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Different Version of K Value Equations 
The initial idea regarding the relationship between velocity gradient and particle 

deposition tendency is described by Equation (S1). We have found that the total resistance 
term is essential to account for broader operational conditions and that the exponents for 
each side significantly affect the ability to distinguish limiting conditions from sub-limit-
ing conditions, which is the key objective of this metric. 

𝜅 𝑄𝑉  𝜇 .  𝜅 𝑀𝐿𝑆𝑆  𝑄𝐴   (S1)

There were various experiments conducted to determine a better relationship by 
changing parameters and exponents on Equation (S1). These attempts are generally sum-
marized by three distinct cases. First, rearranging Equation (S1) by KLim: 𝐾 ,     𝑄𝑄   𝑎   𝐴𝑀𝐿𝑆𝑆  𝜇   𝑄   𝐾  (S2)

The computed value of the right-hand side of Equation (S2) is referred to as K1 (κ /κ ), 
[s2/(kg⋅m)]. 

Second, when the total resistance term (RT = (TMP⋅A)/(μ ⋅QP) is added to the right-
hand side of Equation (S1) and rearranged by KLim, which gives: 𝐾 ,     𝑄𝑄  𝑄   𝑎   𝜇𝑀𝐿𝑆𝑆  𝜇   𝐴  𝑇𝑀𝑃  𝐾  (S3)

where K2 (= (κ /κ )2), [ m⋅s2 /kg]. 
Lastly, when the RT term is added to the right-hand side, balances the exponents on 

both sides, and eliminates the squared root terms, resulting in Equation (S4): 𝜅 𝑄𝑉  𝜇  𝜅  𝑀𝐿𝑆𝑆 𝑄𝐴   𝑅   (S4)

Equation S4 is then rearranged by KLim: 𝐾 ,     𝑄𝑄 𝑎𝜇   𝑀𝐿𝑆𝑆 𝑄  𝜇𝑇𝑀𝑃  𝐴  𝐾  (S5)

where K3,Lim κ /κ , [ m⋅s /kg], which is corresponding one to Equation (6) in main 
text.  

Comparison Results from Different K Value Equations 
Based on the differing behavior observed in Equations (S2), (S3), and (S5), the follow-

ing two conditions were visually inspected: 
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KLim represents a well-defined limiting condition and remains reasonably constant 
(i.e., its lower boundary is distinct from that of sub-limiting condition).  

The general distribution of KSubLim is reasonably dispersed, with less skewness and a 
wider range of values, to allow for fine adjustments of the air flow according to the actual 
required air energy. 

Figure S1 shows the variation of K values computed by Equation (S2) (i.e., K1). Both 
trains of Plant A show a clear differentiation between KLim and KSubLim, with KLim located at 
the lower boundary of K values. However, Plant B shows less distinct separation of limit-
ing conditions, especially during periods when a larger number of limiting conditions is 
observed. This suggests that an operational condition with frequent fouling cannot be ad-
equately explained if the total resistance term is not taken into consideration. 

 
Figure S1. Time Series Variation of K1 (Equation (S2)) in Limiting Condition (Red Square), Sub-
Limiting Condition (Blue Circle), and Number of Observed Limiting Condition (Orange Bar) : (a) 
Plant A Train 1, (b) Plant A Train 2, and (c) Plant B Train 1. 

In case of K2 (Figure S2), KLim is generally found at the lower bound of K values in 
both trains of Plant A and Plant B. Compared to K1, K2 has suppressed K values under 
higher TMP conditions, particularly in Plant B, and the increased vertical variation de-
pends on MLSS (MLSS data is not shown here), suggesting a more sensitive variation to 
TMP and MLSS. 
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Figure S2. Time Series Variation of K2 (Equation (S3)) in Limiting Condition (Red Square), Sub- 
Limiting Condition (Blue Circle), and Number of Observed Limiting Condition (Orange Bar) : (a) 
Plant A Train 1, (b) Plant A Train 2, and (c) Plant B Train 1. 

K3 has relatively lower sensitivity to MLSS and TMP, showing broader vertical vari-
ation of K values. This results in a clearer distinction between limiting conditions and sub-
limiting conditions as shown in Figure S3.  
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Figure S3. Time Series Variation of K3 (Equation (S5)) in Limiting Condition (Red Square), Sub- 
Limiting Condition (Blue Circle), and Number of Observed Limiting Condition (Orange Bar): (a) 
Plant A Train 1, (b) Plant A Train 2, and (c) Plant B Train 1. 

Upon closely inspecting KLim and KSubLim using Kernel Density Estimation (KDE), it 
becomes apparent how well KLim is distinguished between limiting and sub-limiting con-
ditions. Visual inspection of the distributions indicates that K1 has lower separation abil-
ity, especially in Plant B, where the means of the KLim and KSubLim distributions are closely 
aligned. 

 
Figure S4. Comparison of Normalized Kernel Density Estimates for K1 (Equation (S2)) for (a) Plant 
A Train 1, (b) Plant A Train 2, and (c) Plant B Train 1. 

The KDE distribution for KSubLim is a skewed pattern toward to KLim, and both have a 
lower boundary near zero (Figure S5), which makes it less efficient to distinguish the KLim 
distribution from the KSubLim distribution.  
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Figure S5. Comparison of Normalized Kernel Density Estimates for K2 (Equation (S3)) for (a) Plant 
A Train 1, (b) Plant A Train 2, and (c) Plant B Train 1. 

K3 shows better distinction and clearer differences for both distributions, with less 
skewness and more reasonable horizontal variation of KSubLim based on mean of KSubLim as 
a central value. 

 
Figure S6. Comparison of Normalized Kernel Density Estimates for K3 (Equation (S5)) for (a) Plant 
A Train 1, (b) Plant A Train 2, and (c) Plant B Train 1. 
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Visual inspection suggests that Equations S2, S3, and S5 produce different results 
distinguishing the limiting condition and estimating a reasonable variation of KSubLim. Fur-
thermore, it shows that K3 performs better for these objectives than K1 and K2. To ensure 
a concise estimation of KLim, Coefficient of Variation (CV) is applied. 

Table 1 summarizes the statistics for the determined KLim values. A lower CV value 
indicates more concise estimations of KLim and less variability. Among all other cases, K3 
shows better performance and thus supports the use of this equation for further investi-
gation. 

Table S1. Summary of Statistics of KLim values in different scenarios. 

Plant ID 
K1,Lim K2,Lim K3,Lim 

Mean (Std.) CV Mean (Std.) CV Mean (Std.) CV 

Plant A T1 
3.0 × 109 

(0.5 × 109) 0.16 
8.9 × 10−10 

(1.7 × 10−10) 0.19 
1.4 × 10−8  

(0.2 × 10−8) 0.11 

Plant A T2 
2.5 × 109 

(0.2 × 109) 0.07 
7.8 × 10−10 

(2.5 × 10−10) 0.31 
1.3 × 10−8  

(0.2 × 10−8) 0.16 

Plant B T1 
12.7 × 109 
(5.8 × 109) 0.45 

8.6 × 10−10 
(4.4 × 10−10) 0.51 

1.2 × 10−8  
(0.3 × 10−8) 0.3 

Variation of Featured Variables in Limiting Conditions 
The featured variables (e.g., TMP, Flux, Permeability) corresponding to the extracted 

cycles in the detected limiting condition among three different datasets are illustrated in 
Figures S7 to S9. These figures effectively capture the moments of rapid resistance increase 
at the given flux, despite some ambiguity (i.e., possible false positive). Permeability 
[LMH/bar] is computed based on [47]. Note that for Plant B Train 1, due to the large num-
ber of cycles in the limiting condition, the extracted cycles are plotted at intervals of 20. 

 
Figure S7. Extracted Cycles in Limiting Condition for Plant A Train 1. 
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Figure S8. Extracted Cycles in Limiting Condition for Plant A Train 2. 

 

Figure S9. Extracted Cycles in Limiting Condition for Plant B Train 1. 
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