Figure 5 shows, the decline in gas permeance versus CVD time was
slower with increasing TaEO levels. This slower decline in gas permeation may have been
caused either by a slower deposition rate leading to a slower pore closure or by interactions
of TaEO with TEOS to form larger pores during the deposition process. The addition of
secondary precursors to the CVD mixture has been shown previously to slow the pore
closure rate [42].
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Figure 5. (a) Permeance of H2 and O2 vs. CVD time at 650 °C for the various Si/Ta precursor ratios. 

(b) Permeance of CH4 vs CVD time at 650 °C for the various Si/Ta precursor ratios. Legend: Si-650 [

■], Si-3Ta-650 [●], Si-10Ta-650 [▲], Si-40Ta-650 [▼]. 

3.4. Thermal vs. Reactive Deposition 

To better understand the deposition behavior, CVD was conducted under both ther-

mal deposition conditions involving only Ar gas and reactive deposition conditions using 

O2 gas (Figure 6). Because the Si-10Ta-650 membrane showed the highest selectivities 

(H2/CH4 of 720, O2/CH4 of 10 measured at 650 °C), the TaEO/TEOS ratio of 0.10 was used 

for these depositions. The O2 oxidized TEOS and TaEO, which significantly reduced the 
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3.4. Thermal vs. Reactive Deposition 

To better understand the deposition behavior, CVD was conducted under both ther-

mal deposition conditions involving only Ar gas and reactive deposition conditions using 

O2 gas (Figure 6). Because the Si-10Ta-650 membrane showed the highest selectivities 

(H2/CH4 of 720, O2/CH4 of 10 measured at 650 °C), the TaEO/TEOS ratio of 0.10 was used 
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Figure 5. (a) Permeance of H2 and O2 vs. CVD time at 650 °C for the various Si/Ta precursor ratios. 

(b) Permeance of CH4 vs CVD time at 650 °C for the various Si/Ta precursor ratios. Legend: Si-650 [

■], Si-3Ta-650 [●], Si-10Ta-650 [▲], Si-40Ta-650 [▼]. 

3.4. Thermal vs. Reactive Deposition 

To better understand the deposition behavior, CVD was conducted under both ther-

mal deposition conditions involving only Ar gas and reactive deposition conditions using 

O2 gas (Figure 6). Because the Si-10Ta-650 membrane showed the highest selectivities 

(H2/CH4 of 720, O2/CH4 of 10 measured at 650 °C), the TaEO/TEOS ratio of 0.10 was used 

for these depositions. The O2 oxidized TEOS and TaEO, which significantly reduced the 

].

3.4. Thermal vs. Reactive Deposition

To better understand the deposition behavior, CVD was conducted under both thermal
deposition conditions involving only Ar gas and reactive deposition conditions using
O2 gas (Figure 6). Because the Si-10Ta-650 membrane showed the highest selectivities
(H2/CH4 of 720, O2/CH4 of 10 measured at 650 ◦C), the TaEO/TEOS ratio of 0.10 was used
for these depositions. The O2 oxidized TEOS and TaEO, which significantly reduced the
deposition temperature of the precursors, and a membrane was successfully deposited at
400 ◦C. A lower temperature of 350 ◦C was attempted but was unsuccessful in forming a
selective membrane even after 6 h of deposition. Although it is reasonable to assume that
a membrane would form after extremely long CVD times [49,50], this study focused on
deposition times of within a few hours to keep the process manageable.
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Figure 5. (a) Permeance of H2 and O2 vs. CVD time at 650 °C for the various Si/Ta precursor ratios. 

(b) Permeance of CH4 vs CVD time at 650 °C for the various Si/Ta precursor ratios. Legend: Si-650 [

■], Si-3Ta-650 [●], Si-10Ta-650 [▲], Si-40Ta-650 [▼]. 

3.4. Thermal vs. Reactive Deposition 

To better understand the deposition behavior, CVD was conducted under both ther-

mal deposition conditions involving only Ar gas and reactive deposition conditions using 

O2 gas (Figure 6). Because the Si-10Ta-650 membrane showed the highest selectivities 

(H2/CH4 of 720, O2/CH4 of 10 measured at 650 °C), the TaEO/TEOS ratio of 0.10 was used 

for these depositions. The O2 oxidized TEOS and TaEO, which significantly reduced the 
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Figure 5. (a) Permeance of H2 and O2 vs. CVD time at 650 °C for the various Si/Ta precursor ratios. 

(b) Permeance of CH4 vs CVD time at 650 °C for the various Si/Ta precursor ratios. Legend: Si-650 [

■], Si-3Ta-650 [●], Si-10Ta-650 [▲], Si-40Ta-650 [▼]. 

3.4. Thermal vs. Reactive Deposition 

To better understand the deposition behavior, CVD was conducted under both ther-

mal deposition conditions involving only Ar gas and reactive deposition conditions using 

O2 gas (Figure 6). Because the Si-10Ta-650 membrane showed the highest selectivities 

(H2/CH4 of 720, O2/CH4 of 10 measured at 650 °C), the TaEO/TEOS ratio of 0.10 was used 

for these depositions. The O2 oxidized TEOS and TaEO, which significantly reduced the 
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Figure 5. (a) Permeance of H2 and O2 vs. CVD time at 650 °C for the various Si/Ta precursor ratios. 

(b) Permeance of CH4 vs CVD time at 650 °C for the various Si/Ta precursor ratios. Legend: Si-650 [

■], Si-3Ta-650 [●], Si-10Ta-650 [▲], Si-40Ta-650 [▼]. 

3.4. Thermal vs. Reactive Deposition 

To better understand the deposition behavior, CVD was conducted under both ther-

mal deposition conditions involving only Ar gas and reactive deposition conditions using 

O2 gas (Figure 6). Because the Si-10Ta-650 membrane showed the highest selectivities 

(H2/CH4 of 720, O2/CH4 of 10 measured at 650 °C), the TaEO/TEOS ratio of 0.10 was used 

for these depositions. The O2 oxidized TEOS and TaEO, which significantly reduced the 
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Figure 5. (a) Permeance of H2 and O2 vs. CVD time at 650 °C for the various Si/Ta precursor ratios. 

(b) Permeance of CH4 vs CVD time at 650 °C for the various Si/Ta precursor ratios. Legend: Si-650 [

■], Si-3Ta-650 [●], Si-10Ta-650 [▲], Si-40Ta-650 [▼]. 

3.4. Thermal vs. Reactive Deposition 

To better understand the deposition behavior, CVD was conducted under both ther-

mal deposition conditions involving only Ar gas and reactive deposition conditions using 

O2 gas (Figure 6). Because the Si-10Ta-650 membrane showed the highest selectivities 

(H2/CH4 of 720, O2/CH4 of 10 measured at 650 °C), the TaEO/TEOS ratio of 0.10 was used 

for these depositions. The O2 oxidized TEOS and TaEO, which significantly reduced the 

].

3.5. Hydrothermal Stability Tests

Previous studies have shown that the addition of secondary elements, such as Al [30],
Co [32], or Nb [35] to the silica network can improve hydrothermal stability. Thus, a series of
hydrothermal stability tests was performed on the Si–Ta membranes to determine if Ta had
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any beneficial effects. Figure 7 shows the results for a series of Si–Ta membranes exposed
to 16 mol% H2O in Ar at 650 ◦C for 100 h. These pure gas measurements were taken by
interrupting the steam exposure and purging with Ar to prevent any effects of adsorbed
H2O. As previously mentioned, the addition of TaEO increased the gas permeances, but this
appeared to have a negative impact on the hydrothermal stability. While Si-650 experienced
a 9% decline in both H2 and CH4 permeances, the Si-40Ta-650 membrane experienced a
decline of 43% in H2 permeance and a decline of 23% in CH4 permeance. This trend means
that the addition of TaEO caused an overall loss of ideal selectivity compared to the pure
TEOS membrane.
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3.4. Thermal vs. Reactive Deposition 

To better understand the deposition behavior, CVD was conducted under both ther-

mal deposition conditions involving only Ar gas and reactive deposition conditions using 

O2 gas (Figure 6). Because the Si-10Ta-650 membrane showed the highest selectivities 

(H2/CH4 of 720, O2/CH4 of 10 measured at 650 °C), the TaEO/TEOS ratio of 0.10 was used 

for these depositions. The O2 oxidized TEOS and TaEO, which significantly reduced the 

]. Permeance measurements taken during
short interruptions of the steam exposure.

Interestingly, the largest flux decline occurred for midsized gases (O2, CO2, N2, CH4),
rather than the smaller gases (He, H2). This is because the larger gases permeate through
the pores, which are eliminated by the hydrothermal treatment, while the smaller gases
permeate by solid-state diffusion, which is unaffected by densification. Figure 8 shows the
permeances of all gases measured on Si-40Ta-650 during both the initial thermal stability
region (0–69 h) and the hydrothermal exposure (69–163 h). During the initial stabilization
period under Ar gas (inert atmosphere), the H2, O2, and CH4 permeances declined by
13%, 26%, and 22%, respectively. Despite the smaller kinetic diameter of CO2 (0.33 nm)
compared to O2 (0.346 nm), the CO2 permeance initial and final measurements were nearly
identical to O2. This indicates that polar effects were present and the CO2 permeance was
inhibited by adsorption in the pores, which has been explored by other groups [43,51].
More notable is that the permeance declines for this Si–Ta membrane were more severe
than the loss that the TEOS membrane (Si-650) experienced during the hydrothermal
stability treatment, suggesting that the addition of TaEO created a more unstable pore
structure. This is consistent with a larger pore structure as the driving force for densification
and pore closure. Under steam, the gas permeances were lowered even more severely
than the selectivities, with H2, O2, and CH4 permeances declining by 57%, 69%, and
23%, respectively.
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Figure 8. Pure gas permeance of various gases at 650 ◦C versus time of exposure to either Ar (0–69 h)
or 16 mol% H2O in Ar (69–163 h) for the Si-40Ta-650 membrane. Permeance measurements taken
during short interruptions of the steam exposure.

Previous studies have resulted in claims that the addition of auxiliary elements can
increase the hydrothermal stability, but it is interesting to note that occasionally the increase
in stability occurs for the membranes with lower initial permeance. For instance, the initial
H2 permeances of the pure SiO2 membranes were higher than the SiO2-Al2O3 membrane
in the work of Amanipour et al. [52] and the SiO2-TiO2 membrane in the work of Gu and
Oyama [34], but both studies reported a significant decline in H2 permeance for the SiO2
membrane. In those studies, the decline was so severe that the final H2 permeance of the
SiO2 membrane was lower than that of the mixed element membranes, which supports
the claim that these auxiliary elements increased hydrothermal stability. In a more extreme
example, the work of Boffa et al. [35] showed an increase in stability for Si-Nb membranes,
but the Si-Nb membranes had H2 permeance nearly an order of magnitude lower than
the SiO2 membrane both before and after hydrothermal exposure. Thus, the increase in
stability did not result in an increase in H2 separation productivity. For comparison to the
current work, the most similar study is that of Igi et al. [32], who observed that Co-doped
silica membranes resulted in higher initial H2 permeance, but also greater rates of decline in
performance as compared to a pure silica membrane. Despite the increased rate of decline,
however, the decline was slow enough that the stabilized H2 permeance remained higher
for the Co-doped membrane than for the pure silica after hydrothermal exposure. In the
current study, the decline in permeance was more severe for increasing Ta content, but the
final H2 permeance remained higher for membranes fabricated with a higher Ta content.
Thus, the data suggest a lack of hydrothermal stability in Si–Ta membranes, but part of this
is due to differences in the initial permeances and selectivities.

The permeance changes as a result of steam exposure were compared to changes
in the effective pore size of the membranes. Measuring the pore size of molecular sieve
membranes is a challenge because of the sub-nanometer sizes. The bubble-point method is
limited to about 50 nm due to the increasing pressure required, while N2 adsorption mea-
surements are limited to pore sizes above the kinetic diameter of N2 (0.364 nm). The only
physical measurement technique reported for kinetic sieving level porosity is the positron
annihilation lifetime spectroscopy (PALS) technique [53], but this requires sophisticated
equipment not commonly available. Instead, a theoretically derived solution known as
the normalized Knudsen based permeance equation was used, which assumes the same
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apparent activation energy of permeation for each gas [54]. The average pore size is related
by an expression known as the normalized Knudsen based permeance, f,

f =
Pi

PHe
√

MHe/Mi
=

(
1− di/dp

1− dHe/dp

)3

(3)

where Pi is the permeance of gas species i, Mi is the mass of gas species i, di is the kinetic
diameter of gas species i, and dp is the average pore size. In this equation, f represents the
deviation from the Knudsen regime due to the permeance contribution from molecular
sieving (f = 1 for Knudsen flow and is reduced to less than one when molecular sieving
contributes to the overall flow).

The decrease in permeance of gases is summarized in Figure 9a, and can be compared
to the change in average pore size in Figure 9b. The addition of TaEO increased the resultant
initial pore size of the membranes, and a clear relationship between a higher initial pore
size and a greater decline under hydrothermal exposure is evident; in fact, Si-650 had no
TaEO content and saw only a small change in the gas permeances and pore size. However,
it can be observed that the final pore size remained larger with increasing TaEO content.
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Figure 9. (a) Fractional permeance loss at 650 ◦C of H2, O2 and CH4 for the various Si–Ta membranes
after exposure to a 16 mol% H2O in Ar gas atmosphere for 96 h. (b) Change in calculated pore size of
the Si–Ta membranes from exposure to a 16 mol% H2O in Ar stream after 24 h and 96 h.

Figure 9b shows that the average pore size tends to increase with TaEO fraction.
Matching this, the permeance of H2 also increases. However, the permeances of O2 and
CH4 deviate from this trend, indicating that the pore size is not a factor in their permeance
except at the highest pore sizes.

4. Conclusions

Various conditions for the preparation of tantalum-doped microporous silica mem-
branes by CVD were explored. The concentration of tantalum (V) ethoxide added to
tetraethyl orthosilicate was varied from 0 to 40 mol% to form membranes at deposition
temperatures of 400 ◦C to 650 ◦C, using either thermal decomposition or oxidative-assisted
decomposition. High H2 permeances in the range of 10−7 mol m−2 s−1 Pa−1 were ob-
tained, with permeance increasing with Ta content in the CVD mixture. A 10% Ta mixture
produced the best mix of H2 permeance (4.9 × 10−7 mol m−2 s−1 Pa−1) and selectivity
(H2/CH4 of 720, O2/CH4 of 10) measured at 650 ◦C and was selected as the base case to
test with other synthesis parameters. Variations in temperature showed an increase in
H2/CH4 selectivity at higher deposition temperatures, at the expense of O2/CH4 selectivity.



Membranes 2022, 12, 889 13 of 15

Measured at 400 ◦C, the highest H2/CH4 selectivity of 530 was obtained with a membrane
prepared using thermal CVD conditions at 650 ◦C, but the highest O2/CH4 selectivity of 6
was obtained by lowering the thermal CVD conditions to 600 ◦C. Calculation of the resul-
tant pore sizes showed that the average pore size in the membranes after CVD increased
from 0.35 nm for pure Si to 0.37 nm for a Si-40Ta CVD mixture. This increase in pore size
correlated with an increase in O2/CH4 selectivity at the expense of H2/CH4 selectivity
due to a shift in pore size around that of the O2 molecule (0.346 nm). A slight increase
to 0.37 nm created a network of pores larger than O2 on average, but still smaller than
that of CH4 (0.38 nm). This resulted in an outsized increase in O2 permeance over that
of CH4. However, any increase in pore size increased CH4 permeation, while having a
minimal effect on the solid-state diffusion of H2. Additionally, an increase in pore size
was correlated with a decrease in hydrothermal stability, with the higher tantalum content
membranes suffering greater performance declines during 96 h of exposure to 16 mol%
H2O in Ar at 650 ◦C. The decrease in hydrothermal stability is suggested to be caused by a
greater tendency for larger pores to densify under the presence of steam.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/membranes12090889/s1, Figure S1: SEM surface micrographs of
each membrane surface, Figure S2: XANES XRF spectra using a fluorescence detector on membrane
Si-10Ta-650, Table S1: Raw peak fitting results for the XPS of all tested membranes. Peak fitting was
performed on the data with no manipulation, and peaks were not shifted based on the C1s position.
The C1s peak was undetected for all membranes after the 30 s sputter, so no position is known to
account for localized charging.
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