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Abstract: An extreme ultraviolet (EUV) pellicle is an ultrathin membrane at a stand-off distance from
the reticle surface that protects the EUV mask from contamination during the exposure process. EUV
pellicles must exhibit high EUV transmittance, low EUV reflectivity, and superior thermomechanical
durability that can withstand the gradually increasing EUV source power. This study proposes
an optimal range of optical constants to satisfy the EUV pellicle requirements based on the optical
simulation results. Based on this, zirconium disilicide (ZrSi2), which is expected to satisfy the optical
and thermomechanical requirements, was selected as the EUV pellicle candidate material. An EUV
pellicle composite comprising a ZrSi2 thin film deposited via co-sputtering was fabricated, and its
thermal, optical, and mechanical properties were evaluated. The emissivity increased with an increase
in the thickness of the ZrSi2 thin film. The measured EUV transmittance (92.7%) and reflectivity
(0.033%) of the fabricated pellicle satisfied the EUV pellicle requirements. The ultimate tensile strength
of the pellicle was 3.5 GPa. Thus, the applicability of the ZrSi2 thin film as an EUV pellicle material
was verified.

Keywords: EUV pellicle; zirconium silicide (ZrSi2); EUV transmittance; EUV reflectivity; emissivity;
ultimate tensile strength

1. Introduction

Extreme ultraviolet (EUV) lithography has been applied in high-volume manufactur-
ing of advanced semiconductor devices at a sub-7-nm technology node [1–3]. An EUV
pellicle is a freestanding membrane that protects the EUV mask from the external defects
generated inside the EUV scanner [4,5]. The EUV pellicle must exhibit an EUV transmit-
tance higher than 90% and an EUV reflectivity lower than 0.04% to minimize throughput
and yield losses. In addition, it must be mechanically and chemically stable inside the
EUV scanner and exhibit adequate thermal durability to withstand a high-power EUV
source [5–9]. However, the thickness of the EUV pellicle must be in the order of several
tens of nanometers to limit the high absorption of EUV light. Various materials are being
examined as EUV pellicle candidates to simultaneously achieve satisfactory thermal, me-
chanical, and chemical properties at a limited thickness. However, EUV pellicle materials
that have been studied in the past do not satisfy these requirements. Si, which possesses
the highest EUV transmittance, has limitations in terms of thermomechanical durability at
high temperatures. To compensate for this, Ru has been investigated as a thermal emis-
sion layer; however, its optical characteristics are limited due to a EUV reflectivity higher
than 0.04% [6].
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Zr-Si intermetallic compounds are anticipated to exhibit higher EUV transmittance
and lower EUV reflectivity than other materials at a wavelength of 13.5 nm because of their
low extinction coefficient (k) and a refractive index (n) close to 1 [10,11]. Since zirconium
disilicide (ZrSi2) is used as a spectral purity filter inside the EUV scanner, it is expected to
have superior thermomechanical durability [11–14]. Moreover, ZrSi2 has a high Young’s
modulus and high compressive yield strength at high temperatures [15]. However, ZrSi2
has not been previously examined as a candidate for EUV pellicle materials.

In this study, we examined the optical constant conditions for an EUV pellicle to
achieve superior optical performance using an optical simulation tool. Based on the results
of the simulation, ZrSi2 was proposed as an EUV pellicle candidate considering its optical
constant and thermomechanical properties. An EUV pellicle composite containing the ZrSi2
thin film was fabricated. Its optical, thermal, and mechanical properties were evaluated to
verify the potential application of ZrSi2 as an EUV pellicle material.

2. Material Selection for Application as an EUV Pellicle

The EUV transmittance and reflectivity were calculated using the PROLITH 2022a
rigorous coupled-wave analysis simulation tool to identify the optimal conditions for
optical constants.

Figure 1a shows the simulation results of EUV transmittance with respect to the
extinction coefficient at a refractive index of 0.94. The results confirmed that a higher
extinction coefficient results in a sharper decrease in the EUV transmittance when the
thickness of the thin film is increased. When the extinction coefficient is higher than 0.006,
an EUV transmittance greater than 90% can be achieved only if the thickness of the film is
20 nm or less. However, fabrication of a free-standing membrane with a thickness of 20 nm
or less is difficult. Figure 1b shows the simulation results of the EUV reflectivity according
to the refractive index for an extinction coefficient of 0.005. A smaller thickness margin that
satisfies the EUV reflectivity requirement was observed as the refractive index decreased.
At an extremely small thickness margin, obtaining a thin film with a thickness that satisfies
the EUV reflectivity requirements becomes difficult. Therefore, the refractive index must
be greater than 0.94.
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Figure 1. Simulation results of (a) EUV transmittance according to the extinction coefficient and
(b) EUV reflectivity according to the refractive index of the membrane at various thicknesses.

Figure 2 shows the refractive indices and extinction coefficients of various materials
at a wavelength of 13.5 nm [16]. Zr and Zr-Si intermetallic compounds exhibited lower
extinction coefficients than other EUV pellicle candidates [17]. Among Zr-Si intermetallic
compounds, ZrSi2 has the lowest extinction coefficient and the highest refractive index,
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and, hence, ZrSi2 is expected to exhibit excellent optical properties. The EUV transmittance
and reflectivity were simulated as a function of the composition ratio and thickness of the
Zr-Si intermetallic compounds, and an optimal composition was determined.
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Figure 2. Optical constants map at a wavelength of 13.5 nm for EUV pellicle candidates.

Figure 3 shows the results of EUV transmittance and reflectivity simulations. The
ZrSi2 thin film exhibited the highest EUV transmittance. In addition, the ZrSi2 thin film
satisfied the EUV reflectivity requirement of 0.04% or less for most thicknesses. Therefore,
ZrSi2, which is expected the most promising material for obtaining optical properties, was
selected as the EUV pellicle candidate.
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3. Experimental Details

Figure 4 shows a schematic of the EUV pellicle fabrication process, including the
ZrSi2 thin film used in this study. A 40-nm-thick silicon nitride (SiNx) thin film was
deposited on both sides of a (100) p-type silicon wafer via a low-pressure chemical vapor
deposition process at 800 ◦C using ammonia (NH3) and dichlorosilane (DCS, SiH2Cl2)
gas. A photoresist was coated on the back, and the backside window was obtained via
photolithography. Thereafter, the membrane area was patterned via reactive ion etching
using CF4, CHF3, and O2 as reactant gases and Ar as the carrier gas. A free-standing
membrane was fabricated by etching a silicon wafer in a 30 wt% KOH solution at 60 ◦C;
the thickness of the membrane after wet etching was 34 nm. Figure 5 shows a ZrSi2 pellicle
composite with an area of 10 mm × 10 mm which was fabricated by depositing ZrSi2 thin
films onto a SiNx membrane via co-sputtering. The sputtering chamber was evacuated to a
base pressure of less than 2 × 10−7 Torr. ZrSi2 thin films were deposited under pure Ar gas
atmosphere at a pressure of 3 mTorr, and the substrate was heated to 500 ◦C. A Si sacrificial
layer was deposited onto the ZrSi2 thin film to increase the EUV transmittance, and the
SiNx thin film was selectively etched at 150 ◦C using an 85 wt% H3PO4 solution. Finally, a
ZrSi2-based pellicle was fabricated by selectively etching the Si sacrificial layer using KOH
solution.
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The composition ratio and crystal structure of the ZrSi2 thin film were analyzed using
X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), respectively. The
thermal properties of the pellicle were evaluated using a heat load tester that measured
the temperature of the pellicle heated by a 355 nm UV laser. To emulate an environment
similar to EUV exposure, the chamber inside the heat load tester was maintained at a high
vacuum, and a rotating slit was used to heat the pellicle in a 1:9 cycle. In addition, the
Gaussian beam profile of the UV laser was adjusted to a top-hat profile using a diffractive
optics element to ensure uniform laser incidence on the pellicle. A two-channel pyrometer
with a measurable temperature range of 400–1500 ◦C and measurement accuracy of ±2%
was used to measure the temperature of the pellicle [9,18].

I =
α·P
D

(1)

The absorbed heat flux density of the pellicle was calculated using Equation (1). Here,
I is the absorbed heat flux density, D is the incident beam size, α is the absorptivity of the
pellicle at a wavelength of 355 nm, and P is the laser power. Materials are generally cooled
via convection, conduction, and radiation [9,19]. However, the high vacuum in the interior
of the EUV scanner and the extremely low thickness of the EUV pellicle imply that cooling
via convection and conduction can be ignored. Thus, the EUV pellicle is primarily cooled
via radiation. The heat-transfer mechanism of the EUV pellicle is given by the following
equation [18,20,21]:

dT
dt

=
1

c·m

[
α·P − ε·σ·S·

(
T4 − T4

s

)]
(2)

where c is the specific heat, m is the mass of the pellicle membrane, ε is the emissivity, σ is
the Stefan–Boltzmann constant, T is the temperature of the pellicle membrane, and Ts is
the temperature of the surrounding air. The emissivity of the ZrSi2 pellicle composite was
calculated from the results of the heat load test using Equation (2).

The EUV transmittance and reflectivity of the pellicle were measured using a coherent
scattering microscope equipped with a 13.5 nm light source. The EUV transmittance was
derived by comparing the number of photons reflected by the Mo/Si multilayers with
and without the pellicle. The EUV reflectivity was calculated by comparing the number of
photons reflected by the EUV pellicle when it was mounted on an absorber material where
the EUV reflectivity converges to zero, with the number of photons reflected by the Mo/Si
multilayers [22–24].

The mechanical properties of the EUV pellicle were evaluated via a bulge test, wherein
the deflection of the membrane was measured as a function of the pressure difference
on both sides of the membrane. In addition to the burst pressure, the residual stress,
plane-strain modulus, and ultimate tensile strength (UTS) can be obtained from the bulge
test [25–27]. A long rectangular membrane with an aspect ratio greater than 4:1 is required
to obtain the mechanical properties; hence, a membrane with an area of 1.5 mm × 6 mm
was used in this study. The strain and stress were calculated from the results of the bulge
test using the following equations:

ε =
2h2

3a2 + ε0 (3)

σ =
pa2

2ht
(4)

where ε is the strain, σ is the stress, h is the deflection at the center of the membrane, a is the
half-width of the membrane, ε0 is the initial strain, p is the applied gas pressure, and t is the
thickness of the membrane. The y-intercept of the strain vs. stress curve obtained using the
above equations represents the residual stress; the stress at the point where the membrane
ruptures indicates the fracture strength, which is equivalent to the UTS of brittle materials.
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4. Results and Discussion

Figure 6a shows the results of the XPS depth profile analysis of the ZrSi2 thin film. The
Si/Zr ratio of the thin film was approximately 2. Moreover, the average oxygen content
inside the thin film was less than 3 at% whereas the oxygen content on the surface of the
thin film was higher due to oxidation. The XRD patterns shown in Figure 6b confirm the
orthorhombic structure of the 40-nm-thick crystalline ZrSi2 thin film. The red dot represents
the diffraction patterns of the ZrSi2 thin film with an orthorhombic structure. The broad
halo pattern observed in the 2θ range of 24–30◦ corresponds to the diffraction pattern of
the nanocrystalline phases of ZrSi2, SiO2, and ZrSiO4. Moreover, the peaks at 35◦ and 52◦

correspond to the diffraction patterns of Zr and Si wafer, respectively [28]. From these
results, the ZrSi2 thin film was confirmed through composition and crystallinity analysis,
and essential characteristics of the EUV pellicle were evaluated.
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A ZrSi2/SiNx pellicle composite was fabricated by depositing 10-, 20-, 30-, and
40-nm-thick ZrSi2 thin films on a 34-nm-thick SiNx membrane to examine the depen-
dence of thermal properties on the thickness. Figure 7a shows the results of the heat load
test: the pellicle composite with a thicker ZrSi2 thin film was heated to a lower temperature
under identical absorbed heat flux density.
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Kirchhoff’s law states that the emissivity of a material is equal to its absorptivity.
The EUV pellicle is heated to temperatures in the range of hundreds of degrees Celsius,
such that the emitted spectrum is mainly generated in the infrared (IR)-wavelength region
during exposure. Therefore, the emissivity of the EUV pellicle can be calculated from the
average absorptivity of a thin film in the IR-wavelength region [9,29]. A SiNx thin film
with a thickness of several tens of nanometers is transparent in the IR-wavelength region,
which implies that its emissivity is close to zero. Therefore, the emissivity of the ZrSi2/SiNx
pellicle composite was assumed to be the same as that of the ZrSi2 thin film. Figure 7b
shows the emissivity at different thicknesses of the ZrSi2 thin film. The emissivity was
calculated from the results of the heat load test using Equation (2). The emissivity increased
with an increase in the thickness of the ZrSi2 thin films. The calculated average emissivities
of the 10-, 20-, 30-, and 40-nm-thick ZrSi2 thin films were 0.250, 0.374, 0.402, and 0.432,
respectively. These values are similar to those of other materials used in EUV pellicle
applications. Therefore, ZrSi2 is considered a suitable EUV pellicle material in terms of
thermal properties.

The measured EUV transmittances of the ZrSi2/SiNx pellicle composite were 82.8%,
74.9%, 73.6%, and 71.3%, respectively, at ZrSi2 thicknesses of 10, 20, 30, and 40 nm. However,
an EUV transmittance of 90% or higher was necessary. Hence, a ZrSi2-based pellicle was
fabricated using a Si sacrificial layer.

Figure 8 shows the TEM cross-sectional images of the ZrSi2-based pellicle. The struc-
ture and layer thickness of the membrane were estimated by analyzing the cross-section
of the frame region. Figure 8a shows the top of the frame of the ZrSi2-based pellicle: an
18-nm-thick ZrSi2 layer and a 3-nm-thick Si layer including the surface oxide were observed.
In addition, a 2-nm-thick SiNx thin film was observed at the bottom of the frame, as shown
in Figure 8b, which was expected to be the same thickness as that of the SiNx layer of the
ZrSi2-based pellicle. The measured EUV transmittance and reflectivity of the ZrSi2-based
pellicle were 92.7% and 0.033%, respectively, and these values satisfy the EUV pellicle
requirements.
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pellicle.

The results of the bulge test of the SiNx membrane and ZrSi2-based pellicle with similar
EUV transmittances were compared to evaluate their mechanical durability as shown in
Figure 9. The SiNx membrane fractured at a pressure difference of 1116 Pa, whereas the
ZrSi2-based pellicle fractured at an approximately 5.9 times higher pressure difference of
6592 Pa. Moreover, the deflection of the ZrSi2-based pellicle was lower than that of the
SiNx membrane at the same pressure difference. The strain and stress of the membrane
were calculated from the bulge test results using Equations (3) and (4), respectively, and the
residual stress and UTS were derived. The residual stress of the ZrSi2-based pellicle was
−105 MPa. The UTS of the ZrSi2-based pellicle and SiNx membrane were 3.5 and 0.5 GPa,
respectively, and the superior mechanical properties of ZrSi2 were verified.
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5. Conclusions

In this study, a range of optical constants that can be applied to an EUV pellicle material
was presented using an optical simulation tool, and ZrSi2 was selected as a candidate for
an EUV pellicle material considering its optical and thermomechanical properties. The
composition ratio and crystal structure of the ZrSi2 thin film deposited via co-sputtering
were confirmed by XPS and XRD analyses. Based on this, a ZrSi2/SiNx pellicle composite
was fabricated, and the relationship between the thickness and emissivity of the ZrSi2
thin film was investigated via a heat load test. To achieve a higher EUV transmittance, a
ZrSi2-based pellicle was fabricated by introducing a Si sacrificial layer. The ZrSi2-based
pellicle exhibited high EUV transmittance (>90%), low reflectivity (<0.04%), and high UTS
(approximately 3.5 GPa), thereby satisfying the EUV pellicle requirements. These results
demonstrate the excellent optical and thermomechanical properties of the nanoscale ZrSi2
thin film. Hence, ZrSi2 has potential applications as an EUV pellicle material that can
withstand high-power EUV sources.
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