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Abstract: Polyamide (PA) nanofiltration (NF) membranes suffer from biofouling, which will dete-
riorate their separation performance. In this study, we proposed a strategy to incorporate silver
nanoparticles (Ag NPs) into PA NF membranes in situ, in order to simultaneously enhance water
permeability and antibacterial performance. The chloride-doped carbon quantum dots (Cl-CQDs)
with photocatalytic performance were pre-embedded in the PA selective layer. Under visible light
irradiation, the photogenerated charge carriers generated by Cl-CQDs rapidly transported to silver
ions (Ag+ ions), resulting in the in situ formation of Ag NPs. The proposed strategy avoided the
problem of aggregating Ag NPs, and the amount of Ag NPs on the membrane surfaces could be easily
tuned by changing silver nitrate (AgNO3) concentrations and immersion times. These uniformly
dispersed Ag NPs increased membrane hydrophilicity. Thus, the obtained thin film nanocompos-
ite Ag NPs (TFN-Ag) membrane exhibited an improved water flux (31.74 L m−2 h−1), which was
~2.98 times that of the pristine PA membrane; meanwhile, the sodium sulfate (Na2SO4) rejection rate
was 96.11%. The sterilization rates of the TFN-Ag membrane against Escherichia coli (E. coli) and
Staphylococcus aureus (S. aureus) were 99.55% and 99.52%, respectively. Thus, this facile strategy
simultaneously improved the permeability and antibacterial property of PA NF membranes.

Keywords: nanofiltration; antibacterial performance; silver nanoparticles; carbon quantum dot;
visible light irradiation

1. Introduction

Due to the boom in population growth and the development of industry, the demand
for water purification technology requires sustainable growth [1]. NF membranes, with
their merits of energy efficiency, environmental benefits, and low cost, have been widely
applied in many areas, including seawater desalination [2], wastewater treatment [3], water
softening [4], and so on. Improving the water flux and selectivity of NF membranes is an
ongoing objective for NF membrane design. In addition, most PA NF membranes suffer
from inevitable biofouling, which is one of the key problems to be solved in membrane
separation processes [5]. Membrane biofouling results from microbial growth and biofilm
formation. Disinfectants such as chlorine have been used for pre-treatment; however, bacte-
rial proliferation still exists because the surviving bacteria can migrate to the membrane
surface. Furthermore, harmful disinfection byproducts may be formed when disinfectants
are used, and some disinfectants themselves result in the degradation of PA thin film com-
posite (TFC) membranes [6,7]. Apart from addressing the issue of decreasing membrane
separation performance caused by biofouling, the growing pursuit of pathogen-free water
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is another reason for developing antimicrobial membranes [8]. Therefore, simultaneously
improving the separation performance and antibacterial properties of NF membranes is
highly desirable.

To enhance the separation performance and antibacterial ability of PA TFC membranes,
many strategies, such as topological or chemical surface engineering and incorporating
some hydrophilic and/or antimicrobial nanomaterials [9–12], have been proposed. Of these
approaches, the incorporation of nanomaterials, which can provide enhanced free volume
in the PA selective layer and additional nano-pores/channels for water transport, has
received great significant interest [12–14]. Meanwhile, a variety of nanomaterials, including
Ag NPs [15–17], zinc oxide nanoparticles [18], copper nanoparticles [19], titanium dioxide
nanoparticles [20], graphene oxide nanosheets [21,22], and curcumin-enriched sodium
dodecyl benzenesulfonate (Cur-NaDBS) nanoparticles [23], have been successfully applied
to effectively inhibit bacterial proliferation on membranes. Currently, the incorporation
of these dual-functional nanomaterials to the PA selective layer is mainly through ex situ
or in situ methods, forming thin film nanocomposite (TFN) membranes. The addition of
pre-made nanomaterials is referred to as the ex situ method [24]. With this strategy, PA
selective layers produce non-selective defects due to functional nanomaterials’ mediocre
dispersibility and compatibility. In addition, the weak interaction between the PA mem-
brane and these ex situ incorporated nanomaterials results in the leakage of functional
nanomaterials. These phenomena lead to serious deterioration of membrane structure and
separation performance during continued operation [25–27]. Therefore, the in situ method,
where the nanomaterials are generated and incorporated into the PA matrix simultaneously,
has been proposed to address the above-mentioned limitations. Compared to the ex situ
method, the nanomaterials generated by the in situ method show better dispersity and
compatibility with the PA matrix. In addition, no extra procedure is needed for the separa-
tion and purification of the nanomaterials, making this method much easier than the ex situ
method. Therefore, a paradigm shift is highly desired for the in situ integration of Ag NPs
to achieve TFN membranes with excellent separation performance and antibacterial ability.

Carbon quantum dots (CQDs) have attracted broad research interest in membrane
fabrication, due to their small particle sizes and abundant functional groups [28–30]. Nu-
merous studies demonstrated an increase in water permeability by incorporating CQDs
as a nanofiller into the PA selective layer [31,32]. However, it is still difficult to simulta-
neously enhance the water permeability and antibacterial abilities of TFN membranes.
Recently, the doping of Cl into CQDs was observed to facilitate an enhanced separation
of photoexcited charge carriers, and enable the rapid conversion of Ag+ ions to metallic
Ag NPs under visible light irradiation [33]. In this study, we proposed a strategic in situ
formation of Ag NPs induced by Cl-CQDs under visible light irradiation to endow the
PA TFC membranes with high water permeability and good antibacterial performance. In
this research, Cl-CQDs acted as anchor sites that were previously embedded in pristine PA
TFC membranes that were obtained through interfacial polymerization reactions between
piperazine (PIP) and trimesoyl chloride (TMC). Then, Ag NPs were formed in situ on the
membrane surface by immersing the as-prepared membrane in AgNO3 aqueous solution
under visible irradiation. The consequent formation of Ag NPs was generated by the em-
bedded Cl-CQDs that accelerated the photogenerated charge carriers to the Ag+ ions [33],
contributing to the formation of Ag NPs. The successful in situ incorporation of Ag NPs
onto the membrane was confirmed. The presence of Ag NPs on the membrane surface
properties, separation performance, and antibacterial ability were systemically analyzed.
These results shed light on the preparation of advanced NF membranes with high water
permeability and antibacterial ability through a facile and applicable method.

2. Experiment
2.1. Materials

The Cl-CQDs were supplied by XFNANO Materials Tech Co., Ltd (Nanjing, China).;
polysulfone (Psf) ultrafiltration membranes were obtained from Zhongke Ruiyang Mem-
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brane Technology Co., Ltd. (Beijing, China); PIP, TMC, n-hexane, AgNO3, and inorganic
salts, including sodium chloride (NaCl), Na2SO4, magnesium sulfate (MgSO4), and nitric
acid (HNO3), were all supplied by Macklin Biochemical (Shanghai) Co., Ltd.; S. aureus
(KCTC 3881), E. coli (ATCC 47076), and the corresponding culture mediums were pur-
chased from Luwei Biological Technology Co., Ltd.(Zibo, Shandong, China). Home-made
deionized water was utilized in all of the experiments.

2.2. Preparation of TFN-Ag Membranes

The manufacturing processes of the TFN-Ag membranes are schematically presented
in Figure 1. A volume of 20 mL of PIP (1 wt%) aqueous solution containing Cl-CQDs
(0.05 mg mL−1) was poured onto the Psf ultrafiltration membranes. After 2 min, the aque-
ous solution was drained from the Psf membrane surface. When no obvious droplets on
the surface of Psf membrane were observed, the TMC/n-hexane solution was poured onto
the Psf membrane surface for 1 min. The nascent PA membrane was generated through
interfacial polymerization between PIP and TMC. Then, the membranes were soaked in
AgNO3 aqueous solutions with different concentrations for a certain time (1–15 min) under
visible light irradiation, followed by oven drying at 50 ◦C for 15 min, in order to obtain
the TFN-Ag membranes. A xenon lamp (PLS-SXE-300 W) was adopted for the generation
of visible light using a 420 nm filter to cut off ultraviolet light, and the temperature of
the AgNO3 solution was controlled by circulating condensate water. Specifically, when
the immersion time of the AgNO3 solution was 3 min, the obtained NF membranes were
abbreviated as TFN-Ag 1, TFN-Ag 2, TFN-Ag 4, TFN-Ag 6, and TFN-Ag 8, according to the
concentration of AgNO3 solution (1, 2, 4, 6, and 8 mg mL−1, respectively).
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For contrast studies, the pristine PA membrane was prepared through the interfacial
polymerization between PIP and TMC, and abbreviated as TFC membrane, while the PA
membrane containing Cl-CQDs was abbreviated as Cl-TFN membrane.
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2.3. Characterizations

The Ag NPs formed in situ by Cl-CQDs were confirmed with an ultraviolet-visible (UV-
vis) spectrometer (UV-2600). The morphology and relative size of Ag NPs formed in the
Cl-CQDs solution were visualized via scanning electron microscopy (SEM, GeminiSEM500,
Jena, Germany).

The membrane surface morphologies were evaluated with SEM, and the existence
of Ag elements was confirmed by energy dispersive X-ray (EDX) spectra. The membrane
chemical structures were characterized using attenuated total reflectance Fourier transform
infrared spectroscopy (ATR-FTIR, Nicolet Aratar 370). The surface chemical composition
was further determined via X-ray photoelectron spectroscopy (XPS, Thermo Fisher Scientific
ESCALAB Xi+). The membrane hydrophilicity was confirmed using a video contact angle
system (DSA-20, Germany) with the sessile drop method.

2.4. Separation Performances of TFN-Ag Membranes

The NF performance of the membranes was investigated with a lab-made cross-flow
membrane filtration apparatus at 25 ◦C. Before the test, all of the tested membranes with an
effective surface area of 22.4 cm2 were pre-pressurized at 0.6 MPa for at least 30 min until the
water flux became stable. The salt solution (NaCl, Na2SO4, and MgSO4, 1 g L−1) was tested.
The flux (J, L m−2 h−1) and rejection (R, %) were calculated with Equations (1) and (2),
respectively:

J =
Vp

At
(1)

R =

(
1 −

Cp

Cf

)
× 100% (2)

where Vp is the permeated water volume (L), A is the effective surface area of membrane
(m2), t is the filtration time (h), and Cp and Cf are the solute concentrations of the permeate
and feed solution, respectively, obtained by a Mettler Toledo electrical conductivity meter
(FE-30). The data presented are the averages of three parallel experiments.

2.5. Characterizations of Membrane Antibacterial Performance

The antibacterial performances of the TFC, Cl-TFN, and TFN-Ag 4 membranes were
assessed using S. aureus (Gram-positive) and E. coli (Gram-negative). The culture media,
reagents, and utensils used in this experiment were all pre-sterilized with ultraviolet light
for 1 h before the tests. The bacteria, i.e., S. aureus or E. coli, were cultivated at 37 ◦C in
Luria–Bertani (LB) broth, and suspensions containing 108 colony forming units per mL
(CFU mL−1) of bacteria were obtained. A 100 µL, 107 CFU mL−1 suspension was inoculated
on the LB solid medium; then, the TFC, Cl-TFN, and TFN-Ag 4 membranes were placed
faced-down to contact with the LB agar. The inhibition zone was observed after culturing
at a constant temperature of 37 ◦C for 24 h.

A volume of 100 µL of diluted bacterial solution (107 CFU mL−1) was dropped onto
the sterilized membrane surface, following incubation at 37 ◦C for 3 h. Then, 100 µL of
diluted solution (diluted 1 × 106 times) was coated on the solid LB medium, and cultured
at 37 ◦C for 12 h. The bacteriostasis rate (BR) of the membranes was obtained by counting
the viable bacterial colonies and using the following equation:

BR =

(
1 − Nm

Nb

)
× 100% (3)

where Nb and Nm are the numbers of bacterial colonies on the control group and TFN-Ag
membrane, respectively. The data presented are the averages of three parallel experiments.
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2.6. Silver Release Experiments

The release rates of the Ag+ ions from the TFN-Ag 4 membrane were assessed via batch
experiments. The membrane sample (2 × 2 cm2) was immersed in 20 mL of DI water and
placed on an orbital shaker (SYC-2012, Crystal) under 100 rpm at room temperature. Water
was collected, and an equal amount of DI water was added every 24 h. The concentrations of
released Ag+ ions from the TFN-Ag 4 membrane in the collected water were quantitatively
determined using an inductively coupled plasma mass spectrometer (ICP-MS, iCAP6300,
PerkinElmer, Waltham, MA, USA). To dissolve the Ag on the membrane surface completely,
the TFN-Ag 4 membrane was digested by 1 wt% HNO3 aqueous solution. Subsequently,
the obtained solution was determined via ICP-MS to acquire the total amount of Ag on the
TFN-Ag 4 membrane.

3. Results and Discussion
3.1. The In Situ Formation of Ag NPs Induced by Cl-CQDs

To confirm the Ag NPs formation induced by Cl-CQDs under visible light irradia-
tion, 0.05 mg mL−1 commercial Cl-CQDs were added into the AgNO3 solution, and the
variations in the formation process were monitored using UV–vis spectra. As shown
in Figure 2a, the UV–visible spectra of the AgNO3 and Cl-CQDs mixture solution were
completely different from that of the single solution. Under visible light, strong adsorption
originating from the surface plasmon resonance of the generated Ag NPs was found in
the UV–vis spectra [34], confirming the successful in situ generation of Ag NPs induced
by Cl-CQDs. The intensity of the adsorption peak increased with increasing irradiation
time within 15 min, while further prolonging the irradiation time resulted in no apparent
changes. The increased adsorption peak demonstrated the continuous formation of Ag
NPs. Moreover, the Cl-CQDs yielded a rapid reduction process, and the in-situ formation
of Ag NPs was accomplished within 15 min. The generated Cl-CQDs/Ag NPs showed a
broad size distribution, i.e., 32–72 nm (Figure 2b), which was consistent with the broad
adsorption peak in Figure 2a. Cl-doped CQDs have been demonstrated to generate an
additional energy level, which would be beneficial for enhancing the photocatalytic activity
of Cl-CQDs triggered by visible light. This behavior would accelerate the transportation
of photogenerated charge carriers towards Ag+ ions, contributing to the rapid formation
of Ag NPs [33]. Therefore, we concluded that the Cl-CQDs induced the in situ formation
of Ag NPs under visible light irradiation and generated Cl-CQDs/Ag NPs nanocompos-
ites. These results made it possible for Cl-CQDs to induce Ag NPs formation on the PA
membrane surface in situ.
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3.2. Preparation of TFN-Ag Membranes via In Situ Formation Induced by Cl-CQDs

To realize in situ Ag NPs formation on the membrane surface, Cl-CQDs, which act as
anchors, were introduced in the PA selective layer during interfacial polymerization. Then,
by immersing the resultant membrane in AgNO3 solution under visible light irradiation,
TFN-Ag (1–6) membranes with Ag NPs decorated on the surfaces were obtained. The
chemical properties of the TFN-Ag membranes were confirmed with ATR-FTIR and XPS.
The characteristic peak at 1621 cm−1 attributed to amide groups was observed in all of
the characterized membranes, demonstrating the successful generation of PA selective
layers [35]. XPS analysis provided a method to quantitatively analyze the chemical com-
position of the membrane surfaces. The characteristic peaks of C, N, and O elements
at 285, 400, and 531 eV, respectively, were revealed in the XPS spectra of the TFC, Cl-
TFN, and TFN-Ag (1–6) membranes (Figure 3b); these were consistent with the chemical
compositions of the PA selective layers. No Ag elements were detected in the TFC and
Cl-TFN membranes. After immersion in AgNO3 solution, Ag elements were detected
(Table 1) and apparent Ag3d signals could be detected on the surface of the TFN-Ag
4 membrane. Moreover, new peaks at 38.1◦ and 44.3◦ appeared in the XRD spectrum for
TFN-Ag 4, which were ascribed to the (111) and (200) diffractions of the face-centered cubic
structure of Ag NPs [36] (Figure 3c). In addition, the high-resolution Ag3d XPS spectrum
was analyzed in detail (Figure 3d) to further confirm the status of Ag that existed on the
TFN-Ag 4 membrane surface. Doublet signals were observed at 368.5 eV and 374.5 eV,
corresponding to Ag 3d5/2 and Ag3d3/2 peaks, respectively. Moreover, the spin energy
difference of these two peaks was equal to 6.0 eV, indicating the generation of metallic
Ag NPs [37]. The Ag3p signals were attributed to the existence of silver chloride (AgCl)
caused by the Cl-CQDs, and the resultant AgCl would also be beneficial for improving
antibacterial performance [38,39]. The stronger intensity of the Ag3d signals than those
of the Ag3p signals manifested the dominant role of Ag NPs. Furthermore, the elemental
atomic contents are presented in Table 1; TFN-Ag 4 possessed a higher O/N ratio (1.059)
than that of the TFC membrane (0.997), indicating the relatively lower cross-linking de-
gree of TFN-Ag 4 [40]. Collectively, the TFN-Ag (1–6) membrane where Ag NPs were
formed in situ on the surface induced by Cl-CQDs under visible light irradiation was
successfully manufactured.

Table 1. The elemental composition analyzed by XPS measurements.

Membrane
Surface Elemental Composition (at%)

C N O Cl Ag

TFC 70.19 14.48 14.44 0.88 0
Cl-TFN 69.89 12.84 16.38 0.89 0

TFN-Ag 4 62.53 14.22 15.07 1.56 6.9

Furthermore, the surface morphologies of the TFN-Ag (1–6) membranes were charac-
terized using SEM. As depicted in Figure 4, the TFC membrane possessed a typical nodular
surface morphology of the PA membrane, indicating that successful interfacial polymeriza-
tion reactions happened [41]. No obvious morphological changes in the Cl-TFN membrane
were observed after the incorporation of Cl-CQDs. In contrast, Ag NPs were observed on
the TFN-Ag (1–6) membranes. The Ag atomic content on the membrane surface increased
from 4.65 to 7.67% with increasing the AgNO3 concentration from 1 to 6 mg mL−1, as
evidenced by the EDX results (Figure 4g–j). This in situ method for the formation of Ag
NPs triggered by Cl-CQDs could effectively tune the surface morphologies, and even the
separation performance of the TFN-Ag membranes (discussed later), by regulating the
loaded content of Ag NPs.
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time was 3 min).

The surface roughness of the TFC, Cl-TFN, and TFN-Ag membranes are shown in
Figure 5. Due to the small particle size (1.5–5.5 nm) and good water dispersity of the
Cl-CQDs, no significant difference in the surface morphology was observed in the TFC
and Cl-TFN membranes, and these two membranes showed similar surface roughness.
With the in situ growth of Ag NPs, the surface roughness initially increased to 36.84 nm,
and then increased to 17.24 nm when the AgNO3 concentration was increased from 1 to
6 mg mL−1. As shown in Figure 4, large Ag NPs were observed on the TFN-Ag 1 and
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TFN-Ag 2 membranes, resulting in a significant increase in membrane roughness. When
further increasing the AgNO3 concentration, smaller and even-distributed Ag NPs were
generated, leading to decreased surface roughness. The rearrangement of PA chains when
immersed in the AgNO3 solution would decrease the membrane surface roughness, while
more Ag NPs would enhance the membrane roughness [42,43]. The combined effect of
these two reasons may be responsible for the changes in membrane roughness of the
TFN-Ag membranes.
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Figure 5. AFM images of TFC, Cl-TFN, and TFN-Ag membranes.

Figure 6 shows the cross-sectional SEM images of the TFC, Cl-TFN, and TFN-Ag
membranes. The thickness of all of the characterized membranes was in a range of
95–110 nm. The membrane thickness had no obvious change, indicating that the in situ
generation of Ag NPs did not affect the PA structure in the selective layer. The EDX
spectra of cross sections of the TFC, Cl-TFN, and TFN-Ag 4 membranes are presented in
Figure 7. Due to the spraying of gold before the SEM characterizations, small amounts
of Ag elements were detected in the TFC and Cl-TFN membranes. By contrast, the Ag
contents in the TFN-Ag 4 selective layer were obviously higher than those in the cross
sections of the TFC and Cl-TFN membranes. This result suggests that Ag NPs existed in
the TFN-Ag 4 membranes. All of the results demonstrated the successful preparation of
TFN-Ag membranes through the in situ formation of Ag NPs induced by Cl-CQDs under
visible light irradiation.
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3.3. Separation Performance of Membranes

The AgNO3 concentration and impregnation time were considered to be two im-
portant factors that influenced formation of the Ag NPs and the resulting membrane.
Hence, as shown in Figure 8, the separation performances of the TFN-Ag membranes were
systematically investigated by varying the fabrication conditions, e.g., the impregnation
times and the AgNO3 concentrations. After being immersed in AgNO3 solution, all of the
characterized TFN-Ag membranes exhibited higher water flux than those of the TFC and
Cl-TFN membranes. Specifically, it was observed that the water flux significantly improved
from 10.68 to 31.74 L m−2 h−1 as the concentrations of AgNO3 were increased from 0 to
4 mg mL−1. Upon further increasing the AgNO3 concentration, the water flux decreased to
23.42 L m−2 h−1. The increased water flux was mainly ascribed to the improved membrane
hydrophilicity with the in situ incorporation of Ag NPs by Cl-CQDs (Figure 8d). However,
higher AgNO3 concentrations resulted in higher amounts of Ag NPs on the membrane
surface, which increased the transport resistance to water; therefore, decreased water flux
was observed [44]. The slightly lower Na2SO4 rejection may be ascribed to the lower
cross-linking degree, as the acyl chloride groups were hydrolyzed during the impregnation
process. These hydrolyzed acyl chloride groups would not be crosslinked during heat treat-
ment, leading to lower cross-linking degree of membrane. Furthermore, the impregnation
time of the AgNO3 solution significantly influenced the separation performance of the
TFN-Ag membranes. As shown in Figure 8b, the water flux first increased to 31.74 L m−2 h−1

when the impregnation time was 3 min. When the impregnation time was prolonged to
15 min, the water flux reduced to 16.47 L m−2 h−1. The Na2SO4 rejection rates changed
from 96.11% to 98.76%, which was slightly lower than the Na2SO4 rejection rate of the TFC
membrane (98.65%). Therefore, the optimized preparation condition was immersion in
4 mg mL−1 AgNO3 aqueous solution for 3 min; then, the optimal membrane possessed
improved water flux and high Na2SO4 rejection.
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The TFN-Ag 4 outperformed the TFC and Cl-TFN membranes, as shown in Figure 8c.
The TFC membrane possessed a water flux of 10.64 L m−2 h−1 and a 98.6% Na2SO4 rejection
rate. The incorporation of Cl-CQDs slightly increased the water flux to 13.63 L m−2 h−1,while
maintaining the Na2SO4 rejection rate (98.6%). Unlike the Cl-TFN membrane, the water
flux of the TFN-Ag 4 membrane enhanced to 31.74 L m−2 h−1, which was ~2.98 times
as much as the TFC membrane; meanwhile, the Na2SO4 rejection rate was 96.11%. The
generated Ag NPs were well distributed on the surface of the TFN-Ag membrane with-
out aggregation (Figure 4), which did not enhance the transport resistance to water, but
increased the membrane hydrophilicity (Figure 8d); both were conducive to enhancing
the water flux of the membrane [45]. The decreased water contact angle of the Cl-TFN
membrane was ascribed to the incorporation of hydrophilic Cl-CQDs. After the in situ
generation of Ag NPs, the water contact angles of the TFN-Ag membranes markedly
decreased. For hydrophilic membranes, the rougher surface is beneficial for decreased
water contact angles [46]. However, the water contact angles of the TFN-Ag 4 and TFN-Ag
6 membranes were lower than that of the Cl-TFN membrane, which possessed similar
surface roughness. This result indicates that the in situ generation of Ag NPs was conducive
to enhancing membrane hydrophilicity. Thus, we concluded that rougher surfaces and
the in situ generation of Ag NPs both contributed to the decreased water contact angles.
Therefore, a TFN-Ag membrane with improved water permeability was obtained via the
in situ formation of Ag NPs on the membrane surface induced by Cl-CQDs under visible
light irradiation.

In Figure 9, TFN-Ag 4 possessed a higher water flux than TFC when tested with four
inorganic salts. The zeta potentials of the TFC and TFN-Ag 4 membranes were −14.58
and −21.09 mV at pH 7, respectively; thus, the salt rejections of the TFC and TFN-Ag
4 membranes both decreased in the following order: Na2SO4 > MgSO4 > NaCl, showing
the rejection trend of negatively charged membranes [47,48]. There were high electrostatic
repulsions between the negative membrane surface and sulfate ions, so the rejection rates of
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Na2SO4 and MgSO4 were higher than that of NaCl. The Mg2+ ions decreased the effective
charge amount on the membrane surface, resulting in relatively low MgSO4 rejection. As
can be seen in Figure 9b, the salt rejection rates of the TFN-Ag 4 membrane were all lower
than those of the TFC membranes. This was because of the lower cross-linking degree
of TFN-Ag 4, which had been proven by the XPS results (Table 1). The low cross-linking
degree led to more acyl chloride groups hydrolyzing to carboxylic acid groups, resulting
in a higher surface negative zeta potential. Therefore, we concluded that the separation
performance of TFN-Ag 4 was determined by both steric hindrance and the Donnan effect.
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3.4. Antibacterial Performance of TFN-Ag Membrane

Good antibacterial properties of the membranes were also expected apart from their
high separation performance, in order to meet the criteria of real applications. Thus, Gram-
positive S. aureus and Gram-negative E. coli were used as model bacteria to ascertain the
antibacterial performance of the TFC, Cl-TFN, and TFN-Ag 4 membranes. The results
are shown in Figure 10. Compared with the TFC membrane, no obvious improvement
to antibacterial activity of the Cl-TFN membrane was observed. However, the superior
antibacterial performance of TFN-Ag 4 was proven by the inhibition zone test. Whether
the TFN-Ag 4 membrane faced E. coli or S. aureus, apparent inhibition zones appeared
around the TFN-Ag 4 membrane. In addition, the antibacterial activity of the membranes
was also quantitatively assessed via the plate count method. Massive surviving E. coli and
S. aureus bacterial colonies could be seen after being cultured with the TFC and Cl-TFN
membranes, while almost no microbial colonies survived on the TFN-Ag 4 membrane.
The TFN-Ag 4 membrane significantly reduced bacterial viability for both S. aureus and
E. coli, further demonstrating its excellent antibacterial effect. Taking the TFC membrane as
the control group, the bacteriostasis rates of TFN-Ag 4 against E. coli and S. aureus were
99.55 and 99.52%, respectively, which meant that the in situ formation of Ag NPs induced
by Cl-CQDs on the membrane surface endowed the TFN-Ag 4 membrane with a strong
antibacterial property. This was because the bacterial cell membranes were destroyed by
the released Ag+ ions from the TFN-Ag 4 membrane, which in turn disrupted their cellular
functions [49,50]. In addition, the Cl-CQD/Ag NPs nanocomposites could generate reactive
oxygen species, which would contribute to bacteria inactivation [51].

To confirm and evaluate the duration of the antibacterial activity of the TFN-Ag
4 membranes, the released amount of the Ag+ ions was characterized via ICP–MS in
an 8-day continuous examination. Figure 11 shows the Ag+ ions release rate and resid-
ual percentage of Ag on the TFN-Ag 4 membrane within 8 days. The release rate of
the Ag+ ions was at a high level in the first 5 days, and then maintained a stable level
(0.245 µg·cm−2·day−1). The prominently rapid Ag+ ion release rate in the initial stage
resulted from the leakage of loosely bound Ag+ ions and the existence of AgCl. After
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8 days, there was still 63.24% of Ag weight remaining on the TFN-Ag 4 membrane, while
the weight loss rate of Ag on the TFN-Ag 4 membrane was estimated to be ~0.41%/day for
the total amount of Ag. The total amount of Ag on the TFN-Ag 4 membrane was calculated
to be 60.46 µg·cm−2. The antibacterial ability of the TFN-Ag 4 membrane was estimated to
last for 159 days, according to the Ag+ ion release rate, indicating the long-term antibacterial
performance capability of the TFN-Ag 4 membrane. These results collectively demonstrate
that the in situ generation of Ag NPs induced by Cl-CQDs enabled the robust incorporation
of Ag NPs on the membrane, significantly improving the antibacterial performance.

Membranes 2023, 13, x FOR PEER REVIEW 13 of 17 
 

 

 
Figure 10. (a) Bacteriostatic zone experiment of TFC (1), Cl-TFN (2), and TFN-Ag 4 (3) membranes 
on E. coli (left) and S. aureus (right); plate count results of all the membranes including photographs 
of the bacterial culture plates (b); and the corresponding bacteriostasis rates (c). The control group 
denoted the bacteria culture in contact with the TFC membrane. 

To confirm and evaluate the duration of the antibacterial activity of the TFN-Ag 4 
membranes, the released amount of the Ag+ ions was characterized via ICP–MS in an 8-
day continuous examination. Figure 11 shows the Ag+ ions release rate and residual per-
centage of Ag on the TFN-Ag 4 membrane within 8 days. The release rate of the Ag+ ions 
was at a high level in the first 5 days, and then maintained a stable level (0.245 
µg·cm−2·day−1). The prominently rapid Ag+ ion release rate in the initial stage resulted from 
the leakage of loosely bound Ag+ ions and the existence of AgCl. After 8 days, there was 
still 63.24% of Ag weight remaining on the TFN-Ag 4 membrane, while the weight loss 
rate of Ag on the TFN-Ag 4 membrane was estimated to be ~0.41%/day for the total 
amount of Ag. The total amount of Ag on the TFN-Ag 4 membrane was calculated to be 
60.46 µg·cm−2. The antibacterial ability of the TFN-Ag 4 membrane was estimated to last 
for 159 days, according to the Ag+ ion release rate, indicating the long-term antibacterial 
performance capability of the TFN-Ag 4 membrane. These results collectively demon-
strate that the in situ generation of Ag NPs induced by Cl-CQDs enabled the robust incor-
poration of Ag NPs on the membrane, significantly improving the antibacterial perfor-
mance. 

Figure 10. (a) Bacteriostatic zone experiment of TFC (1), Cl-TFN (2), and TFN-Ag 4 (3) membranes
on E. coli (left) and S. aureus (right); plate count results of all the membranes including photographs
of the bacterial culture plates (b); and the corresponding bacteriostasis rates (c). The control group
denoted the bacteria culture in contact with the TFC membrane.
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4. Conclusions

In this study, a strategy for the in situ generation of Ag NPs induced by Cl-CQDs
under visible light irradiation was proposed to construct PA TFN-Ag membranes. The
embedded Cl-CQDs served as anchors to promote a rapid photogenerated charge carrier
migration towards Ag+ ions, and induced Ag NPs to be uniformly distributed on the
membrane surface. By optimizing the growth conditions, the surface properties of the
membrane were regulated. The resultant TFN-Ag 4 membranes exhibited a high water flux
of ~31.74 L m−2 h−1, which was ~2.98 times as much as the TFC membrane; meanwhile,
the Na2SO4 rejection rate was 96.11%. The in situ formed Ag NPs endowed the as-prepared
TFN-Ag 4 membrane with excellent antibacterial properties, and the sterilization rates
against E. coli and S. aureus were 99.55% and 99.52%, respectively. The stronger antibacte-
rial capability combined with higher permeability make TFN-Ag membranes potentially
promising for actual wastewater treatment applications. In the future, we will modify the
Cl-CQDs to enhance the interactions between Cl-CQDs and Ag NPs to realize a controlled
release of Ag+ ions, and thus avoid health concerns. More types of nanoparticles, such
as copper oxide, zinc oxide, etc., are expected to be used for in situ generation on the
membrane surface with the aid of Cl-CQDs. Our strategy offers a paradigm shift toward
the facile preparation of TFN membranes with improved permeability and antibacterial
properties for diverse water treatment and solutes separation.
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Abbreviations

Name Abbreviation
nanofiltration NF
polyamide PA
thin film composite TFC
thin film nanocomposite TFN
silver nanoparticles Ag NPs
silver nitrate AgNO3
chloride-doped carbon quantum dots Cl-CQDs
carbon quantum dots CQDs
Escherichia coli E. coli
Staphylococcus aureus S. aureus
piperazine PIP
trimesoyl chloride TMC
sodium chloride NaCl
sodium sulfate Na2SO4
magnesium sulfate MgSO4
ultraviolet–visible spectrometer UV–vis spectrometer
scanning electron microscopy SEM
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energy dispersive X-ray spectra EDX spectra
attenuated total reflectance Fourier transform infrared spectroscopy ATR-FTIR
X-ray photoelectron spectroscopy XPS
Luria–Bertani broth LB broth
colony forming units per mL CFU mL−1
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