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Abstract: The latest document indicates that the hydrogen/vanadium redox flow battery has better
energy density and efficiency than the vanadium redox flow battery, as well as being low-cost
and light-weight. In addition, the hydrogen, electrical conductivity, voltage, current, temperature,
electrolyte flow, and runner pressure inside the hydrogen/vanadium redox flow battery can influence
its performance and life. Therefore, this plan will try to step into the hydrogen/vanadium redox
flow battery stack and improve the vanadium redox flow battery of this R&D team, whereof the
electrolyte is likely to leak during assembling, and the strong acid corrosion environment is likely to
age or fail the vanadium redox flow battery and microsensors. Micro-electro-mechanical systems
(MEMS) are used, which are integrated with the flexible 7-in-1 microsensor, which is embedded in
the hydrogen/vanadium redox flow battery for internal real-time microscopic sensing and diagnosis.

Keywords: hydrogen/vanadium redox flow battery; micro-electro-mechanical systems (MEMS);
high performance; corrosion-resistant flexible 7-in-1 microsensor; real-time microscopic diagnosis

1. Introduction

In compliance with Taiwan’s energy-transformation policy, the government depart-
ments push renewable energy actively and plan to attain a long-term goal for net zero
emissions in 2050. However, renewable energy is subject to the weather, leading to in-
termittent power generation and challenges to a stable power supply and maintaining
power quality. Therefore, the Taiwan Power Company set up a power-trading platform to
push ancillary service transactions and opened private enterprise investment in building
energy-storage systems to provide ancillary services. In order to enhance the safety of
energy-storage systems, the Ministry of Economic Affairs has stipulated special regulations
for energy-storage systems referring to the consumer electrical appliance regulations of
the national electrical safety code (NESC), according to which the users set up energy-
storage systems, the employees design the construction, and the power companies inspect
the power supply. Renewable energy is carbon-free and complements fossil fuels. Its
advantage is that it reduces the value at risk, and its disadvantage is that it is expensive.
Therefore, it can meet CO2 targets and a reasonable risk value at the same time. In the
case of a reasonable risk value, the proportion of renewable energy power generation
should be kept at about 25%. Especially after the realization of denuclearization in 2025,
the proportion of renewable energy is a key power generation technology to support the
national low-carbon goal and the low risk value of the power generation system. Gas-fired
power generation has the advantage of low carbon, but the cost is high, and it can replace
other fossil fuels, which has the disadvantage of increasing the risk value. Therefore,
after denuclearization by 2025, although the proportion of power generation will increase
significantly by 31% (due to additional low-carbon requirements), it can only maintain a
proportion slightly above 30%. Coal-fired power generation is low-cost, but it has high
CO2 emissions and is substituted with other fossil fuels, which is not good for increasing
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the value at risk. Therefore, after denuclearization by 2025, although the proportion of
power generation will increase slightly by 39% (to supplement the demand for power
supply security and low cost), with the increase in the proportion of renewable energy
and gas-power generation, coal-fired power generation will be limited by high CO2 emis-
sions, as hybrid generation will drop slightly to 38% [1,2]. In order to reduce the cost of
the vanadium redox battery, Hsu et al. [3] substituted aqueous catholyte with gaseous
hydrogen and maintained vanadium ions in the anolyte as a hydrogen/vanadium redox
flow battery (HVRFB). The influence of the cathode was checked to study the HVRFB
configuration, Pt load, humidity condition, and electrolyte flow velocity. The findings
showed that the Pt load and the anolyte flow velocity had a significant impact on the
electrolyte utilization. Yufit et al. [4] designed, assembled, and tested a novel regenerated
cell based on an aqueous vanadium solution V(V)/V(IV) and hydrogen. The cell used
gaseous anolyte and liquid catholyte to provide several latent advantages in large-scale
application to the power grid. The charge and discharge experiments in different conditions
showed encouraging reversibility and performance. Dewage et al. [5] indicated that placing
reference electrodes in the redox flow battery without disturbing the battery operation was
a significant challenge. The electrochemical impedance analyzer was used in the study of
Dewage et al., and a substitute reference electrode setting was used to determine the losses
of the cathode, the anode, and the whole battery. Their findings showed that the maximum
irreversible loss came from the diffusion limitation in the cathode and the vanadium cross
effect. These findings can further improve and optimize the cell design and material of
two electrodes in the regenerative hydrogen/vanadium fuel cell. Jr et al. [6] used a Pt/C
hydrogen electrode, a high-surface-area carbon nanotube (CNT) vanadium electrode, and
an interdigitated flow-field plate at the two electrodes to assemble a hydrogen/vanadium
redox battery. The half-cell performance was measured by using a reference electrode, and
the film loss and vanadium cross effect on the hydrogen electrode were determined. Cyclic
research was performed with a high current density of 300 mA/cm2, and the total energy
efficiency was higher than 60%. Tenny et al. [7] found that the peak power performance
of the hydrogen/vanadium reversible fuel cell with MWCNT carbon cloth electrode was
0.61 W·mg−1·cm−2, that of MWCNT carbon paper was 0.54 W·mg−1·cm−2, and that of
common carbon cloth was 0.29 W·mg−1·cm−2. Jr et al. [8] observed higher performance in
higher vanadium flow velocity, a thinner membrane, and the CNT vanadium electrode. The
peak power density was higher than 540 mW/cm2 when the NR212 membrane and CNT
vanadium electrode were used. Jr et al. [9] found that a thinner ion-exchange membrane in-
creased the cross rate in comparison to commercial Nafion membrane, and manufacturing
and testing the electrospinning mixed nano-fibrous membrane in the hydrogen/vanadium
reversible fuel cell could reduce the cross rate and enhance the cell performance. Muñoz
et al. [10] proposed a model allowed to simulate the system, and the regenerative fuel
cell model was further founded. Garcia et al. [11] found that the hydrogen/vanadium
system with high energy density was proved to have higher vanadium concentration,
standard cell potential, and high theoretical storage capacity. The system was implemented
by developing and using an HER/HOR catalyst; the catalyst had higher chemical stability
for halogen containing electrolytes, and the conventional catalyst (Pt/C) was proved to
degrade rapidly in experiments.

The experimental results of Hu et al. [12] showed that the Pt/C could be stable in
electrolyte and maintain high catalytic activity in acidic conditions. In comparison to
electrolysis, the electrolyte prepared using Pt/C showed similar cell performance (CE~93%,
EE~85%), meaning the electrolyte prepared by using the catalytic reduction technique
meets the quality requirement. Chakrabarti et al. [13] demonstrated that the reduced
graphene oxide improved Freudenberg H23 carbon paper as an electrode in the regener-
ative hydrogen/vanadium fuel cell (RHVFC) for the first time. Under all of the current
densities, the rGO-modified heat-treated CP resulted in better battery capacity utilization
than the untreated CP. Pino-Muñoz et al. [14] studied the characteristic of 5 cm2 RHVFC;
the characteristic was based on a lot of experimental measurements of vanadium elec-
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trolytes at different flow velocities. When the vanadium electrolyte and hydrogen flow
was 100 mL·min−1, the polarization property maximum peak power density of the cell
was 2840 W·m−2. Dung et al. [15] found that an increase in the thermal stability of the
electrolyte with phosphate additive could be attributed to the formation of complexes
between the additive and vanadium ions. The CV and EIS measurements showed that
better electrochemical properties could be obtained by using phosphate additives. The
activity of the electrolyte with additives was enhanced so that the VFB performance was
enhanced. Therefore, the phosphate additive enhanced the long-term stability of V(V)
electrolytes. Zhou et al. [16] proposed the ion concentration-dependent ionic mobility of
VRFB and developed a 2D transient model that contained the proposed ionic mobility.
This model can (i) estimate ionic conductivity more accurately; (ii) predict the cell voltage
more accurately, especially with high current density; and (iii) simulate the concentration
distribution and local current density in the electrode more truly. Tang et al. [17] used the
Nernst equation to develop a dynamic model of cell potential; the result showed that under
the default cell voltage limitation, the relationship between the capacity loss rate and the
cycle index was influenced by the absolute and relative magnitudes of different vanadium
ion diffusion coefficients. In the case without a side reaction, a higher diffusion rate is
sometimes stabilized faster, and steady-state capacity is reached within fewer charge and
discharge cycles. Rahman et al. [18] developed different additive formulas and performed
a comprehensive evaluation, to reduce the thermal precipitation of a highly supersaturated
V(V) solution in the application of VRFB as possible. Parz et al. [19] indicated that the criti-
cal electrode potential was not measured in the load-running investigation. After a period
of short supply of hydrogen, the stoichiometric boom of hydrogen resulted in very high
potential at the cathode electrode. This kind of influence is very important in the starting
and terminal operating periods of hydrogen/vanadium fuel cell systems. Jiang et al. [20]
proposed a strategy for enhancing the VRFB performance and a method to evaluate the
battery performance. Their findings showed that the VRFB could implement 80.83% energy
efficiency and 76.98% electrolyte utilization under 600 mA cm−2 high current density, and
they provided a 2.78 W cm−2 high peak power density and ~7 A cm−2 limiting current
density at room temperature. Additionally, the battery could circulate over 20,000 times
steadily without apparent attenuation under 600 mA cm−2, demonstrating excellent cycle
stability. Su et al. [21] found that the upstream channel of a serpentine interdigitated flow
field was free of overflow. Assuming that the upstream channel has a higher pressure
than the downstream channel, the liquid water will be easily pushed into the downstream
channel. The number of serpentine interdigitated channels is smaller than that of the
downstream interdigitated channels, so the gas volume velocity is high, and the liquid
water is likely to be pushed to the outlet. The design of a serpentine interdigitated flow
field seems more suitable for water removal, which has been proven in small flow fields,
but the serpentine flow field generates better performance in larger active area batteries.

2. Development of the Flexible 7-in-1 Microsensor

This study successfully integrated seven sensing structures by using MEMS technol-
ogy, including hydrogen, electrical conductivity, temperature, voltage, current, flow, and
pressure. The process of the flexible 7-in-1 microsensor is shown in Figure 1.
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Figure 1. Process diagram of flexible 7-in-1 microsensor.

(a) First of all, the PI film was cleaned with acetone and methanol organic solutions,
respectively, and the residual methanol was removed by DI water. The surface dust
and residual oil and fat were removed to enhance the adhesive ability of the thin
film metal.

(b) AZP4620 was coated, and the electrode patterns of micro hydrogen, electrical conduc-
tivity, temperature, pressure lower electrode, voltage, current, and flow sensors were
defined by using photolithography.

(c) Cr and Au were evaporated by an E-beam evaporator as the adhesion layer and
sensing electrode layer.

(d) LTC 9320 was coated as the protection layer after lift-off using acetone. The sensing
areas and pins of micro voltage, current, and hydrogen sensors were defined by
using the photolithography process so that they were exposed and not covered by the
protection layer.

(e) LTC 9305 was coated as a dielectric layer after the protection layer, and the sensing
areas of micro-pressure were defined by using the photolithography process.

(f) AZP 4620 was coated, and the upper electrode pattern of the micro pressure sensor
was defined by using the photolithography process. Acetone was used for lift-off.

(g) AZP4620 was coated, and the micro hydrogen sensor pattern was defined. The tin
dioxide and Pt were evaporated on the micro hydrogen sensor, and acetone was used
for lift-off. The production of a flexible 7-in-1 microsensor was completed. Figure 2
shows the optical micrograph of the flexible 7-in-1 microsensor.
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Figure 2. Optical micrograph of the flexible 7-in-1 microsensor.

3. Calibrations of the Flexible 7-in-1 Microsensor

The calibrations of micro temperature, pressure, flow, voltage, current, electrical
conductivity, and hydrogen sensors were introduced in this section.

3.1. Temperature Calibration of Flexible 7-in-1 Microsensor

The flexible 7-in-1 microsensor and the thermometer of the BM-525 BRYMEN digital
multimeter were put in a DENG YNG DS45 drying oven. After the reference control
temperature was set up and stabilized, the resistivity of the micro temperature sensor was
extracted. In the working temperature range, the resistivity was extracted at an interval
of 5 ◦C. The micro temperature sensor was calibrated three times, and the mean of the
measured calibration curve was taken. Figure 3 shows the average calibration curve of
three micro-temperature sensors, and the curve approximates the linear variation.
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3.2. Pressure Calibration of the Flexible 7-in-1 Microsensor

This study used a capacitive micro pressure sensor, which is a parallel plate capacitor
of a sandwich structure. The capacitive micro pressure sensor contained a nonconducting
dielectric layer sandwiched between two parallel electrodes, and a fixed pressure was
applied to the micro pressure sensor by using a Druck-DPI 530 pressure controller. Mean-
while, the capacitance data were extracted by using a Wayne Kerr Electronics 4230 LCR
meter. The calibration result is shown in Figure 4.
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3.3. Flow Calibration of the Flexible 7-in-1 Microsensor

The micro flow sensor was mainly placed in the part of the liquid flow end because
continuous fluid flow only existed in this part. The micro flow sensor was embedded in the
hydrogen/vanadium redox battery to avoid the fluid inducing vibration and noise of the
micro flow sensor. Afterwards, the power supply, micro flow sensor, and NI PXI 2575 were
connected in series for measuring the current. The power supply supplied a steady voltage
to the micro flow sensor and generated heat so that the current fell. The fluid carried the
generated heat away, so that the current rose, and the flow was measured at this point. The
vanadium redox was supplied by the YOTEC WS Series speed adjusting flow pump. The
base of the water flow calibration range was 260 mL/min, and the measurement proceeded
at an interval of 5 mL/min until 300 mL. The calibration result is shown in Figure 5.
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3.4. Voltage, Current, and Electrical Conductivity Calibration of Flexible 7-in-1 Microsensor

This study used a digital multimeter to check whether the measurement of a micro
voltage sensor and a micro current sensor is correct. The cell voltage and current were
verified by using the electric meter in the calibration procedures, and then the micro sensing
head was connected to the cell. Normal sensing of micro voltage and current sensors was
verified if there was no error. The calibration is shown in Figures 6 and 7. The micro
electrical conductivity sensor was in normal operation.
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3.5. Hydrogen Calibration of Flexible 7-in-1 Microsensor

The micro hydrogen sensor was calibrated by using the hydrogen and oxygen supplied
from an eight-channel fuel-cell testing machine. The micro hydrogen sensor was embedded
in the hydrogen/vanadium redox battery to make sure the space was filled with the
currently tested gas, and then the sensor was linked with the NI PXI 2575 data-acquisition
unit to capture the resistance changes. When the calibration began, the oxygen at a constant
temperature and a constant flow was led in. The oxygen ions were adsorbed by the surface
of the micro hydrogen sensor, and the resistance rose as the surface was full of oxygen
ions. Then, the hydrogen at a constant temperature and a constant flow was led in. The
hydrogen carried oxygen ions away from the surface of the micro hydrogen sensor so that
the resistance dropped, and the hydrogen was tested by using the resistance difference, as
shown in Figure 8.
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4. Development of Hydrogen/Vanadium Redox Battery

The technology of this hydrogen/vanadium redox battery was built on a vanadium
redox battery, so the materials employed were about the same. The only difference was
that the vanadium fluid was replaced by hydrogen at one end.

4.1. Hydrogen/Vanadium Redox Battery Design

As half of the vanadium electrolyte was substituted by hydrogen, the weight of the
hydrogen/vanadium redox battery was reduced significantly. In addition, the carbon felt
that was in contact with the vanadium fluid (Figure 9) was replaced by carbon paper
(Figure 10) as the hydrogen was applied, which is favorable for hydrogen reactions.
Figure 11 is the stereogram of the hydrogen/vanadium redox battery.
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4.2. Metal Collector Plate, End Plate, and Flow-Field Plate

The primary function of the collector plate was to collect the current in the hy-
drogen/vanadium redox battery through the bipolar plate and to connect the hydro-
gen/vanadium redox battery to the external load. The current from an external power
supply was led to the bipolar plate during charging, of which the bipolar plate was made
of stainless steel, as shown in Figure 12. The end plate provided a uniform pressure on
the whole hydrogen/vanadium redox battery so that it was fully sealed. The eight small
holes on four sides were designed for aligning the center during assembly. Iron rods were
inserted in the holes to fix the center section during assembly in order to avoid dislocation,
as shown in Figure 13. The channels of the flow-field plate were designed as four serpentine
channels, as shown in Figure 14.
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5. Flexible 7-in-1 Microsensor Embedded in Hydrogen/Vanadium Redox Battery

The developed flexible 7-in-1 microsensor was embedded in the hydrogen/vanadium
redox battery for internal measurements. The flexible 7-in-1 microsensor was placed in
the upstream, midstream, and downstream of the liquid flow end and hydrogen end,
respectively, as shown in Figure 15.
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5.1. Internal Voltage Measurement during Charging of Hydrogen/Vanadium Redox Battery

The internal voltage could be measured by connecting the micro voltage sensors at the
liquid flow end and the hydrogen end. The measurement result is shown in Figure 16. The
measured voltage is close to the value on the power supply, and the uptrends are identical,
so the inside of the hydrogen/vanadium redox battery is in a stable electrochemical reaction
state. The downstream voltage is greater than the midstream voltage and greater than the
upstream voltage. It is speculated that the further downstream the vanadium electrolyte
reacts, the longer the reaction time, so the higher the voltage.
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5.2. Internal Current Measurement during Charging of Hydrogen/Vanadium Redox Battery

The hydrogen/vanadium redox battery was supplied with a steady constant current
during charging, and the measured internal current was in the same steady state. It was
induced that the internal electrochemical reaction was steady, as shown in Figure 17.
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5.3. Internal Electrical Conductivity Measurement during Charging of Hydrogen/Vanadium
Redox Battery

The electrical conductivity was the reciprocal of resistance, so the electrical conductiv-
ity in various regions inside the hydrogen/vanadium redox battery could be calculated
from the voltage and current, as shown in Figure 18.
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5.4. Internal Temperature Measurement during Charging of Hydrogen/Vanadium Redox Battery

Figure 19 is a graph showing the internal temperature measurement of the hydro-
gen/vanadium liquid flow. It was observed that the downstream warmed faster than the
midstream and upstream, but the warming was close and finally leveled off.
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5.5. Internal Flow Measurement of Hydrogen/Vanadium Redox Battery

The internal flow of the hydrogen/vanadium redox battery is shown in Figure 20. As
the water inlet was under the oxygen end, the flow was relatively unsteady. The flow was
relatively steady at the posterior inlet/outlet, but the flow velocity decreased due to the
obstruction of the carbon felt.
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5.6. Internal Pressure Measurement of Hydrogen/Vanadium Redox Battery

A fixed pressure was applied to the micro pressure sensor by using a Druck-DPI
530 pressure controller; meanwhile, the capacitance data were captured by a Wayne Kerr
Electronics 4230 LCR meter, as shown in Figure 21.
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5.7. Internal Hydrogen Measurement of Hydrogen/Vanadium Redox Battery

Figure 22 shows the internal hydrogen measurement of the hydrogen/vanadium
redox battery. The hydrogen was admitted through eight channels in this study, and the
measurement could be performed as long as the eight channels and battery were free of gas
leakage or incomplete installation. The upstream micro hydrogen sensor responded first,
followed by midstream and downstream. The interaction was intense at the beginning and
gradually slowed down when the hydrogen molecules occupied the whole reaction area.
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6. Conclusions 
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cessfully. This flexible 7-in-1 microsensor has seven sensing functions, is resistant to elec-
trochemical environments, is available for real-time measurements, and can be placed in
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