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Abstract: Artificial lipid bilayer systems, such as vesicles, black membranes, and supported lipid
bilayers (SLBs), are valuable platforms for studying ion channels at the molecular level. The recon-
stitution of the ion channels in an active form is a crucial process in studies using artificial lipid
bilayer systems. In this study, we investigated the assembly of the human ether-a-go-go-related gene
(hERG) channel prepared in a cell-free synthesis system. AFM topographies revealed the presence
of protrusions with a uniform size in the entire SLB that was prepared with the proteoliposomes
(PLs) incorporating the cell-free-synthesized hERG channel. We attributed the protrusions to hERG
channel monomers, taking into consideration the AFM tip size, and identified assembled structures
of the monomer that exhibited dimeric, trimeric, and tetrameric-like arrangements. We observed
molecular images of the functional hERG channel reconstituted in a lipid bilayer membrane using
AFM and quantitatively evaluated the association state of the cell-free synthesized hERG channel.

Keywords: supported lipid bilayer; cell-free expression; ion channel; hERG; kv11.1; atomic force
microscopy

1. Introduction

Cell membranes are highly complex matrices composed of a vast array of macro-
molecules, in particular, a wide range of lipids and membrane proteins [1,2]. The trans-
portation of ions, signals, and energy into and out of cells is conducted through membrane
proteins, and the two-dimensional organization of membrane proteins and lipids plays an
essential role in these reactions [3–6]. Ion channels are membrane proteins that regulate
ion fluxes across the cell membranes for neuronal signal transduction, control of osmotic
pressure, and the generation of action potential (AP). Malfunction of ion channels is asso-
ciated with various diseases, and thus, they are regarded as an important subject in the
fields of medicine and drug discovery [7–9]. In multimeric ion channels, the assembly
of homologous structural units results in a small pore at the central axis, serving as an
ion-conducting passage. Artificial lipid bilayer systems, such as vesicles, black membranes,
and supported lipid bilayers (SLBs), are valuable platforms for the study of ion channels at
the molecular level [10,11].

The human ether-a-go-go-related gene (hERG) channel [12–16] is a voltage-dependent
potassium (Kv) channel encoded by KCNH2. It is primarily found in neurons and cardiac
cells, and its function is well understood in the heart. The hERG channel is responsible
for mediating the rapid delayed rectifier K+ current, which makes a major contribution to
the repolarization phase of cardiac AP. During the repolarization phase, the hERG channel
quickly reopens and recovers from the inactivated state, facilitating AP termination, and
maintains the QT interval on the electrocardiogram. Unintended side effects on the hERG
channel due to off-target toxicity of clinical drugs causes serious cardiac arrhythmia [13–15].
Therefore, structural observation of the hERG channel is crucially important for expediting
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the drug discovery process by shedding light on the underlying inhibition mechanism
caused by a wide variety of chemically diverse drugs [17]. Recently, the high-resolution
structure of the pore domain of the hERG channel was revealed at a resolution of 3.8 Å using
cryo-electron microscopy [18]. Wang and Mackinnon constructed a truncated hERG channel
with two segments being deleted (141-350 and 871-1005) to prevent molecular aggregation
and increase molecular stability [18]. The truncated construct contains 814 amino acid
residues, while a full-length hERG channel contains 1159 amino acid residues.

Recent advances in cell-free synthesis technology have stimulated profound interest
in the field of membrane protein research using artificial cell membrane systems [19–22].
Cell-free synthesis systems enable the direct in vitro production of pure target proteins
with the full length of amino acid residues derived from a protein-encoding plasmid,
without the need for cell culturing and protein purification. These systems are based on
various sources, including cell extracts such as those from E. coli and wheat-germ [23,24],
as well as recombinant proteins [25]. Initially, the method is developed for water-soluble
proteins and subsequently is applied to membrane proteins [19–22]. By conducting cell-
free synthesis of membrane proteins in the presence of artificial lipid bilayers, e.g., lipid
vesicles (also referred to as liposomes) and nanodiscs, under appropriate conditions, the
proteins are reconstituted into the lipid bilayer during the synthesis process and obtained
as proteoliposomes (PLs). The next critical phase involves the development of experimental
methods to investigate whether the cell-free synthesized membrane proteins consistently
reproduce their structures and functions in native membranes. This step is essential for
validating the utility of the cell-free synthesized proteins in artificial biomembrane systems.

Recently, Tadaki et al. successfully recorded the activities of the cell-free-synthesized
full-length hERG channel by the free-standing bilayer lipid membrane (BLM) method using
a microfabricated silicon chip with a nanotapered aperture [26]. The ternary BLM consisting
of egg-derived phosphatidylcholine (PC), egg-derived phosphatidylethanolamine (PE),
and cholesterol (Chol) in the study is capable of retaining the activity of various ion
channels [27–29]. The PL incorporating the hERG channel was prepared using a wheat
germ cell-free translation system by expressing the hERG channel in the presence of
PC+PE+Chol vesicles. The single-channel current of the hERG channel appeared after
the addition of the hERG-expressed PL to the BLM and was inhibited with astemizole,
which is a representative inhibitor for the hERG channel [26]. Recent studies on ternary
PC+PE+Chol-SLBs revealed that the fusion of PLs is promoted by microdomains existing
in the PC+PE+Chol bilayer [30,31], and that the microdomains are rich in polyunsaturated
lipids [32,33].

In this study, our aim is to observe the molecular structure and association states of the
hERG channel in the bilayer membrane by atomic force microscopy (AFM) using the SLB
system [34–37]. Even though the single-channel current measurement of the cell-free syn-
thesized hERG channel was achieved [26], the throughput of the channel recording is still a
subject for improvement [28,38]. The cell-free synthesis system provides full-length hERG
channel monomers with high purity, but the efficiency in assembling these monomers into
the functional tetrameric state remains unknown. AFM is a powerful technique that enables
the observation of membrane proteins at a single-molecule level [39–43]. A methodology
for evaluating the association states of cell-free synthesized membrane proteins is valuable
for improving the efficiency of cell-free synthesis and the reconstitution of membrane
proteins in artificial lipid membrane systems such as the BLM and SLB.

2. Materials and Methods

The phospholipid reagent L-α-phosphatidylcholine (from egg) (PC) and L-α-phosphatidy
lethanolamine (transphosphatidylated (egg)) (PE) were purchased from Avanti Polar Lipids
(Alabaster, AL, USA). 1,2-bis-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-
undecanoyl)-sn-glycero-3-phosphocholine (Bis-Bodipy-FL-PC, Ex/Em: 500/510 nm) was
purchased from Thermo Fisher Scientific (Waltham, MA, USA). These phospholipid agents
were used as received, without further purification. Chol was purchased from Wako Pure
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Chemicals (Osaka, Japan), and recrystallized three times from methanol prior to use. The
chloroform solutions of PC, PE, and Chol were mixed at a ratio of PC:PE:Chol = 7:1:2 (w/w)
(molar ratio of 0.58:0.09:0.33) in a clean glass vial. The mixed solution was dried using a
stream of nitrogen, and the dried lipid film was sonicated in a buffer solution (120 mM
KCl and 10 mM HEPES/KOH (pH 7.2)) for an hour to prepare unilamellar vesicles. The
PC+PE+Chol vesicles were freshly prepared immediately prior to use.

The preparation of PLs incorporating the hERG channel followed the cell-free synthesis
system that was previously described [26]. In brief, the recombinant hERG channel protein
(UniProt/SWISS-PROT accession no. Q12809), encoded in the human genome, was pro-
duced using a wheat germ cell-free translation system in the presence of the PC+PE+Chol
vesicles. Afterward, the mixtures were centrifuged at 15,000× g for 15 min at 4 ◦C. The
precipitate in the pellet contained the hERG channel–liposome complex and was suspended
in a buffer solution (100 mM potassium acetate and 30 mM HEPES/KOH [pH 7.8]), with
the same volume as the translation reaction mixture. This suspension underwent another
centrifugation at 15,000× g for 15 min at 4 ◦C, and the resulting precipitate was collected
separately. This process was repeated twice, and the final precipitate was resuspended in
the buffer solution and stored at −80 ◦C until used. For analysis, we examined 1/100 of the
volume from each fraction using sodium dodecyl sulfate polyacrylamide gel electrophore-
sis (SDS-PAGE). Following SDS-PAGE, the gel underwent Coomassie Brilliant Blue (CBB)
staining. Translational integration of the hERG channel monomer (127 kDa) into lipid
vesicles was confirmed by the band detected in the precipitate fraction (Figure 1a) [44]. The
band of the hERG channel did not appear when the PC+PE+Chol-vesicle was treated in the
same way with the cell-free translation system that did not include mRNA (Figure 1b).
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ence of PC+PE+Chol-vesicle, separated by SDS-PAGE and stained with CBB. The red arrowhead 
indicates the band of the hERG channel. (b) PC+PE+Chol-vesicle treated with the wheat germ cell-
free translation system without mRNA. sup: supernatant, ppt: precipitate. 

SLBs were prepared using the vesicle fusion method with PL, following a similar 
procedure as for PC+PE+Chol-SLB in previous studies [30–32]. The suspension of PL was 
extruded through a polycarbonate filter with 800 nm pores to prevent the adsorption of 
aggregated PLs. A freshly cleaved piece of muscovite mica was incubated in the suspen-
sion at 37 °C for 2 h. The suspension was exchanged with the PL-free buffer solution 15 
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Figure 1. (a) hERG channel synthesized using a wheat germ cell-free translation system in the
presence of PC+PE+Chol-vesicle, separated by SDS-PAGE and stained with CBB. The red arrowhead
indicates the band of the hERG channel. (b) PC+PE+Chol-vesicle treated with the wheat germ
cell-free translation system without mRNA. sup: supernatant, ppt: precipitate.

SLBs were prepared using the vesicle fusion method with PL, following a similar
procedure as for PC+PE+Chol-SLB in previous studies [30–32]. The suspension of PL was
extruded through a polycarbonate filter with 800 nm pores to prevent the adsorption of
aggregated PLs. A freshly cleaved piece of muscovite mica was incubated in the suspension
at 37 ◦C for 2 h. The suspension was exchanged with the PL-free buffer solution 15 times
to remove excess PLs. For fluorescence observation, 5 µL of an ethanol solution of Bis-
Bodipy-FL-PC (0.4 M) was added to the 400 µL of the buffer solution in the SLB sample
cell. The SLB was incubated at 25 ◦C for 1 h in the presence of Bis-Bodipy-FL-PC, followed
by washing with the buffer solution 15 times.

AFM and fluorescence observations of SLBs were performed in the buffer solution
at 25 ◦C following the conditions outlined in previous studies [31,32]. AFM topographies
were obtained with PicoPlus 5500 (Keysight Technologies, Inc., Santa Rosa, CA, USA,
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formerly Molecular Imaging, Corp.), in acoustic AC mode (intermittent contact mode). A
Si3N4 cantilever with a spring constant of 0.1 N/m and a tip curvature radius of 8 nm
(BL-AC40TS-C2, Olympus, Tokyo, Japan) was used. The area and height of oligomers in the
AFM topographies were obtained using particle analysis of Scanning Probe Image Processor
software v.6.7.9 (SPIP, Image Metrology A/S, Hørsholm, Denmark). The averaged image of
hERG channel molecules in the AFM topographies was processed using Image J software
(NIH, http://imagej.nih.gov/ij/, accessed on 31 July 2023). Observations of fluorescence
microscopy and fluorescence recovery after photobleaching (FRAP) were conducted with
an epifluorescence microscope (BX51WI, Olympus, Tokyo, Japan), equipped with a 100×
water-immersion lens (LUMPlan FL 100×, NA = 1.00, Olympus) and the mirror unit
U-MWB2 (Ex: 460–490 nm, Em > 520 nm, Olympus). Fluorescence images of Bis-Bodipy-
FL-PC were recorded with a CMOS camera (DS-Qi2, Nikon, Tokyo, Japan).

3. Results and Discussion

A single-layered SLB is formed on a mica substrate using PC+PE+Chol-vesicle with
the same components as in this study [30–32]. The SLB made from the PC+PE+Chol-vesicle,
including a dye-labeled lipid, exhibits uniform fluorescence intensity, and the unruptured
PC+PE+Chol-vesicles are observed as bright spots in a fluorescence image (Figure S1a in
Supporting Information). We first investigated the formation of the SLB using PL that
contains the hERG channel in the PC+PE+Chol-vesicle. In the cell-free synthesis system,
the hERG channel was expressed in PC+PE+Chol-vesicle without a fluorescence probe.
Therefore, the fluorescence image of the SLB made from the PL was observed after the
incorporation of Bis-Bodipy-FL-PC. Figure 2a shows a fluorescence image of the mica
substrate after being incubated in the hERG-expressed PL suspension and stained with Bis-
Bodipy-FL-PC. Uniform fluorescence intensity covered the entire surface of the substrate,
accompanied by several bright spots. They correspond to the SLB and unruptured PLs,
respectively, as seen in the fluorescence image of the PC+PE+Chol-SLB (Figure S1a in
Supporting Information) [30–32]. Figure 2b,c shows the process of FRAP. Upon partial
SLB photobleaching of the SLB (Figure 2b), the fluorescence intensity of the photobleached
region recovered over time (Figure 2c), indicating the lateral diffusion of the dye molecules
in SLB. These results reveal that a fluid and continuous full-coverage SLB was formed from
PL that contains the hERG channel molecules.
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Figure 2. (a) A fluorescence image of the mica substrate after incubation in the PL suspension,
followed by staining with Bis-Bodipy-FL-PC. (b,c) The FRAP process obtained at the same position
as (a): (b) 0 s and (c) 300 s after the photobleaching. Images are presented in grayscale to facilitate
visualization. Scale bars = 50 µm.

The SLB prepared from the hERG-expressed PL was observed with AFM to investigate
the hERG channel molecules and their association states in the bilayer (Figure 3). Two
distinct regions with different heights were observed in the AFM topography (Figure 3a).
This result is consistent with the previous studies [30,32], indicating phase separation in the
PC+PE+Chol-SLB to the Lo-like region, mainly comprising PC and Chol, and the Ld-like

http://imagej.nih.gov/ij/
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region, which is rich in polyunsaturated PE [33]. The Lo-like region is thicker than the
Ld-like region because of the ordering effect of Chol, and thus appears higher in AFM to-
pography [33]. In the Ld-like region, protrusions were observed (indicated by white arrows
in Figure 3a) with a uniform height of approximately 3 nm, as shown in the histogram
in Figure 3b. These protrusions did not exist in the SLB prepared from the PC+PE+Chol-
vesicle without the hERG channel (Figure S1b in Supporting Information), consistent with
the AFM topographies of the PC+PE+Chol-SLB in the previous studies [30,32]. Protrusions
higher than 10 nm and with various lateral sizes were also present (Figure 3a, indicated
by black arrows). They are attributed to unruptured PLs adsorbed on the substrate or SLB
surface [45,46]. The majority of the SLB was occupied with the Ld-like region. The Lo-like
domains were smaller than 1 µm, making them indistinguishable in the fluorescence image
(Figure 2). The lipid composition of the SLB prepared from the hERG-expressed PL is not
determined from the fluorescence image and AFM topography, but it is possibly different
from that of the PC+PE+Chol-vesicle.
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Figure 3. (a) An AFM topography (1.0 × 1.0 µm2) of the SLB prepared from PL using the same
protocol as that of Figure 2 but without staining, along with a cross-section profile at the white line.
Representative protrusions existing mainly in the Ld-like and Lo-like regions are indicated with the
white and black arrows, respectively. (b) Histogram of the height of the protrusions existing in the
Ld-like region. The red curve represents the result of the Gaussian fitting.

The PC+PE+Chol-SLB exhibits a flat surface (Figure S1b in Supporting Informa-
tion) [30,32], and the protrusions indicated by the white arrows in Figure 3a were observed
after the expression of the hERG channel (Figure 1a). The protrusions in the Ld-like region
are assigned to the outer membrane region of the hERG channel. During the cell-free syn-
thesis of membrane proteins in the presence of vesicles, the proteins are synthesized outside
of the vesicles and reconstituted into the lipid bilayer. Consequently, the intracellular part
of the membrane proteins faces the outside of the vesicle. The large outer membrane region
of the hERG channel on the intracellular side, which includes the proximal N-terminus and
distal C-terminus, exists outside the vesicles and prevents flip-flop once the hERG channel
is reconstituted in the lipid bilayer. The unimodal distribution of the hERG channel height
in the AFM topography (Figure 3b) indicates that the orientation of the hERG channel in
the SLB is uniform. The height value in Figure 3 is reasonably close to the size of the outer
membrane region of the hERG channel on the extracellular side [18]. The extracellular side
of the hERG channel faces upward in the SLB, assuming an inside-up configuration in
the SLB formed through adsorption, rupture, and spread of PLs on the substrate surface.
Membrane proteins solubilized from cell membranes as micelles take a random orientation
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after reconstitution into a lipid bilayer using the detergent removal method [47]. The
aligned orientation of membrane proteins in PL is an advantage of the cell-free synthesis
system.

Figure 4a shows molecular images of the hERG channels in the Ld-like region of
the PC+PE+Chol-SLB. A magnified image in Figure 4b reveals a representative single-
blob structure, indicating the single subunit of the membrane-embedded hERG channel
molecule. The hERG channel monomers are distinguished from the unruptured vesicles
(Figure 4a, indicated by black arrows) based on their height and width as shown in Figure 3.
Figure 4c,d reveals the association of two and four protrusions, respectively, with a similar
height to that of the isolated protrusion (Figure 4b). These topographic images are attributed
to dimers and tetramers of the hERG channel molecules, respectively. Figure 4e shows
the averaged image obtained from eight individual tetrameric protrusions. The AFM
topographies visualize each oligomeric state of the hERG channel molecules, including
monomers, dimers, and tetramers. We also observed instances of three blobs linking
together, but they did not always have a triangular state. It is worth noting that the hERG
channel molecules did not exhibit diffusion within the SLB, consistent with the behavior
observed in prior studies of membrane proteins embedded in SLBs [40–43]. The oligomeric
states present in PLs were captured within the SLB.
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Figure 4. (a) An AFM topography (1.0 × 1.0 µm2) of the PC+PE+Chol-SLB including the hERG chan-
nel molecules showing their association states Unruptured PLs are indicated with the black arrows
as those in Figure 3a. Magnified images (50 × 50 nm2) at (b–d) show representative (b) monomer,
(c) dimer, and (d) tetramer structures. (e) An averaged image obtained from the AFM topographies
of eight tetrameric hERG channel molecules.

We evaluated the area of the hERG channel oligomers in the AFM topography, taking
into consideration the tip size of the cantilever. The area of the hERG channel monomers,
dimers, and tetramers obtained from the AFM topography was 190 ± 5, 285 ± 11, and
470 ± 39 nm2, respectively (Table 1). In AFM topographies, the lateral size of objects was
overestimated because of the shape of the cantilever tip (Figure 5) [48]. The curvature radius
of the tip in this study is 8 nm, as provided by the supplier (BL-AC40TS-C2, Olympus).
We assumed the outer membrane region of the hERG channel to be a hemisphere with
a radius of 3 nm based on the height in Figure 3b. The tip made contact with the hERG
channel at the distance (r in Figure 5a) of 7.55 nm. Figure 5b shows the trace of the tip
scanning a hERG channel monomer, resulting in an apparent diameter of 15.1 nm. The
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trace of the tip on a dimer and a tetramer (Figure 5c) provides their apparent width of
21.1 nm. The apparent areas of the hERG channel monomer (Figure 5d), dimer (Figure 5e),
and tetramer (Figure 5f) were 180, 270, and 400 nm, respectively, and correspond well to
the experimentally obtained area values (Table 1). The results support the hERG channel
monomer forms specific association states in the SLB.

Table 1. Average area values of the hERG channel oligomers obtained from the AFM topographies,
along with the calculated values accounting for the size of the cantilever tip, as shown in Figure 5.

Monomer Dimer Tetramer

Average area (nm2) 190 ± 5 285 ± 11 470 ± 39
Calculated value (nm2) 180 270 400
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Figure 5. Schematics illustrating the effect of tip size on apparent lateral size in AFM topographies.
(a) The cantilever tip (curvature radius = 8 nm) in contact with a 3 nm high hERG channel monomer
assumed to be a hemisphere at a distance r. (b,c) Traces of the tip scanning (b) a monomer and
(c) a dimmer or a tetramer. (d–f) Apparent areas of (d) a monomer, (e) a dimer, and (f) a tetramer
including the effect of the tip size.

As the association states of the hERG channel monomers are evaluated using the AFM
molecular images, we also quantitatively assessed the efficiency of the oligomer formation.
The number of the oligomers is summarized in Table S1 in Supporting Information. The
percentage abundance decreases with the oligomeric order of the hERG channel, with
monomers at 70%, dimers at 24%, trimers at 4%, and tetramers at 2% (N = 173). This
result indicates that the hERG channels synthesized in the cell-free translation system
predominantly exist as monomers and dimers. However, the tetrameric state is essential
for the function of the hERG channel in forming the pore. A recent study demonstrated
the channel activity of hERG channels expressed using the same cell-free synthesis system
as in the present study [26]. Therefore, at least a portion of the hERG channel tetramers
observed in the AFM topography retain channel functionality, but more than 98% of the
expressed hERG channel molecules exist in inactive states.

Then, we performed experiments aimed at promoting the tetrameric assembly of the
hERG channel molecules. A specific protein family, known as J-domain-containing proteins
(J-proteins) serves as co-chaperones for heat shock protein 70 (HSP70), functioning to
enhance protein folding and prevent aggregation of client proteins. Proper protein folding
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can facilitate the assembly of channel subunits into stable complexes. Recent research has
indicated that DNAJB12 and DNAJB14, which are both types of J-proteins, play roles in
stabilizing hERG channel subunits and promoting their tetrameric assembly [49]. Therefore,
to facilitate the tetrameric assembly of the hERG channel, we cloned and expressed human
DNAJB12 in liposomes reconstituted with the hERG channel.

We examined the effect of coexpression of DNAJB12 and its expression level on the
oligomerization of the cell-free synthesized hERG channel monomer. The hERG channel
and DNAJB12 were expressed at ratios of 30:1 and 30:5 in the presence of the PC+PE+Chol-
vesicle to prepare PLs, and SLBs were prepared using the PLs. The percentage of existing
hERG channel monomers in the forms of monomers, dimers, trimers, and tetramers is
shown in Figure 6, with numerical values listed in Table 2. The existing ratio of the
monomer decreased with the coexpression ratio of DNAJB12, while the ratio of oligomers
increased. More dimers and trimers, corresponding to fewer monomers, appeared with
the higher expression ratio of DNAJB12. The significant increase in the dimer percentage
compared to that of tetramer suggests that DNAJB12 promoted the assembly of the hERG
channel by facilitating its initial dimerization step. However, the coexpression of DNAJB12
did not significantly affect the existing ratio of the tetramer. It has been reported that
knockdown of both DNAJB12 and DNAJB14 in human neuroblastoma SH-SY5Y cells
significantly reduces the expression level and the channel current activity of the hERG
channel, while knockdown of one of them has a partial effect [49]. DNAJB14 possibly
play a role in the assembly processes from the dimer to the tetramer, and additional
coexpression of DNAJB14 may enhance the efficiency of the tetrameric assembly in this
study. Future research is needed to elucidate the mechanism of the tetrameric assembly of
hERG channel molecules.
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Figure 6. Existing percentage of hERG channel monomers in the forms of monomers, dimers, trimers,
and tetramers and their dependence on the ratio of coexpressed DNAJB12. The coexpression ratios
for hREG:DNAJB12 were 30:0 (white bars), 30:1 (gray bars), and 30:5 (black bars). Numerical values
are summarized in Table 2.

Table 2. Existing percentage of the hERG channel monomers in the forms of monomers, dimers,
trimers, and tetramers in the absence and presence of coexpressed DNAJB12.

Expression Ratio
(hERG:DNAJB12) Monomer Dimer Trimer Tetramer

30:0 * 70 24 4 2
30:1 62 28 7 3
30:5 43 40 14 3

* Without DNAJB12.
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There are several challenges that need to be addressed to enhance the throughput
of ion channel studies using artificial lipid bilayer systems. These challenges include
the stability of the lipid bilayer, the reconstitution probability of the ion channel, and
the efficiency of the ion channel expression [28,38,47,50]. Recently, Hirano-Iwata and
colleagues developed a microfabricated silicon chip with a nanotapered aperture and a
liquid chamber designed to apply centrifugal force for BLM experiments [26,28]. The
nanotapered aperture enhances the robustness of the free-standing bilayers, while the
centrifugal force accelerates the frequency of PL fusion into the BLM. PLs obtained from
membrane crude extracts of Chinese hamster ovary (CHO) cell lines expressing the hERG
channel achieve a success rate of 67% in the channel current recording [28]. In contrast, the
hERG-expressed PL prepared with the cell-free synthesis system resulted in a success rate
of 31% [26]. Success in the channel current recording implies that at least one active hERG
channel tetramer in the hERG-expressed PLs is reconstituted to the BLM, accompanied by
an abundance of inactive monomers and dimers. Enhancing oligomerization within the
cell-free synthesis system is instrumental in improving the throughput of channel current
recordings. The structural observations of hERG channel molecules in this study offer an
analytical method for assessing oligomerization states at the molecular level, making it a
valuable resource for future drug design efforts aimed at preventing drug-induced side
effects on the hERG channel.

4. Conclusions

In this study, we investigated the association states of the cell-free synthesized hERG
channel monomer using AFM. Molecular images of the hERG channel in the SLB allowed
for a quantitative analysis of the oligomerization efficiency of the hERG channel monomers.
The PL incorporating the full-length hERG channel with high purity was obtained after the
cell-free synthesis of the hERG channel in the presence of PC+PE+Chol-vesicle. The SLB was
prepared from the PL, and its AFM topographies showed protrusions with uniform height,
indicating the aligned orientation of the hERG channel in the PLs and SLBs. These hERG
channel monomers existed as either isolated states or specific associated states assigned to
dimers and tetramers. The methods employed in this study are valuable for assessing and
enhancing the expression efficiency of membrane proteins in their “active” form.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/membranes13110854/s1, Figure S1: the morphology of the SLB made from
PC+PE+Chol-vesicles without the hERG channel; Table S1: Number of the hERG channel oligomers.
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