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Abstract: Water polluted by discarded heavy metals such as lead is creating a global pollution
problem. In this work, adsorption of Pb(II) was realized in batch studies by a hybrid membrane
of cellulose acetate with ZnO particles. First, ZnO particles were prepared by precipitation and
immobilized on the membrane. The hybrid membrane was elaborated by interfacial polymerization.
The structure and surface were characterized based on Fourier-transform infrared spectroscopy (FTIR),
thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Batch experiments
were carried out under different conditions where the number of particles of ZnO present in the
membrane and the pH of the aqueous solution were varied. The Langmuir and Freundlich isotherm
models were evaluated in the best adsorption conditions. Data fitted well with a Langmuir model
with a maximum adsorption capacity of 15.55 mg·g−1, which was similar for this type of materials.
Thermodynamic parameters such as Gibbs free energy, enthalpy, and entropy showed that the process
was spontaneous and favorable. The hybrid membrane was evaluated in simulated wastewater of
the battery industry with a superior efficiency of up to 97%; without the medium, it did not generate
interference. These results suggest that Pb(II) removal by hybrid membrane is possible.

Keywords: hybrid membrane; ZnO; lead; battery industry

1. Introduction

Today, many water bodies have been contaminated due to the presence of various
chemical compounds. Factors that contribute to water pollution include pesticides, fertiliz-
ers, industrial and urban waste, and heavy metals [1].

Heavy metals are bioaccumulated, biomagnified, and toxic in small amounts. For
these reasons, and to avoid diseases and ecosystem damage, it is necessary to remove
them from water [2]. Different treatments for removing heavy metals have been developed,
such as precipitation, ion exchange, electrochemical techniques, and solvent extraction.
However, these have low efficiency and high energy consumption and provide incomplete
removal [3]. Lately, membrane technology has been used for the secondary and tertiary
municipal treatment of wastewater, and, in other cases, one membrane process has been
used for producing water of increasing purity and quality for various purposes [4].

Some types of membranes have been developed for this purpose, for example, organic,
inorganic, and hybrid membranes. Hybrid membranes are a mix of organic and inorganic
membranes, combining their basic properties for obtaining morphological stability, high
selectivity and flux, a good thermal and chemical resistance, and an appropriate ratio
between hydrophilicity and hydrophobicity [5,6]. Hydrophilicity and ion exchange capacity
in the membrane are caused by different inorganic compounds, such as Ag, TiO2, ZnO,
CuO, carbon nanotubes, graphene oxide, Al2O3, SiO2, Fe3O4, ZrO2, active groups, and
zeolite, which are entrapped into the polymer film by track etching, stretching, sintering
electrospinning, interfacial polymerization, dip coating, pressurized deposition, or phase
inversion technique [7–10]. This can contribute to solving the different problems connected
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to each of them and increase the ability of membrane systems in different fields of the
same energy sector and water treatment [11]. These membranes can be considered a new
generation of membranes for inhibiting microbes, and eliminating charged pollutants such
as heavy metals and dyes, and they have the possibility of being used on a pilot scale and
at an industrial level [12]. For example, a hybrid membrane with graphite was used as
an ultrafiltration membrane to remove Chrysophenine GX in textile wastewater [13]. A
polyether sulfone modified with a graphene oxide membrane was used to treat tannery
industry wastewater with a high rejection efficiency of chromium (>99%) [14]. Other
uses are the removal of antibiotics with a pillararene-MXene membrane [15] and the
removal of dyes (77–100%), phenols (40–100%), and heavy metals (66–100%) [16]. For this
reason, the present work focuses on the development and characterization of a hybrid
membrane of acetate cellulose particles of ZnO. Lightness and pliability are provided by
polymeric material [17]; in this case, the cellulose acetate is biodegradable, cheap, and
an abundant organic matrix [18], while the particles of the oxide have the function of
stabilizing the polymeric membrane, giving higher selectivity, antimicrobial activity, and
better performance [19].

The evaluation was realized with a lead solution, which has been used since prehistoric
times for the elaboration of pigments, electrical shielding, solder, glazes, and pesticides
due to its properties such as ductility, malleability, conductivity, resistance to corrosion,
and low melting point [20]; but, one of the main applications of lead is in storage batteries
due to its special reversible reaction with sulfuric acid. Wastewater of this industry can
contain between 3 and 15 mg·L−1 of soluble lead, which is becoming a source of pollution;
there needs to be different alternatives for its treatment [21]. The factors evaluated were
pH in feed phase, concentrations of the ZnO, contact time, adsorption isotherms, and
thermodynamics parameters. Adsorption of lead in simulated water was also investigated.

2. Materials and Methods
2.1. Materials

Marjoram was acquired from the local market. N, N′-dimethylformamide (DMF), HCl
37%, and lead nitrate (Pb(NO3)2) were purchased from J. T. Baker (Xalostoc, Edo. Mex,
Mexico; sodium hydroxide (NaOH, St. Louis, MO, USA) and cellulose acetate (AM. 50000,
CA, Milwaukke, USA) were purchased from Aldrich. Zn(NO3)2·6H2O 99% was purchased
from Fluka (Buchs, Switzerland). All the chemicals that were used were ACS grade. For
the quantification of lead and simulated wastewater, solution standards for inductively
coupled plasma and direct-current plasma (ICP/ DCP) from Fluka (St. Louis, MO, USA)
were used. Aqueous solutions were prepared by dissolving the respective analytical grade
reagent in deionized water with a resistivity of no less than 18.2 MΩ cm obtained by a
Milli-Q Plus system (Millipore, Bedford, MA, USA).

2.2. Methods
2.2.1. Preparation of Particles of ZnO

First, an extract was prepared, and 1.3 g of marjoram was put into 15 mL of deionized
water in a heater at 50 ◦C for 30 min; the extract was cooled at room temperature and filtered
for further studies. For the preparation of ZnO particles (NP), 2.7 g of Zn(NO3)2·6H2O
was stirred with 10 mL of deionized water for 30 min. A 1 mL amount of extract and
NaOH 2M were added into the solution until pH reached 12 and stirred at room tem-
perature for 2 h. NP were washed and separated by centrifugation until excess base was
removed (pH < 8). After, the product was dried at 60 ◦C for 12 h according to the report by
Mohammadian et al. [22].

2.2.2. Preparation of Hybrid Membrane

Polymeric solution was prepared by dissolving CA in DMF (10% w/v) after an amount
of NP was added to the polymer solution and stirred for 30 min. The polymeric solution
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was poured onto a glass plate (thickness ~0.36 mm) and formed the hybrid membrane
(CA/ZnO) by phase inversion employing water [23].

The morphology of the hybrid membrane (CA/ZnO) was examined by scanning
electron microscopy (SEM) (JEOL JSM-6300, Tokyo, Japan). The membrane samples were
mounted with conductive glue to metal stubs with the fractured edge up and then coated
with gold sputtering. The estimate of immobilized zinc atomic percentage was determined
by energy-dispersive X-ray spectroscopy (EDX) using a SEM JEOL JSM-5600 LV model.

Stability of the membrane was evaluated by thermal gravimetric analysis (TGA) with
a Mettler Toledo TGA/SDTA 851e (Switzerland) in a temperature range of 50–800 ◦C and at
a heating rate of 10 ◦C/min. Infrared analysis was carried out with a Perkin Elmer System
2000 with Fourier transform (Waltham, MA, USA).

Porosity percentage of the hybrid membrane was measured according to the report of
Yang et al. (Equation (1)). A 2 cm2 amount of hybrid membrane was put into contact in
deionized water at 24 h after the membrane was weighed and after its surface water was
absorbed by filter paper (WW). The wet membrane was dried in an oven at 60 ◦C for 12 h
before it was weighed (Wd).

Pr =
Ww −Wd

Sdδw
× 100 (1)

where d is the average thickness of the membrane and δw the density of water to room
temperature [23].

An approximation of the contact angles of membranes was measured with a digital
microscope. A water drop (10 µL) was put onto different points on the membrane’s surface
to determine static contact angles.

2.2.3. Sorption Procedure

To evaluate the adsorption percentage of the membrane (%APb) (Equation (2)), 10 mL
of 10 mg·L−1 of lead was put in contact with a superficial area of 5 cm2 of CA/ZnO for 4 h
in batch. All the experiments were performed three times, while the amount of lead was
measured in a flame atomic absorption spectrometer VARIAN SpectrAA-880 (Australia).

%APb =

(C0 − C f

C0

)
100 (2)

Adsorption isotherm experiments were realized by putting 0.06 g of CA/ZnO 3%
(w/v) in contact with 10 mL of a solution of Pb(II) in the range of 40–800 mg·L−1 at room
temperature. Langmuir and Freundlich linear forms were used to model the adsorption
(Equations (3) and (4), respectively) [24].

Ce

qe
=

1
qmaxKL

+
Ce

qmax
(3)

logqe = logK f +
1
n

logCe (4)

where qe = amount adsorbed (mg.g−1), Ce = equilibrium concentration of adsorbate
(mg.L−1), qmax = maximum adsorption capacity (mg·g−1), KL = Langmuir constant of
adsorption, Kf = adsorption capacity (mg·g−1), and n = adsorption intensity.

Both models permitted us to describe whether the adsorption was in a homogeneous
form (Langmuir) or a heterogeneous surface (Freundlich). The error function for evaluating
the fit of the isotherm was evaluated by chi-square test (Equation (5)) [25].

χ2 = ∑
(qex − qe,m)

2

qe,m
(5)

where qe,m is the equilibrium capacity (mg·g−1) obtained from the model, and qex is the
experimental data of the capacity after the sorption process (mg·g−1).
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Thermodynamic studies were realized for the effect of temperature using the Van ’t
Hoff equation (Equation (6)):

lnKc =
∆S0

R
− ∆H0

RT
(6)

where ∆S0 is entropy change (J·mol−1·K−1), R is the gas ideal constant (8.314 J·mol·K−1),
∆H0 is the enthalpy change (kJ·mol−1), T is the absolute temperature in K, and Kd is the
equilibrium constant obtained. ∆H0 and ∆S0 were obtained from the slope and intercept
of plot LnK vs. 1/T (K−1). The standard Gibbs free energy (∆G0) was evaluated by
Equation (7):

∆G0 = −RTlnKc (7)

where Kc (equilibrium constant) was evaluated at each temperature with the relation be-
tween the equilibrium concentration of the metal on the adsorbent (CB) and the equilibrium
concentration of the metal in the solution (CA) (Equation (8)) [26].

Kc =
CB
CA

(8)

2.2.4. Simulated Wastewater

Simulated wastewater from the battery industry used in this study was prepared
according to Vergil et al., 2017 [27]. Water was doped with: Pb, 4.5 mg·L−1; Mn, 0.1 mg·L−1;
Ni, 0.097 mg·L−1; Cu, 0.083 mg·L−1; Cr, 0.070 mg·L−1; Zn, 0.029 mg·L−1; Ag, 0.002 mg·L−1;
As, 0.003 mg·L−1; Cd, 0.003 mg·L−1; and Sn, 0.014 mg·L−1. All metals were selected in
nitrate form or in standard solution with 2% of HNO3 to prevent formation of precipitates.

3. Results and Discussions
3.1. Characterization of the Hybrid Membrane
3.1.1. Scanning Electronic Microscopy (SEM)

SEM is a traditional technique for analyzing the surface of different materials. The
characterization of the hybrid membrane by SEM is shown in Figure 1. The CA membrane
presented a surface with pores of 3.9 µm (average of five measures) (Figure 1a), while the
CA/ZnO (Figure 1b) showed that the addition of ZnO particles produced the formation
of smaller pores such as on a sponge surface, increasing the porosity of the membrane.
According to the distribution of pore size, it was an asymmetric membrane [28].
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3.1.2. Thermogravimetric Analysis (TGA)

The presence of ZnO and the thermal stability of the membrane were investigated by
TGA. Figure 2 shows the main state of degradation; for the CA, the first loss region can
be attributed to the water molecular present in the membrane. The second loss starting
at ~370 ◦C corresponds to the degradation of cellulose acetate chains, and the third phase
is due to the carbonization of the polymer. This loss was less in the CA/ZnO due to the
stability provided for the particles of ZnO [29,30].
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3.1.3. Fourier-Transform Infrared Spectroscopy (FTIR)

The IR spectrum of cellulose acetate showed an OH stretching vibration at 3500 cm−1,
the CH symmetric stretching vibration of CH2 at 2960 cm−1, stretching vibration of C–O at
1756 cm−1, CH2 vibration at 1430 cm−1, and C–CH at 1370 cm−1. The characteristic peaks
of cellulose are around 1000 cm−1. The band near 1167 cm−1 was due to the asymmetric
stretching C–O–C 1351 cm−1 vibrations of CH2 in the cellulose (Figure 3a) [31].
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In the ZnO infrared spectrum (Figure 3b), a vibration band at 450 to 550 is characteristic
of a Zn–O bond; a stretching band at 3434 cm−1 and a bending band at 1330 to 1670 cm−1

can indicate a hydroxide residue [32].
On the other hand, the infrared spectrum of CA/ZnO (Figure 3c) showed an increase

in the band of the Zn–O bond (450–550 cm−1) and the characteristics of cellulose acetate.
This confirms the presence of NP in the membrane.

3.1.4. Porosity and Hydrophobicity

To verify the increase in the porosity in the membrane due to the presence of ZnO, dif-
ferent amounts of NP in the polymeric solution (between 0 and 3% of ZnO) were evaluated.
Figure 4 shows that the percentage of porosity of CA/ZnO increased with the concentration
of ZnO present in the membrane probably due to the nonsolvent concentration gradient
rate difference it induced in the polymeric solution due to the increase in the viscosity of
the casting solution, allowing the formation of pores [33].
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Figure 4. Characterization of the membrane. Percentage of porosity of CA/ZnO hybrid membrane
with different ZnO concentrations (bars). Experimental conditions: 10 mL of deionized water; contact
time 24 h; 2 cm2 of CA/ZnO prepared with 3% of NP in polymeric solution. Amount of zinc present
in the membrane determined by EDS (* percentage of weight of zinc, line). Contact angle.

On the other hand, Figure 4 also shows that there was a greater diffusion of water in
the structure membrane which increased the amount of ZnO (increased the contact angle).
This indicates that the presence of more NP in the CA/ZnO makes the membrane more
hydrophobic; this is favorable for the antifouling ability and the water flux [34,35], and the
hydrophobicity depends on ZnO/H2O interactions [36]. Added to this, an increase in ZnO
particles in the polymer solution allows an increase in the percentage of zinc in the hybrid
membrane, according to the results of energy-dispersive X-ray spectroscopy. This suggests
the formation of more active sites, which facilitate the extraction process.

3.2. Amount of ZnO Nanoparticles

As mentioned above, oxide particles are used to give selectivity to a hybrid membrane;
for this reason, the effect of the amount of NP on the CA/ZnO was evaluated in an interval
of 0 to 3%. An addition of nanoparticles had a positive effect on adsorption capacity
(Table 1); this may have come from the availability of active sites on the surface of CA/ZnO
caused by the complexations between the lead and the oxygen of ZnO present in the surface
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of the membrane [37,38]. It is important to say that 3% is the maximum amount of ZnO
that can be added; this was the amount used in further experiments.

Table 1. Effect of amount of ZnO nanoparticles in the polymeric solution.

Amount of ZnO Particles (% W/v) Percentage of Adsorption (%APb) *

0.0 27.47 (17.41)
0.1 45.18 (9.70)
0.5 65.05 (8.83)
1.0 81.02 (1.13)
1.5 82.83 (5.34)
3.0 84.81 (1.32)

* %CV in parenthesis.

3.3. Evaluation pH in Aqueous Solution

Different values of pH from 1 to 6 were evaluated as this permitted the facilitation
of the adsorption process. Table 2 shows that, with a low pH value, the extraction of lead
decreased due to the competence of protons and the Pb(II) with electrons of oxygen present
in the ZnO (active sites), while, at pH 6, there was the presence of a hydroxocomplex [39].
On the other hand, at pH 5, the surface had more negative groups for the complexation of
metal; for this reason, this was the value used for further experiments [40].

Table 2. Effect of amount of ZnO nanoparticles’ pH solution.

pH Percentage of Adsorption (%APb) *

1 27.47 (17.41)
2 45.18 (9.70)
3 65.05 (8.83)
4 81.02 (1.13)
5 84.81 (1.32)
6 82.83 (5.34)

* %CV in parenthesis. Experimental conditions: 10 mg·L−1 of Pb(II) in aqueous solution; CA/ZnO prepared with
3% of NP in polymeric solution. Contact time 4 h.

3.4. Adsorption Isotherms

Adsorption capacity between Pb(II) and ZnO/CA was analyzed by Langmuir and
Freundlich models to describe the distribution between the analyte and adsorbent (see
Section 2.2.3). The parameters in Table 3 suggest that the Langmuir adsorption isotherm
model was the most suitable (R2 = 0.992 in comparison to Freundlich, which was R2 = 0.980),
so that the energy levels were the same in all the active sites, and a homogeneous surface
of adsorption without a lateral interaction between adsorbed molecules (formation of
monolayer) [41,42]. The separation factor showed a favorable adsorption (RL < 1), while
QMAX was 15.55 mg·g−1, comparable to the other materials of this type used for the removal
of lead (Table 4). In all the cases, the high chi-square values showed a satisfactory fit for the
experimental data.

3.5. Thermodynamic Study

The thermodynamic parameters can be used to determine the type or nature of adsorp-
tion (see Section 2.2.3). In this case, Table 3 shows that ∆G0 was −29.73 to −21.52 KJ·mol−1,
which corresponded to the physical adsorption enhanced by the chemical effect [48]. On
the other hand, the ∆G0 negative value indicates that the adsorption of lead onto CA/ZnO
was thermodynamically favorable and spontaneous, while a positive value of ∆H0 implies
an endothermic and monolayer adsorption [49]. This result is congruent with the Langmuir
isotherm model.
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3.6. Simulated Wastewater

Adsorption of lead with CA/ZnO was evaluated from simulated battery industrial
effluent and compared with an ideal system (without interferences). The percentage of lead
removed was the same, in both cases greater than 97%, indicating that the other metals do
not interfere with the removal of lead when employing a hybrid membrane of CA/ZnO.

Table 3. Isotherm parameters obtained by linear methods for adsorption of Pb(II) onto ZnO/CA and
thermodynamics parameters.

Langmuir Freundlich

Qo (mg/g) KL
(L/ mg) RL R2 χ2 KF

(mg/g) no R2 χ2

15.55 0.035 0.06–0.97 0.992 4.304 1.77 2.76 0.980 0.819

Thermodynamic parameters

Temperature
(K)

∆G0

(KJ mol−1)
∆H0

(KJ mol−1)
∆S0

(KJ mol−1K−1)

291 −21.52
119.41 0.48298 −24.66

308 −29.73

Experimental conditions: 10 mg L−1 of Pb(II) in aqueous solution at pH = 5; CA/ZnO prepared with 3% of NP in
polymeric solution.

Table 4. Comparison of maximum capacity adsorption of lead by different adsorbents.

Adsorbent Qmax (mg·g−1) Reference

Iron oxide nanoparticles immobilized in sand 2.087 [43]
Ultrafiltration membrane of polysulfone with hydrous
ferric oxide 13.20 [44]

Hybrid membrane of cellulose acetate with zinc oxide 15.55 This work
Aluminum oxide 17.50 [45]
Iron-oxide-coated bentonite 22.20 [46]
Polyacrylonitrile with metal–organic framework
(MOF-808) membrane 23.98 [47]

Magnesium-oxide-coated bentonite 31.86 [46]

4. Conclusions

A hybrid membrane of cellulose acetate with particles of ZnO for the removal of lead
was easily developed. The characterization of CA/ZnO was realized by SEM, TGA, and IR.
These techniques showed that the immobilization of ZnO in the membrane improves some
properties such as stability, porosity, and hydrophobicity. The best conditions of sorption of
CA/ZnO for lead were found to be: 3% of NP in the polymeric solution for the elaboration
of the membrane and a solution of 10 mg·L−1 of lead pH = 5. The adsorption of lead was
fitted with Langmuir and Freundlich isotherm models. The Langmuir model described
the process as homogeneous sorption in a monolayer. The maximum capacity determined
was 15.55 mg·g−1, comparable to similar materials. Thermodynamic parameters showed a
favorable process.

The results suggest that CA/ZnO can be used for the removal of lead in the wastewater
of the battery industry. The evaluation of this type of water does not show changes with
respect to the ideal system, so this type of material is a great alternative, having the
advantage of being a green and easy method.

All this suggests the potential of CA/ZnO for effective wastewater treatment due
to its stability, chemical resistance, ion exchange capacity, and microbial effect. Hybrid
membranes are a promising, low-cost strategy for eliminating pollutants present in wa-
ter on an industrial scale, and there is the possibility of combining them with different
separation processes.
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