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Abstract: Kampo is a Japanese traditional medicine modified from traditional Chinese medicine.
Kampo medicines contain various traditional crude drugs with unknown compositions due to the
presence of low-molecular-weight compounds and proteins. However, the proteins are generally rare
and extracted with high-polarity solvents such as water, making their identification and quantification
difficult. To develop methods for identifying and quantifying the proteins in Kampo medicines, in
the current study we employ previous technology (e.g., column chromatography, electrophoresis,
and membrane chromatography), focusing on membrane chromatography with a polyvinylidene
difluoride (PVDF) membrane. Moreover, we consider slot blot analysis based on the principle of
membrane chromatography, which is beneficial for analyzing the proteins in Kampo medicines as the
volume of the samples is not limited. In this article, we assess a novel slot blot method developed
in 2017 and using a PVDF membrane and special lysis buffer to quantify advanced glycation end
products-modified proteins against other slot blots. We consider our slot blot analysis superior for
identifying and quantifying proteins in Kampo medicines compared with other methods as the data
obtained with our novel slot blot can be shown with both error bars and the statistically significant
difference, and our operation step is simpler than those of other methods.

Keywords: Kampo medicines; proteins; membrane chromatography; polyvinylidene difluoride
membrane; slot blot; tris-(hydroxymethyl)-aminomethane; urea; thiourea; 3-[3-(cholamidopropyl)-
dimethylammonio]-1-propanesulfonate; advanced glycation end products

1. Introduction

Kampo medicine is a Japanese traditional medicine modified and developed based
on traditional Chinese medicine from the fifth to the nineteenth centuries [1–3]. Kampo
medicines were carefully selected and developed to include various crude drugs (natu-
ral products). The traditional Japanese formulation of Kampo remedies influences their
selection [2]. Modern Kampo medicines have been produced from extracts using man-
ufacturing methods governed by several national laws in Japan since the late twentieth
century [3,4]. They are officially recognized and stipulated in the Japanese Pharmacopoeia,
and their quality must comply with legal provisions [3,4]. Considering that the names of
Kampo medicines are spelled in Chinese characters and pronounced in Japanese, Japanese
researchers have organized the Standards of Reporting Kampo Products (STORK) to assign
English names to Kampo medicines [5].

Randomized controlled trials of Kampo medicines have been performed to investigate
their clinical effects [6,7]. According to Japanese industry, academia, and government,
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applying Kampo medicines for cancer supportive care is the goal for the twenty-first
century [8–10]. Despite considerable efforts, the characterization of Kampo medicines’
components remains incomplete [11–13]. Analysis of Kampo medicine compounds such as
Goshajinkigan and Ninjin’yoeito using three-dimensional high-performance liquid chro-
matography (3D-HPLC) has detected major low-molecular-weight compounds from the
extracts [14–16]. For example, Jin et al. reported the clinical effects of each major low-
molecular-weight compound for 34 crude drugs [17]. However, proteins have a high
molecular weight. They must be extracted with high-polarity solvents, such as water and
70% ethanol aqueous solution (ethanol: water = 7:3) [18,19], making their solvent removal
(evaporation and sublimation) and collection difficult. Moreover, given their relatively
suitable concentrations, the proteins in cells or tissue lysates can be readily quantified using
the Bradford and bicinchoninic acid (BCA) assays [20,21]. However, these assays may not
be appropriate for quantifying protein concentrations in crude drugs. Accordingly, we
evaluated the applicability and suitability of conventional technologies for the separation,
detection, identification, and quantification of proteins in Kampo medicines [22–24]. We
found that, given the insufficient crude sample volume, column chromatography [22,25],
electrophoresis [22,26], and enzyme-linked immunosorbent assay (ELISA) [27,28] may
be unsuitable for detecting rare proteins within the extract in Kampo medicines. Hence,
we focused on membrane chromatography, where samples can repeatedly flow against
the membranes, facilitating the collection and separation of proteins [22–24]. Although
the membrane material varies and includes cellulose acetate, chitin, chitosan, nylon, and
polyvinylidene difluoride (PVDF) [24], we consider that PVDF membrane chromatog-
raphy is suitable for collecting proteins in Kampo medicines as the PVDF polymer is a
strong, semi-crystalline material used in myriad medical instruments (e.g., surgical instru-
ments) [29–32]. PVDF membranes also boast good membrane-forming properties, thermal
stability, chemical stability, and mechanical properties [33,34]. Considering that PVDF
membranes are often used as filters to produce clean water, natural organic compounds in
wastewater, such as proteins and oil, were selected for removal [35,36]. PVDF membranes
have also been adopted with the filter blot method for atmospheric particle matter pro-
teins [37] and for electrospray ionization mass spectrometry (ESI-MS) analysis combined
with sodium dodecyl sulfate (SDS)–polyacrylamide gel electrophoresis (PAGE) (SDS-PAGE)
and “on-PVDF membrane digestion” [38]. In contrast, we focused on slot blot analysis as it
is based on the principle of membrane chromatography; however, it requires only a simple
and rapid protocol.

In 2017, we developed a novel slot blot analysis and quantified one type of
glyceraldehyde-derived advanced glycation end product (AGE): GA-AGEs [39,40]. This
method comprises a PVDF membrane and a special lysis buffer for the cell/tissue lysate [39,40].
AGEs are modified proteins formed by interacting with saccharides (e.g., glucose and
fructose), their intermediate metabolites/derivatives, and protein [41–43]. PVDF mem-
branes are commonly used to probe proteins in cells or tissues for Western blotting or
slot blot analysis [39,40]. Herein, we hypothesized that the novel slot blot method for
quantifying AGE-modified proteins could also be used to identify and quantify proteins in
Kampo medicines as they share properties with other modified proteins, such as methy-
lated [44–46], acetylated [47–49], phosphorylated [50–52], glycosylated [53–55], and myris-
toylated [56–58] proteins.

In this article, we compare the performance of our novel slot blot with other commonly
used technologies (e.g., column chromatography and electrophoresis) and the other slot blot
assay to assess its potential for identifying and quantifying proteins in Kampo medicines.

2. Analysis of Compounds in Kampo Medicines
2.1. Low-Molecular-Weight Compounds in Kampo Medicines, Crude Drugs, and Other
Natural Products

Several Kampo medicine crude drugs [1–3] have been analyzed to determine the
primary component influencing cellular or organ function. For example, using 3D-HPLC,
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Kishida et al. and Nakanishi et al. identified the components of the Goshajinkigan ex-
tract, including morroniside, (+)–catechin, loganin, paeoniflorin, penta-O-galloylglucose,
benzoylmesaconine, cinnamic acid, isoacteoside, benzoylpaeoniflorin, cinnamaldehyde,
16-ketoalisol A, and paeonol [14,16]. Meanwhile, Hosogi et al. identified paeoniflorin,
hesperidin, and glycyrrhizic acid as the chemical markers of Ninjin’yoeito extract [16].
Low-molecular-weight compounds are generally extracted using low-polar solvents, such
as methanol [10,59], acetone [60], hexane [10,61], and ethyl acetate [61]. These solvents
can be evaporated at 40–60 ◦C, facilitating the facile collection of low-molecular-weight
compounds [59–61]. Miyano et al. prepared a water extract of Hangeshashinto and, subse-
quently, prepared a methanol extract fraction from the water extract, identifying baicalin,
glycyrrhizic acid, and berberine [62]; however, this process included a freeze-drying step,
which is inconvenient when evaporating low-polar solvents.

2.2. Proteins in Crude Drugs

Proteins in the crude drugs of Kampo medicines have not been thoroughly analyzed
against low-molecular-weight compounds. Hence, we introduced previous studies that
evaluated challenging proteins in crude drugs, including Yokuinin (Coix lachryma-jobi
L. var. Ma-yuen Stapf.) and Mashinin (Cannabis Fructus). Some studies have analyzed low-
molecular compounds or polysaccharides that can be extracted into a low-polarity solvent
in Yokuinin and investigated their effects in vitro and in vivo [63–69]. However, Li et al.
extracted the components in Yokuinin using high-polarity solvents, namely, 0.5 M sodium
chloride aqueous, 70% ethanol aqueous, and 12.5 mM sodium borate buffer [18]; these
four solvents contained albumin, globulin, prolamin, and glutelin, and their target was
glutelin. Due to the high molecular weight of glutelin, Li et al. performed acid hydrolysis
of the glutelin and characterized the glutelin peptides using gel filtration chromatogra-
phy and reversed-phase HPLC (RP-HPLC). Although the low-molecular compounds in
Cannabis used as crude drugs and commercial product resources for humans have been
thoroughly investigated [70–72], their proteins have not. Hence, Liao et al. extracted
proteins from Fructus Cannabis using water and analyzed them using Fourier transfer
infrared (FT-IR) and ultraviolet spectrum (UV) spectroscopy [19]. The proteins were
hydrolyzed to obtain various peptides, which were analyzed via liquid chromatography
mass spectrometry (LC-MS).

3. Previous and Potential Technologies for the Identification and Quantification of
Proteins in Kampo Medicines

High-molecular-weight compounds (>10 kDa), such as proteins and polysaccharides,
should be extracted with high-polarity solvents, and samples were performed as the freeze-
drying method for water removal [18,19,25]. Certain column chromatography protocols
can separate and collect proteins from samples [22–25]. Moreover, silica gel normal phase,
reverse normal phase, gel filtration, and ion exchange chromatography have been employed
as liquid chromatography methods [25,73,74]. However, the low protein concentration in
Kampo medicines may hinder their identification via liquid chromatography. Moreover, if
samples undergo a freeze-dry treatment and are injected into the column, the separated
proteins must be subjected to another round of freeze-drying [25], thus complicating the
overall process. Meanwhile, silica gel normal phase and reverse phase chromatography are
unsuitable for separating proteins due to their unstable stationary phases, which cannot be
probed with high-molecular-weight compounds [73]. Although researchers can select gel
filtration and ion exchange chromatography to separate and collect proteins, the solvent of
the mobile phase must be highly polar [73,74]. Additionally, if the solvent used for analysis
with gel filtration and ion exchange chromatography contains ions, such as sodium, the
samples must be desalted.

Although researchers typically use the Bradford [75,76] or BCA methods [77,78],
these require polypropylene tubes and 96-well microplates. When measuring protein
concentrations, 100–1000 µL of a sample is required, comprising cell lysate/tissue lysate and
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Bradford or BCA reagents. However, the proteins in the water extract of Kampo medicines
(or crude drugs) are often low and may be undetectable. When researchers investigate
intracellular or tissue proteins in vitro or in vivo, Western blot with SDS-PAGE [22,26]
and ELISA [27,28] are commonly used to identify or quantify the individual proteins
(e.g., interleukin-1, tumor necrosis factor-α, and matrix metalloproteinase) [79–81]. The
volume of samples and reagents used is 10–30 µL per SDS-PAGE well and 50–200 µL per
ELISA well. Therefore, individual and rare proteins in Kampo medicines (or crude drugs)
are not effectively identified or quantified using these methods.

Membrane chromatography can effectively separate and collect proteins [22–25]. The
membrane is used as the stationary phase, while the mobile phase (e.g., liquid or gas) is
vertically or parallelly flowed against the membrane. The samples can be continuously
run until the collection is complete. If the protein concentration in the samples is low,
high sample volumes in the liquid or gas phase can flow repeatedly against the mem-
brane. These membranes primarily comprise cellulose acetate, cellulose/acrylic composite,
chitin, chitosan, nylon, and PVDF [24]. Meanwhile, Ogino et al. developed a filter blot
method with a PVDF membrane to analyze 3-nitrotyrosine (3-NT)-modified proteins in the
atmosphere and compared the results with those obtained using HPLC-electrochemical
detection (ECD) (HPLC-ECD) [37]. The 3-NT-modified proteins concentration determined
via the filter blot method significantly correlated with that using the HPLC-ECD method
(r = 0.809, p < 0.001). Moreover, Bickner et al. separated proteins with SDS-PAGE, trans-
ferred proteins onto PVDF membranes, and performed “on-PVDF membrane digestion.”
They then identified proteins with ESI-MS analysis [38]. Although researchers generally
perform “in-gel digestion” to identify proteins with ESI-MS or matrix-assisted laser des-
orption/ionization mass spectrometry (MALDI-MS) [26], “on-membrane digestion” is a
high-level technology. Meanwhile, slot blot analysis is based on the principle of membrane
chromatography with the sample flowing vertically against the membrane. Therefore, we
postulate that slot blot analysis can identify and quantify rare proteins in Kampo medicines.
Generally, nitrocellulose or PVDF membranes are selected for the slot blot analysis [25].
Although PVDF has been rarely reported, it offers good membrane-forming properties,
thermal stability, chemical stability, and mechanical properties [33,34]. We consider that
researchers have favored nitrocellulose membranes because their lysates of cells or tissues
are deemed unsuitable for PVDF membranes. However, we have discovered a unique lysis
buffer suitable for application with PVDF membranes [24,25].

4. Equipment, Characteristics, and Methodology of the Novel Slot Blot
4.1. Equipment

The novel slot blot method was performed using a Bio-Dot SF Microfiltration Appa-
ratus (Cat. no.: 170-6452; Bio-Rad Laboratories Inc., Hercules, CA, USA) with 48 wells
(Figure 1).
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blot analysis on various proteins [82–89]. Although protein absorption and PVDF mem-
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identify or quantify proteins. PVDF membranes are commonly used for Western blot anal-
ysis [39,40] and can combine with C=O and N‒H groups, rendering them superior for 
protein absorption [33]. However, the appropriate conditions for directly applying 

Figure 1. Bio-dot SF microfiltration apparatus (slot blot apparatus with 48 wells). (a) Assembly of the
apparatus. (b) Disassembled apparatus.

4.2. PVDF Membrane

The novel slot blot method was performed using a PVDF membrane (Cat. no.: IPVH00010,
pore size: 0.45 µm; Merck Millipore, Darmstadt, Germany). The chemical structure com-
prised carbon combined with hydrogen and fluorine atoms (Figure 2).
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Figure 2. Chemical structure of the PVDF membrane. The “n” indicates that the structure repeated.

Nitrocellulose membranes, not PVDF membranes, are generally used to perform
slot blot analysis on various proteins [82–89]. Although protein absorption and PVDF
membrane durability are superior [33,34], researchers avoid performing slot blot analysis
to identify or quantify proteins. PVDF membranes are commonly used for Western blot
analysis [39,40] and can combine with C=O and N–H groups, rendering them superior for
protein absorption [33]. However, the appropriate conditions for directly applying protein-
containing samples onto a PVDF membrane have not been achieved. Given that electric
current transports the proteins during Western blotting, proteins become transferred from
the gel to the PVDF membrane. Therefore, the benefits of the PVDF membrane for protein
absorption using slot blot can be demonstrated when a superior sample solution is used.
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4.3. Lysis Buffer

For our novel slot blot, a custom lysis buffer was produced that differed from com-
monly used commercial lysis buffers [39,40]. First, tris-(hydroxymethyl)-aminomethane
(Tris) (Cat. no.: 011-20095; Fujifilm Wako Pure Chemical, Osaka, Japan), urea (Cat. no.:
217-01215; Fujifilm Wako Pure Chemical), thiourea (Cat. no.: 201-17355; Fujifilm Wako Pure
Chemical), and 3-[3-(cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS)
(Cat. no.: 347-04723; Dojindo Laboratories, Kumamoto, Japan) were dissolved in ultrapure
water to prepare a solution of 30 mM Tris, 7 M urea, 2 M thiourea, and 4% CHAPS (Solution
A, Table 1). Second, a protease inhibitor cocktail tablet (Complete Tablets EDTA-Free, EASY
pack, Cat. no.: 04-693-132-001; Roche, Bavaria, Germany) was dissolved in ultrapure water
(final volume: 2 mL, Solution B, Table 1 [39,40,90]). Finally, Solutions A and B were mixed
(9:1) to form Solution C (Table 1), comprising 27 mM Tris, 6.3 M urea, 1.8 M thiourea, and
3.6% CHAPS. Solution C served as the lysis buffer for our assay [39,90–96]. To create Solu-
tion D, Solution B was added to the solution containing Tris, urea, thiourea, and CHAPS in
ultrapure water (Table 1) [97–100].

Table 1. Solutions used to prepare the lysis buffer [39,40,90–100].

Solution A Solution B Solution C Solution D

30 mM Tris
7 M Urea

2 M Thiourea
4% CHAPS

(Ultrapure water)
(pH 8.5)

1 Protease inhibitor
cocktail tablet/2 mL

(ultrapure water)

27 mM Tris
6.3 M Urea

1.8 M Thiourea
3.6% CHAPS

10% Solution B
(Ultrapure water)

(pH 8.5)

30 mM Tris
7 M Urea

2 M Thiourea
4% CHAPS

4% Solution B
(Ultrapure water)

(pH 8.5)

Solution C was prepared following the method described in eight previous studies,
and Solution D was prepared following four to quantify intracellular AGEs using the
novel slot blot (Table 2). Although PVDF membranes have been previously used in slot
blots to quantify proteins, the lysis buffer containing Tris, urea, thiourea, and CHAPS
has not been used [101–103]. Gravel et al. used 4 M urea/Tris-buffered saline to quantify
influenza type A viral hemagglutinin [103], whereas Papadaki et al. used 8 M urea and
0.1% SDS [104]; these lysis buffers are similar to ours. In contrast, Takino et al. employed a
radioimmunoprecipitation (RIPA) buffer for their analysis of large sample concentrations
(30 µg of proteins) with their slot blot analysis [39,40,102], whereas our novel method is
suitable for samples with small amounts of protein (2.0 µg of proteins). Although RIPA
buffer components (e.g., Triton-X) cause denaturation, they may inhibit protein probing
onto the PVDF membrane. Papadaki et al. homogenized cardiac tissues with standard
rigor buffer containing 1% Triton-X; they then removed the Triton-X and resuspended the
pellet in a buffer containing 8 M urea and 0.1% SDS [104], revealing that Triton-X inhibited
slot blot analysis.

Table 2. List of references used for preparing Solutions C and D.

Solution References

C [39,90–96]

D [97–100]

Our ideal lysis buffer must promote protein denaturation and not inhibit PVDF
membrane probing. When developing this novel slot blot assay, we prepared the lysis
buffer based on those selected for two-dimensional electrophoresis (2-DE)-based pro-
tein division treatment [39,40]. Meanwhile, many studies have used 7 M urea and 2 M
thiourea [105–115] with 2% [109], 3% [105,112], or 4% [106–108,110,111,113] CHAPS. Based
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on previous research [113,114], we hypothesized that our lysis buffer promotes protein prob-
ing on the PVDF membrane surface. According to McCarthy et al. and Herbert [113,114],
urea, thiourea, and CHAPS can denature proteins by acting as chaotropic reagents and
surfactants; these reagents disrupt hydrogen bonding and cause protein unfolding, expos-
ing hydrophobic amino acid residues to the solution. CHAPS is combined with urea and
thiourea to coat hydrophobic residues and improve solubility, and thiourea/urea combina-
tions are widely used to exploit thiourea’s improved denaturing ability [113]. Furthermore,
urea may be more important in inhibiting protein probing on the PVDF membrane. Urea
reacts with ammonium and cyanate, with cyanate particularly adept at producing isocyanic
acid that can subsequently react with N-terminal amino groups as well as lysine, arginine,
and cysteine residues in proteins, producing carbamylated proteins (Figure 3) [114]. Given
that protein C=O and N–H groups react with the PVDF membrane [34], carbamylation may
promote protein adhesion. Furthermore, Tris has been used to stabilize the pH range of cell
lysates at 8.5–8.8 [105,107]. Previous studies have used 30 mM [106,107] or 40 mM [105].
We determined the final concentration of urea, thiourea, CHAPS, and Tris in our lysis buffer
(Solution C and Solution D, Table 1) based on their various concentrations in previous
2-DE studies.
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Figure 3. Mechanism of carbamylated protein formation with urea. (a) The reaction path of ammo-
nium and isocyanate from urea. (b) Isocyanic acid attack on N-terminal lysine, arginine, and cysteine
residues in protein.

We compared each slot blot analysis with different buffers and with nitrocellulose or
PVDF membranes (Table 2).

4.4. Application of Standard and Sample Solutions and Vacuum with Water Aspirator

Cell or tissue lysates were prepared with Solution C or Solution D (Table 2) [39,40,90–100].
The protein concentration of the samples was measured using the Bradford method,
and equal amounts of cell or tissue lysate (e.g., 2, 4, and 10 µg of protein) were col-
lected [39,40,91–93]. According to the Bio-Rad manufacturing protocol, 200–500 µL of
solution should be applied to the membrane; hence, we added 200 µL of the standard or
sample solution. Moreover, we diluted each sample with lysate buffer to ensure equal
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concentrations [40,91–93]. In our previous study, the volume of the cell or tissue lysate and
additional lysis buffer was approximately 4–15 µL, and phosphate-buffered saline (PBS)(–)
was added for a final volume of 200 µL. To denature the standard (e.g., AGE-modified
protein), it was dissolved in lysis buffer and PBS(–) [39,40,91–93]. The PVDF membrane
was activated with methanol before incubation in PBS(–). Three filter papers were then
incubated in PBS(–) according to Bio-Rad’s protocol. The PVDF membrane and three filter
papers were set in the slot blot apparatus (Figure 4).
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Figure 4. Slot blot apparatus with one PVDF membrane and three filter papers. Chambers are
designed for PBS(–), standard and sample solution addition, and vacuum generation. A closed white
rectangle represents the PVDF membrane. Closed gray rectangles represent filter papers.

Only the upper side of the PVDF membrane was exposed to air, and PBS(–), standard,
and sample solutions were added from the top. The lower side of the PVDF membrane
adhered to the filter paper containing the PBS(–). The water aspirator vacuum was applied
from the lower side of the PVDF membrane (Figure 4).

The PVDF membrane and filter papers were fixed in the apparatus, and 48 wells were
created on the surface of the PVDF membrane (Figure 5). Subsequently, we quantified
AGEs using the apparatus [39,90–100].
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Figure 5. Wells in the slot blot for solution application in the slot blot apparatus. Closed gray squares
represent slot lanes.

Before applying the standard or sample solution, the PVDF membrane was washed
with PBS(–) according to the Bio-Rad protocol. Accordingly, 100 µL of PBS(–) was added
without water aspiration; subsequently, 200 µL of standard or sample solution was added
with water aspiration, and one of the valves was opened against the air (Figure 6a). Al-
though the water aspiration pressure was not specified, it was estimated. Water aspirator
vacuuming was performed in the Kanazawa Medical University laboratory (Uchinada,
Ishikawa, Japan). Water was collected from the water supply, managed with the storage
tank, and resupplied to each laboratory. However, the water pressure remained constant,
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similar to that of a typical household or corporate water supply system in Uchinada. Accord-
ing to the Ministry of Health, Labour, and Welfare, the feed water pressure is 0.15–0.74 MPa
in a typical Japanese household or corporation and 0.20–0.23 MPa in Uchinada. Therefore,
all areas of Kanazawa Medical University’s water supply system have been adjusted so that
their feed water pressure is 0.20–0.23 MPa. For a complete sample addition, we recommend
vacuuming with water aspiration with the valve closed against the air (Figure 6b). After
adding the standard or sample solution, 200 µL PBS(–) was applied and vacuumed with
water aspiration with one valve opened (Figure 6a) and then closed (Figure 6b) against air.
PBS(–) and other solutions were probed onto the PVDF membrane under a water aspirator
vacuum, following Bio-Rad’s protocols.
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4.5. Protein Quantification in Standard and Sample Solutions

We reported the quantification of certain GA-AGEs [39,90–96,98–100] and 1,5-anhydro-
D-fructose AGEs [97] probed with primary antibody, secondary antibody, and chemilu-
minescent reagents. For example, 0–100 ng/well of standard AGE-modified proteins and
approximately 10–20 ng/well (samples with 2.0 µg of protein were applied onto the PVDF
membrane) of AGEs were detected [40,92].

5. Comparing the Novel Slot Blot with Other Slot Blots

Previous studies have reported statistical analysis on data obtained from slot blots
performed with a nitrocellulose membrane and RIPA buffer (Table 3) [87,88]. However,
those with a PVDF membrane and RIPA buffer did not provide data with error bars and
the statistically significant difference [102]. Meanwhile, Gravel et al. presented their data
obtained using a PVDF membrane with 4 M urea using error bars without the statisti-
cally significant difference [103]. In comparison, data obtained using the novel slot blot
was presented with the information of both error bars and the statistically significant
difference [39,90–100]. Moreover, we confirmed the suitability of Solutions C and D to
promote PVDF membrane probing and facilitate statistical analysis, thus demonstrating
the novelty of our assay. Although Papadaki et al. provided data with both error bars
and the statistically significant difference [104], they homogenized cardiac tissues with
standard rigor buffer containing 1% Triton-X in the first step of the assay and removed
Triton-X in the second step. Ultimately, the pellet was resuspended in a buffer containing 8
M urea and 0.1% SDS [104]. Hence, although the data generated from our assay and that of
Papadaki et al. were subjected to statistical analysis, our method requires fewer steps to
prepare the lysate [39,40,104]. Furthermore, Solution C is suitable to homogenize cells and
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tissues. Although this was not confirmed for Solution D, we expect it will be as effective as
Solution C.

Table 3. Experimental conditions for slot blot and data analysis.

No. Sample Membrane
Type Lysis Buffer Error

Bars
Statistically

Significant Difference References

1 Cell lysate Nitrocellulose RIPA Yes Yes [87,88]

2 Cell lysate PVDF RIPA No No [102]

3 Protein in
virus PVDF 4 M Urea Yes No [103]

4 Cell lysate PVDF Solution C Yes Yes [39,90,92,94–96]

5 Tissue lysate PVDF Solution C Yes Yes [91,93]

6 Cell lysate PVDF Solution D Yes Yes [97–100]

7 Tissue lysate PVDF 8 M Urea,
0.1%SDS Yes Yes [104]

6. Potential for Identifying and Quantifying Various Rare Proteins in Kampo
Medicines Using the Novel Slot Blot Method

Our novel slot blot method can be used to identify and quantify proteins in Kampo
medicines. Compared with test tubes and 96-well microplates, PVDF membrane filtration
exhibited particularly good performance. Although the sample volume applied in studies
using test tubes and 96-well microplates is typically limited, the slot blot analysis contin-
ued until the PVDF membrane became clogged (Figure 4). Hence, one of the slot blot’s
distinguishing features is that the Kampo medicine extract can be repeatedly dropped onto
the PVDF membrane and vacuumed with a water aspirator. Kampo medicines can be
extracted with water and collected by removing the water using the freeze-drying method.
These samples can be redissolved in Solution C or Solution D (Table 1) and then added to
the appropriate PBS(–) solution. Proteins then accumulate on the PVDF membrane as the
sample is applied repeatedly (Figures 4 and 5). The accumulation of proteins on the PVDF
membrane can then be analyzed using Coomassie Brilliant Blue (CBB) staining (Figure 7),
which stains proteins in WB gels [26] and PVDF membranes [116–119]. When WB analysis
is performed, samples containing 10–30 µg of protein [26,39,95] are applied to the gel cham-
bers and transferred to the PVDF membrane. When we examined AGEs in kidney tissue,
we used a large sample (30 µg of protein) [93]. Researchers can quantify proteins using CBB
and our slot blot analysis using a standard curve with 0–100 ng of AGE-modified proteins;
in this way, 10–20 ng of AGEs in 2.0 µg of a protein sample can be quantified [92,95,96].
Additionally, this slot blot method may help identify and quantify individual proteins
using antibody-based methods such as ELISA (Figure 7) [79–81]. Although our method
has risks, such as the binding of polysaccharides to PVDF membranes [120,121], proteins
treated with Solution C or D show robust adhesion to the membrane, which could prove
advantageous. Bickner et al. identified various proteins probed onto the PVDF membrane
using the “on-PVDF membrane digestion” treatment and ESI-MS analysis. The proteins on
the membrane were then identified and quantified using the slot blot and ESI-MS/MALDI-
MS analysis [38]. However, we consider this strategy to be more challenging than that
described by Bickner et al., who performed WB to separate proteins, transferred the pro-
teins onto the PVDF membrane from the gel, and separated them into six groups (the
PVDF membrane was cut into six membranes). In contrast, when the slot blot analysis is
performed, the proteins are within one area of the PVDF membrane. This is not beneficial
for analysis with ESI-MS.
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This study is limited by the absence of confirmatory identification and quantification
of the proteins in Kampo medicines using the novel slot blot method. However, we consider
that they are able to be detected because AGE-modified proteins in cells and tissue lysates
were previously quantified with our slot blot [39,90–100]. Moreover, because the proteins
in Kampo medicines should be extracted with high-polarity solvents such as water, any
proteins that are not soluble in these solvents will not be detected. Also, we have not
confirmed that whole proteins were extracted from Kampo medicines, which requires
further verification.

7. Conclusions

Although analysis of rare proteins in Kampo medicines has proven challenging for
conventional technology such as column chromatography, WB, and ELISA, methods based
on the principle of membrane chromatography, such as slot blot, are effective. We consider
that the slot blot analysis is suitable for identifying and quantifying proteins in Kampo
medicines because this strategy allows samples to flow continuously without limitation
against the membrane. Furthermore, we consider that our novel slot blot, comprising a
PVDF membrane and specific lysis buffer, is most suitable as it provides data that show
both error bars and the statistically significant difference compared with that produced by
other similar assays, and our protocol is simpler, with fewer steps.
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authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the JSPS KAKENHI, grant number JP21K11607 (T.T.).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in the article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

AGEs Advanced glycation end products
CHAPS 3-[(3-cholamidopropyl)-dimethylammonio]-1-propane sulfonate
PBS Phosphate-buffered saline
PVDF Polyvinylidene difluoride
Tris Tris-(hydroxymethyl)-aminomethane
LC Liquid chromatography



Membranes 2023, 13, 896 12 of 16

References
1. Chung, H.; Yuasa, M.; Chen, F.; Yukawa, K.; Motoo, Y.; Arai, I. The status of education for integrative medicine in Japanese

medical universities with special reference to Kapo medicines. Tradit. Kampo Med. 2023, 10, 123–131. [CrossRef]
2. Motoo, Y.; Seki, T.; Tsutani, K. Traditional Japanese medicine, Kampo: Its history and current status. Clin. J. Integr. Med. 2011, 17,

85–87. [CrossRef] [PubMed]
3. Arai, I.; Kawabata, N. Kampo pharmaceutical products in the Japanese health-care system: Legal status and quality assurance.

Tradit. Kampo. Med. 2019, 6, 3–11. [CrossRef]
4. Arai, I. Clinical studies of traditional Japanese herbal medicines (Kampo): Need for evidence by modern scientific methodology.

Integr. Med. Res. 2021, 10, 100722. [CrossRef] [PubMed]
5. Motoo, Y.; Hakamatsuka, T.; Kawahara, N.; Arai, I.; Tsutani, K. Standards of Reporting Kampo Products (STORK) in research

articles. J. Integr. Med. 2017, 15, 182–185. [CrossRef] [PubMed]
6. Motoo, Y.; Arai, I.; Tsutani, K. Use of Kampo Diagnosis in Randomized Controlled Trials of Kampo Products in Japan: A

Systematic Review. PLoS ONE 2014, 9, e104422. [CrossRef] [PubMed]
7. Motoo, Y.; Arai, I.; Kogure, T.; Tsutani, K. Review of the first 20 years Evidence-Based Medicine Committee of the Japan Society

for Oriental Medicine. Tradit. Kampo Med. 2021, 8, 123–139. [CrossRef]
8. Motoo, Y. Role of Kampo Medicine in Modern Cancer Therapy: Towards Completion of Standard Treatment. J. Nippon Med. Sch.

2022, 89, 139–144. [CrossRef]
9. Motoo, Y.; Cameron, S. Kampo medicines for supportive care of patients with cancer: A brief review. Integr. Med. Res. 2022, 11,

100839. [CrossRef]
10. Suzuki, T.; Yamamoto, A.; Ohsawa, M.; Motoo, Y.; Mizukami, H.; Makino, T. Effect of ninjin’yoeito and ginseng extracts on

oxliplation-induced neuropathies in micie. J. Nat. Med. 2017, 71, 757–764. [CrossRef]
11. Sameshima-Uto, N.; Amitani, H.; Atobe, Y.; Sameshima, Y.; Sakaki, M.; Rokot, N.; Ataka, K.; Amitani, M.; Inui, A. Herbal

Medicine Ninjin’yoeito in the Treatment of Sarcopenia and Frailty. Front. Nutr. 2018, 5, 126.
12. Ohnishi, Y.; Fujii, H.; Hayakawa, Y.; Sakukawa, R.; Yamamura, T.; Sakamoto, T.; Tsukada, K.; Fujimaki, M.; Nunome, S.; Komatsu,

Y.; et al. Oral Administration of Kampo (Japanese Herbal) Medicine Juzen-taiho-to Inhibits Liver Metastastics of Colon 26-L5
Carcinoma Cells. Jpn. J. Cancer Res. 1998, 89, 206–213. [CrossRef] [PubMed]

13. Takagi, K.; Sugihira, T.; Kitamura, M.; Kawai, M.; Mitsuguchi, Y.; Tsukamoto, K.; Nakanishi, H.; Makino, T. Inhibitory effect of
Bofutushosan (Fangfengtongshengsan) extract on the absorption of fructose in rats and mice. J. Nat. Med. 2023, 77, 533–543.
[CrossRef] [PubMed]

14. Kishida, Y.; Kagawa, S.; Arimitsu, J.; Nakanishi, M.; Sakashita, N.; Otsuka, S.; Yoshikawa, H.; Hagihara, K. Go-sha-jinki-Gan
(GJG), a traditional Japanese herbal medicine, protects against in senescence-accelerated mice. Phytomedicine 2015, 22, 16–22.
[CrossRef] [PubMed]

15. Nakanishi, M.; Nakae, A.; Kishida, Y.; Baba, K.; Sakashita, N.; Shibata, M.; Yoshikawa, H.; Hagihara, K. Go-sha-jinki-Gan (GJG)
ameliorates allodynia in chronic constriction injury model mice via suppression of TNF-α expression in the spinal cord. Mol.
Pain. 2016, 12, 1744806916656382. [CrossRef] [PubMed]

16. Hosogi, S.; Ohsawa, M.; Kato, I.; Kuwahara, A.; Inui, T.; Marunaka, Y. Improvement of Diabetes Mellitus Symptoms by Intake of
Ninjin’yoeito. Front. Nutr. 2018, 5, 112. [CrossRef] [PubMed]

17. Jin, X.; Uchiyama, M.; Zhang, Q.; Harada, T.; Otsuka, K.; Shimokawa, T.; Niimi, M. Effect of 34 Kinds of Traditional Japanese
Herbal Medicines on Prolongation of Cardiac Allograft Survival. Transplant. Proc. 2014, 46, 1175–1179. [CrossRef] [PubMed]

18. Qia, B.L.; Li, Q.L.; Zhang, Y.; Li, K.; Wang, L.; Qiao, Y. Novel Antihypertensive Peptides Derived from Adlay (Coix larchryma-jobi
L. var. ma-yuen Stapf ) Glutelin. Molecules 2017, 22, 123.

19. Lio, B.; Ma, S.; Zhang, S.; Li, X.; Quan, R.; Wan, S. Fructus cannabis protein powder as a green and high effective corrosion
inhibitor for Q235 carbon steel in 1 M HCl solution. Int. J. Biol. Macromol. 2023, 239, 124358. [CrossRef]

20. Quazi, R.M.; Sajid, Z.; Zhao, C.; Hussain, I.; Ifikhar, F.; Jameel, M.; Rehman, F.U.; Ali, A. Lyophilization Based Isolation of
Exosomes. Int. J. Mol. Sci. 2023, 24, 10477. [CrossRef]

21. Wang, X.; Ma, Y.; Qi, X.; Ruan, X.; Zhao, F. Practically of non-invasive glucagon-loaded dissolving microneedle for life–saving
treatment of severe hypoglycemia in a diabetic rat model. Int. J. Pharm. 2023, 644, 123340. [CrossRef] [PubMed]

22. Armin, V.; Farnaz, M. Practical Techniques for Improving the Performance of Polymeric Membranes and Processes for Protein
Separation and Purification. Iran J. Chem. Chem. Eng. 2018, 37, 1–23.

23. Soxena, A.; Tripathi, B.P.; Kumar, M.; Shahi, V.K. Membrane-based techniques for the separation and purification of proteins: An
overview. Adv. Colloid. Interface Sci. 2009, 145, 1–22. [CrossRef]

24. Zeng, X.; Ruckenstein, E. Membranse Chromatography: Preparation and Applications to Protein Separation. Biotechnol. Prog.
1999, 15, 1003–1019. [CrossRef] [PubMed]

25. Takata, T.; Hasegawa, T.; Tatsuno, T.; Date, J.; Ishigaki, Y.; Nakamura, N.; Takano, F.; Ohta, T. Isolation of N-acetylneuraminic
Acid and N-glycolylneuraminic Acid from Pleurocybella porrigens. J. Health Sci. 2009, 55, 373–379. [CrossRef]

26. Takata, T.; Ishigaki, Y.; Shimasaki, T.; Tsuchida, H.; Motoo, Y.; Hayashi, A.; Tomosugi, N. Characterization of proteins secreted by
pancreatic cancer cells with anticancer drug treatment in vitro. Oncol. Rep. 2012, 28, 1968–1976. [CrossRef] [PubMed]

https://doi.org/10.1002/tkm2.1365
https://doi.org/10.1007/s11655-011-0653-y
https://www.ncbi.nlm.nih.gov/pubmed/21390572
https://doi.org/10.1002/tkm2.1204
https://doi.org/10.1016/j.imr.2021.100722
https://www.ncbi.nlm.nih.gov/pubmed/34136346
https://doi.org/10.1016/S2095-4964(17)60347-9
https://www.ncbi.nlm.nih.gov/pubmed/28494848
https://doi.org/10.1371/journal.pone.0104422
https://www.ncbi.nlm.nih.gov/pubmed/25119187
https://doi.org/10.1002/tkm2.1279
https://doi.org/10.1272/jnms.JNMS.2022_89-222
https://doi.org/10.1016/j.imr.2022.100839
https://doi.org/10.1007/s11418-017-1113-6
https://doi.org/10.1111/j.1349-7006.1998.tb00550.x
https://www.ncbi.nlm.nih.gov/pubmed/9548449
https://doi.org/10.1007/s11418-023-01697-8
https://www.ncbi.nlm.nih.gov/pubmed/37040005
https://doi.org/10.1016/j.phymed.2014.11.005
https://www.ncbi.nlm.nih.gov/pubmed/25636865
https://doi.org/10.1177/1744806916656382
https://www.ncbi.nlm.nih.gov/pubmed/27296622
https://doi.org/10.3389/fnut.2018.00112
https://www.ncbi.nlm.nih.gov/pubmed/30538991
https://doi.org/10.1016/j.transproceed.2014.01.007
https://www.ncbi.nlm.nih.gov/pubmed/24815154
https://doi.org/10.1016/j.ijbiomac.2023.124358
https://doi.org/10.3390/ijms241310477
https://doi.org/10.1016/j.ijpharm.2023.123340
https://www.ncbi.nlm.nih.gov/pubmed/37625601
https://doi.org/10.1016/j.cis.2008.07.004
https://doi.org/10.1021/bp990120e
https://www.ncbi.nlm.nih.gov/pubmed/10585183
https://doi.org/10.1248/jhs.55.373
https://doi.org/10.3892/or.2012.2020
https://www.ncbi.nlm.nih.gov/pubmed/22961650


Membranes 2023, 13, 896 13 of 16

27. Ahmed, S.; Mahony, C.B.; Torres, A.; Murillo-Saich, J.; Kembel, S.; Cedeno, M.; John, P.; Bhatti, A.; Croft, A.P.; Guma, M. Dual
inhibition of glycolysis and glutaminolysis for synergistic therapy of reheumatoid arthritis. Arthritis Res. Ther. 2023, 25, 176.
[CrossRef]

28. Liu, P.; Tang, W.; Zhao, D.; Zhou, P.; Hu, K. Active metabolites and potential mechanisms of Notopterygium incisum against
obstructive sleep apanea Syndrome (OSAS): Neteork analysis and experimental assessment. Front. Pharmacol. 2023, 14, 1185100.
[CrossRef]

29. Lin, Y.; O’Reilly, M.A.; Hynynen, K. A PVDF Receiver for A coustic Monitoring of Microbubble-Mediated Ultrasound Brain
Therapy. Sensors 2023, 23, 1369. [CrossRef]

30. Vierstraete, M.; Beckers, R.; Vangeel, L.; Foriers, B.; Pletinckx, P.; Muysoms, F. Prospective cohort study on mesh shrinkage mea-
sured with MRI after robot-assisted minimal invasive retrorectus ventral hernia repair using an iron-oxide-loadef polyvinylidene
fluoride mesh. Surg. Endosc. 2023, 37, 4604–4612. [CrossRef]

31. Sebastian, L.; Alina, J.; Fabinshy, T.; Dominik, R.; Axel, S.; Jens, H.; Kilian, W.; Cludia, R.; Leonidas, K.; Julia, R.; et al.
AbsorbaTackTM vs ProTackTM vs. sutures: A biomerchanical analysis of cervical fixation methods for laparoscopic fixations in the
porcine model. Arch. Gynecol. Obstet. 2023, 307, 863–871. [CrossRef] [PubMed]

32. Huang, Y.; Cadet, E.R.; King, M.W.; Cole, J.H. Comparison of the mechanical properties and anchoring performance of polyvinyli-
dene fluoride and polypropylene barbed sutures for tendon repair. J. Biomed. Mater. Res. 2022, 110, 2258–2265. [CrossRef]
[PubMed]

33. Gao, M.; Zhu, Y.; Yan, J.; Wu, W.; Wang, B. Micromechanism Study of Molecular Compatibility of PVDF/PEI Blend Membrane.
Membranes 2022, 12, 809. [CrossRef] [PubMed]

34. Han, M.; Han, Q.; Wu, S.; Xio, H.; Zhang, L.; Lin, Y.; Meng, F.; Zhao, S. Unveiling the Impacts of Sodium Hypochlorite on the
Characteristics and Fouling Behaviors of Different Commercial Polyvinylidene Fluoride Hollw Fiber Membranes. Membranes
2022, 12, 965. [CrossRef] [PubMed]

35. Sisay, E.J.; Fazekas, Á.F.; Gyulári, T.; Kopniczky, J.; Hopp, B.; Veréb, G.; Lászó, Z. Investigation of Photocatalytic PVDF Membranes
Containing Inorganic Nanoparticles for Model Dairy Wastwater Treatment. Membranes 2023, 13, 656. [CrossRef] [PubMed]

36. Xiang, J.; Wang, S.; Chen, N.; Wen, X.; Tian, G.; Zhang, L.; Cheng, P.; Zhang, J.; Tang, N. Study on Low Therminal-Conductivity
of PVDF@SiAG/PET Membranes for Direct Contact Membrane Distillation Application. Membranes 2023, 13, 773. [CrossRef]
[PubMed]

37. Ogino, N.; Ogino, K.; Eitoku, M.; Suganuma, N.; Nagaoka, K. Filter blot method: A simple method for measuring 3-nitrotyrosine
in proteins of atmospheric particulate matter. Environ. Pollut. 2023, 329, 121677. [CrossRef]

38. Bickner, A.N.; Chmpion, M.M.; Hummon, A.B.; Bruening, M.L. Electroblotting through a tryptic membrane for LC-MS/MS
analysis of proteins separated in electrophoretic gels. Analyst 2020, 145, 7724–7735. [CrossRef]

39. Takata, T.; Ueda, T.; Sakasai-sakai, A.; Takeuchi, M. Generation of glyceraldehyde-derived advanced glycation end-products in
pancreatic cancer cells and the potential of tumor promotion. World J. Gastroenterol. 2017, 23, 4910–4919. [CrossRef]

40. Takata, T. Is the Novel Slot Blot a Useful Method for Quantification of Intracellular Advanced Glycation End-Products? Metabolites
2023, 13, 564. [CrossRef]

41. Takata, T.; Motoo, Y. Novel In Vitro Assay of the Effects of Kampo Medicines against Intra/Extracellular Advanced Glycation
End-Products in Oral, Esophageal, and Gastric Epithelial Cells. Metabolites 2023, 13, 878. [CrossRef] [PubMed]

42. Phoung-Nguyen, K.; McNeill, B.A.; Aston-Mourney, K.; Rivera, L.R. Advanced Glycation End-Products and Their Effects on Gut
Health. Nutrients 2023, 15, 405. [CrossRef] [PubMed]

43. Chen, J.; Radjiabzadeh, D.; Midina-Gomez, C.; Voortman, T.; van Merus, J.B.J.; Ikram, M.A.; Uittelinden, A.G.; Kraaij, R.; Zillekens,
M.C. Advanced Glycation End Products (AGEs) in Diet and Skin in Relation to Stool Microbiota: The Rotterdam Study. Nutrients
2023, 15, 2567. [CrossRef] [PubMed]

44. Han, D.; Schaffiner, S.H.; Davies, J.P.; Benton, M.L.; Plate, L.; Nordman, J.T. BRWD3 promotes KDM5 degradation to maintain
H3K4 methylation levels. Proc. Natl. Acad. Sci. USA 2023, 120, e2305092120. [CrossRef] [PubMed]

45. Liu, Z.; Fang, Z.; Wang, K.; Ye, M. Hydrophobic Derivatization Strategy Facilitates Comprehensive Profiling of Protein Methylation.
J. Proteome Res. 2023, 22, 3275–3281. [CrossRef] [PubMed]

46. Liu, Y.; Ye, M.; Jang, M.; Chen, X.; Song, G.; Ji, H.; Wang, Z.; Zhu, X. Methylation of BRD4 by PRMT1 regulated BRD4
phophorylation and promotes ovarian cancer invasion. Cell Death Dis. 2023, 14, 624. [CrossRef] [PubMed]

47. Wang, M.; Gai, X.; Liang, R.; Zhang, E.; Liang, X.; Liang, H.; Fu, C.; Zhou, A.; Shi, Y.; Xu, F.; et al. SIRT1-dependent deacetylation
of Txnip H3K9ac is critical for exenatide-improved diabetic kidney disease. Biomed. Pharmacother. 2023, 167, 115515. [CrossRef]

48. Sun, Q.; Zou, Y.; Feng, Q.; Gong, Z.; Li, M.; Chen, Z. The acetylation of pknH is linked to the ethambutol resistance of
Mycobacterium tuberculosis. Arch. Microbiol. 2023, 205, 337.

49. Huang, Z.; Ito, M.; Zhang, S.; Toda, T.; Takeda, J.; Ogi, T.; Ohno, K. Extremely low-frequency electromagnetic field induces
acetylation of heat shock proteins and enhances protein folding. Ecotoxicol. Environ. Saf. 2023, 264, 115482. [CrossRef]

50. Xiong, H.; Zheng, Z.; Zhao, C.; Zhao, M.; Wang, Q.; Zhang, P.; Li, Y.; Zhu, Y.; Zhu, S.; Li, J. Insight into the underlying molecular
mechanisms of dilated cardiomyopathy through integrative analysis of data mining, iTRAQ-PRM proteomics and bioinformatics.
Proteome 2023, 21, 13. [CrossRef]

51. Toney, N.J.; Schlom, J.; Donahue, R.N. Phosphoflow cytometry to assess cytokine signaling pathways in peripheral immune cell
function and treatment response in patients with solid tumors. J. Exp. Clin. Res. 2023, 42, 247.

https://doi.org/10.1186/s13075-023-03161-0
https://doi.org/10.3389/fphar.2023.1185100
https://doi.org/10.3390/s23031369
https://doi.org/10.1007/s00464-023-09938-3
https://doi.org/10.1007/s00404-022-06827-3
https://www.ncbi.nlm.nih.gov/pubmed/36404354
https://doi.org/10.1002/jbm.b.35074
https://www.ncbi.nlm.nih.gov/pubmed/35674273
https://doi.org/10.3390/membranes12080809
https://www.ncbi.nlm.nih.gov/pubmed/36005723
https://doi.org/10.3390/membranes12100965
https://www.ncbi.nlm.nih.gov/pubmed/36295724
https://doi.org/10.3390/membranes13070656
https://www.ncbi.nlm.nih.gov/pubmed/37505022
https://doi.org/10.3390/membranes13090773
https://www.ncbi.nlm.nih.gov/pubmed/37755195
https://doi.org/10.1016/j.envpol.2023.121677
https://doi.org/10.1039/D0AN01380C
https://doi.org/10.3748/wjg.v23.i27.4910
https://doi.org/10.3390/metabo13040564
https://doi.org/10.3390/metabo13070878
https://www.ncbi.nlm.nih.gov/pubmed/37512585
https://doi.org/10.3390/nu15020405
https://www.ncbi.nlm.nih.gov/pubmed/36678276
https://doi.org/10.3390/nu15112567
https://www.ncbi.nlm.nih.gov/pubmed/37299529
https://doi.org/10.1073/pnas.2305092120
https://www.ncbi.nlm.nih.gov/pubmed/37722046
https://doi.org/10.1021/acs.jproteome.3c00318
https://www.ncbi.nlm.nih.gov/pubmed/37738134
https://doi.org/10.1038/s41419-023-06149-5
https://www.ncbi.nlm.nih.gov/pubmed/37737256
https://doi.org/10.1016/j.biopha.2023.115515
https://doi.org/10.1016/j.ecoenv.2023.115482
https://doi.org/10.1186/s12953-023-00214-9


Membranes 2023, 13, 896 14 of 16

52. Chen, D.; Dong, X.; Chen, D.; Lin, J.; Lu, T.; Shen, J.; Ye, H. Chd1 plays a protective role in nonalcoholic fatty liver disease by
regulating PPAR/PGC-1α signaling pathway. Biochem. Biophys. Res. Commun. 2023, 681, 13–19. [CrossRef] [PubMed]

53. Zappi, J.; Tong, Q.; Van der Cruyssen, R.; Cornlis, F.M.F.; Lambert, C.; Coelho, T.P.; Grisart, J.; Kague, E.; Kague, E.; Lories, R.J.;
et al. Osteomodulin downregulation is associated with osteoarthritis development. Bone Res. 2023, 11, 49. [CrossRef]

54. Mapunda, J.A.; Parejia, J.; Vladymyrov, M.; Bouilet, E.; Hélie, P.; Pleskač, P.; Barcos, S.; Andree, J.; Vesweber, D.; McDonald, D.M.;
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