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Abstract: Hydrothermally stable particles of the metal-organic framework MIL-101(Cr) 

were incorporated into a polysulfone (PSF) matrix to produce mixed-matrix or composite 

membranes with excellent dispersion of MIL-101 particles and good adhesion within the 

polymer matrix. Pure gas (O2, N2, CO2 and CH4) permeation tests showed a significant 

increase of gas permeabilities of the mixed-matrix membranes without any loss in 

selectivity. Positron annihilation lifetime spectroscopy (PALS) indicated that the increased 

gas permeability is due to the free volume in the PSF polymer and the added large free 

volume inside the MIL-101 particles. The trend of the gas transport properties of the 

composite membranes could be reproduced by a Maxwell model. 
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1. Introduction 

Membrane processes are an energy saving method for the separation of mixtures which occur in 

nearly all production processes in the chemical industry. Membrane based devices are much smaller 

and work at lower temperatures compared to conventional separation facilities with distillation, 

extraction or adsorption processes. Energy savings of up to 50% of the production costs can be reached 

by application of membrane technology [1]. The worldwide membrane market has a growth of 

approximately 10%–15% each year [2]. Membrane processes applied on industrial scale are natural 

gas treatment (removal of CO2 before the natural gas can be passed to the pipeline), hydrogen isolation 

and recovery (i.e., in cracking processes) oxygen enrichment from air (medical devices) and nitrogen 

enrichment from air (used as protecting atmosphere for oxygen sensitive compounds) [3,4]. Other 

membrane based processes with fast growing market relevance are vapor recovery systems [5], 

monomer recovery units, e.g., ethylene/N2 or propylene/N2 separation [6,7], the dehydration of organic 

solvents and the removal of polar low molecular weight components in equilibrium reactions [8]. 

Commercially applied membrane materials are mostly polymers. Compared to inorganic materials they 

are cheap to produce and easy to process as flat sheet or hollow fiber membranes. Unfortunately, an 

important constraint in the development of polymer membranes for gas separation applications is the 

trade-off between permeability and selectivity, first demonstrated by Robeson and commonly called 

“Robeson upper bounds” [9–11].  

The economics of membrane processes is mainly determined by the selectivity and the permeability 

as the most basic requirements for the choice of membrane materials [12]. With low selectivity the 

separation processes have to be multi-step which translates into higher operative complexity and costs. 

The permeability decides which membrane area or how many membrane modules are needed to realize 

the separation process. Membranes with a high permeability are needed for large-volume gas feed 

streams as in natural gas treatments or for pre-combustion O2/N2 separation. 

Mixed-matrix membranes (MMMs) also called composite membranes consist of an inorganic or 

inorganic-organic hybrid material in the form of micro- or nanoparticles (discrete or dispersed phase) 

incorporated into a polymer matrix (continuous phase) (Figure 1) [12–20]. The use of two materials 

with different flux and selectivity allows to better design a gas separation membrane through the 

synergistic combination of easy processability of the polymer and superior gas separation performance 

of inorganic materials. Separation properties with MMMs can be above the Robeson upper bound. 

Porous inorganic fillers can counteract the trade-off between selectivity and permeability which is 

typical for pure polymer membranes. Different types of inorganic additives, impermeable and 

permeable ones, can be used as filler materials [12,15–18,21,22].  
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Figure 1. Schematic representation of a mixed-matrix membrane indicating different,  

also simultaneous possible sizes, shapes and components for the inorganic filler materials.  

10 µm is a typical length scale of the particles, compared to the thickness of the polymer 

film of 100 µm. 

 

There is a strong interest in finding new membrane materials to meet the present and future 

requirements and challenges in membrane-based separation technologies [12]. The amount and 

distribution of free volume in polymeric membranes significantly determines the transport and 

separation properties. Recent improvement strategies are centered around the addition of porous 

particles, thus generating extra free volume. Metal-organic frameworks, MOFs are promising additives 

for MMMs since they offer various advantages over zeolites [23–27]. For example, ligands with a 

broad variety of functionalities are possible which enable MOFs to interact strongly with the polymer 

bulk material so that the formation of micro gaps between inorganic and organic phase, which cause 

loss in selectivity, can be avoided [15–17]. For the preparation of MMMs, a perfect interaction 

between the two components is extremely important in order to obtain materials with optimized 

separation properties. The literature on metal-organic frameworks in mixed-matrix membranes for gas 

separation has recently been reviewed [15,16]. 

Metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) [28,29] have attracted 

tremendous attention over the past years [30–36]. This is due to their porosity, large inner surface  

area and tuneable pore sizes which leads to promising applications [30,37–39], such as gas adsorption 

and storage [40–52], gas and liquid separation [15,16,40,53–58], drug delivery [59–61], sensor 

technology [62–64], heterogeneous catalysis [65–70], hosts for metal colloids or nanoparticles [71,72] 

and recently water sorption for heat transformation [73–77].  

Yet, understanding the separation properties of inorganic or MOF materials drops behind that of 

polymer membranes. A projectable inorganic material selection currently represents somewhat of a 

problem. Therefore, a standard and consistent approach is needed to identify the separation properties 

of inorganic or MOF materials. Intensive investigation is needed to assign the effects of particle size 

and geometry, particle pore size, and the polymer/particle interface needs to be examined. At the 

interface between the polymer and inorganic or MOF particles there is a further complicating phase 

boundary which makes prediction of the MMM performance difficult. Mechanical and permeability 

properties of polymers are strongly connected to free volume, which might be different at the boundary 

layer. This free volume can be either characterized from molecular dynamics simulations or from 

experiments, where a probe on atomic scale is needed. Positron annihilation lifetime spectroscopy 

(PALS) is a generally accepted method for investigation of free volume in polymers due to the  
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so-called standard model developed by Tao and Eldrup [78,79]. This simple quantum mechanical 

model gives a direct relationship between pick-off lifetime of ortho-positronium and the size of the 

free volume holes. A clear correlation between changes of permeability and free volume was 

determined by PALS in polyphenylene oxide with different concentrations of hyperbranched 

polyesters (dendrimers) [80] and for 6FDA copolyimide films with nanoparticles [81]. PALS 

investigation of several Teflon AF 2400/silicon interfaces shows a clear interphase for spin-coated 

films [82].  

Recently, polymer nanocomposite membranes with the MOF ZIF-8 as a filler and either polyimides 

(Matrimid, Ultem) [19,20,83] or PIM-1 (polymer of intrinsic microporosity) [84] as polymer matrix 

were tested for pure gas permeation. When Matrimid was used, PALS indicated that an increase in gas 

permeability is due to the free diffusion of the gas molecules through the ZIF-8 pores and a reduction 

in packing efficiency of the polymer [83]. In the case of ZIF-8/PIM-1 PALS indicated that the 

introduction of ZIF-8 nanoparticles into the PIM-1 matrix resulted in an increase in free volume which 

was assumed to arise from a combination of the filler cavities and of more loosely packed polymer 

chains at the boundary between ZIF-8 particles and the PIM-1 matrix [84]. 

Here, we report the gas separation properties of a MOF-MMM [85] made of MIL-101 [86] and 

polysulfone and analyze the free volume contributions with PALS. 

2. Experimental 

2.1. Materials 

Chromium nitrate nonahydrate, Cr(NO3)3·9H2O (99%) and hydrofluoric acid (analysis grade) were 

obtained from Acros Organics. Benzene-1,4-dicarboxylic acid (H2BDC, 99%) was acquired from 

Aldrich. Dichloromethane (DCM, >99.9%), N,Nʹ-dimethylformamide (DMF, 99.9%) and ethanol 

(99.9%) were purchased from Prolabo. Polysulfone (PSF) Ultason S 6010 Natural was provided by 

BASF AG, Ludwigshafen, Germany. O2, N2, CO2 and CH4 gas were supplied by Air Liquide 

(Düsseldorf, Germany) and used as received (purity 99.99%).  

2.2. Synthesis of MIL-101 

{[Cr3(µ3-O)(X)((BDC)3(H2O)2]·25H2O} (BDC = benzene-1,4-dicarboxylate (terephthtalate), X = F 

or OH depending on synthesis conditions), MIL-101 (Figure 2) was synthesized according to  

the previously reported procedure [86]. A typical synthesis involves a solution containing  

chromium(III) nitrate Cr(NO3)3·9H2O (400 mg, 1 × 10–3 mol), 1 × 10–3 mol of hydrofluoric acid, 

benzene-1,4-dicarboxylic acid H2BDC (164 mg, 1 × 10–3 mol) in 5 mL H2O; the mixture is transferred 

to the Teflon line in a hydrothermal autoclave which is heated for 6 h at 210 °C and cooled afterwards 

slowly to room temperature over a time period of 8 h. The mixture was then isolated from the 

autoclave and the solid separated from the solution through centrifugation (4200 U/min for 50 min). A 

significant amount of terephthalic acid is present inside the pores and admixed with the MIL 

crystallites. The residual reactants and eventually the solvent needs to be removed especially from the 

pores in order to obtain a material with as high a porosity as possible. This washing and drying 

procedure is termed activation. To eliminate most of the carboxylic acid, the product was two times  
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re-dispersed and stirred for 6 h in DMF (20 mL), two times in methanol (10 mL, 2 h) and one time in 

water (10 mL, 2 h) with separations from the respective washing solution by centrifugation. The final 

product was dried at room temperature.  

Figure 2. Building blocks for MIL-101, [Cr3(µ3-O)(F,OH)((BDC)3(H2O)2], generated  

from the deposited X-ray data file at the Cambridge Structure Database (CSD-Refcode 

OCUNAK) [86] using the program DIAMOND [87]. Trinuclear {Cr3O} building units and 

bridging benzene-1,4-dicarboxylate ligands form pentagonal and hexagonal rings (a) which 

are assembled into mesoporous cages (b). The yellow spheres in the mesoporous cages 

with diameters of 29 or 34 Å, respectively, take into account the van-der-Waals radii of the 

framework walls (water-guest molecules are not shown) [86]. The different objects in this 

figure are not drawn to scale. 

 

 

The crystalline product (Figure S1 in the Supplementary Information) was positively identified as 

MIL-101 by powder X-ray diffraction (Figure S2). Activated MIL-101 samples have high pore 

volumes and surface areas close to samples in literature reports (Figure S3) [86]. The BET surface was 

determined to 2690 m2/g. Thermogravimetric analysis of as-synthesized MIL-101(Cr) (Figure S4) 

showed that up to 8% weight loss occurred until 120 °C, which is attributed to trapped water in the 

pores. Between 120 and 350 °C, 9% of material is lost. This may correspond to the loss of  

non-coordinated terephthalic acid from inside the pores. The MIL-101 framework starts to decompose 

above 350 °C. Activated MIL-101(Cr) (Figure S4) showed a 7% weight loss until 300 °C. 
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2.3. Preparation of Mixed-Matrix Membranes 

The polymer (PSF) (Figure 3) was dissolved in dichloromethane (CH2Cl2) and the solution was 

filtered through a syringe filter (PTFE membrane, 0.45 µm pore size). 1.25, 1.88 and 2.5 wt % of 

polymer in CH2Cl2 were used. The MOF material (MIL-101) was added to the previously prepared 

polymer solution, and the obtained polymer-MIL dispersion was magnetically stirred for one week to 

achieve an intimate polymer-MIL mixture. MIL-101 was added to the polymer dispersion as 7.5, 14, 

19 and 24 wt % relative to polymer. The SEM pictures in Figure 6 and also SEM pictures in  

reference [85] show, that the MIL crystallites remained intact through the long stirring period. Also  

X-ray powder diffraction (Figure S2 in the Supplementary Information) proved that stirring did not 

alter the crystallinity of MIL-101 particles.  

Figure 3. Polysulfone repeating unit. 

 

To achieve a homogeneous dispersion of the MOF particles the casting solution was treated for  

30 min in ultrasonic bath (ELMA Transsonic 310, 35 Hz), afterwards it was stirred for 30 min again. 

This cycle was repeated three times. Before casting, the dispersion was kept under stirring for 30 more 

minutes. The dispersion was cast into metal rings, 7 cm in diameter, which were placed on a flat glass 

surface. All the casting equipment was placed on top of an adjustable table to assure horizontal 

alignment during the membrane formation. To prevent membrane contamination by dust particles 

during the evaporation of the solvent, funnels were used to cover the metal. A paper tissue covered the 

funnels to avoid contamination. This system also exerts some control on the evaporation rate. As soon 

as all solvent was evaporated, the membrane was removed from the metal ring and the glass surface by 

flushing the ring with distilled water. The membrane was finally dried in a vacuum oven at 120 °C and 

80 mbar overnight. The pure polymer membranes were dried in the same way.  

2.4. Membrane Characterization Methods 

Scanning electron microscopy (SEM) images were acquired by coating the membranes cross-sections 

with gold. The cross sections were obtained by breaking the membranes which were frozen in liquid 

nitrogen. The coated membrane samples were then imaged using an ESEM Quanta 400 FEG SEM 

equipped with a secondary electron (SE) detector and operated at 20 keV. 

The polymer matrix does not alter the crystalline pattern of MIL-101 (Figure S2). 

Thermogravimetric analyses of activated MIL-101(Cr)/polysulfone membranes (Figure S4) showed 

almost no weight loss up to 350 °C, indicating that the casting solvent was not trapped in the pores of 

the MIL-101 framework. The PSF polymer decomposed above 500 °C (Figure S4). 
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2.5. Gas Permeation Experiments 

Single-gas permeabilities were evaluated for O2, N2, CO2 and CH4 using the permeation cell 

described elsewhere [88]. Before affixing the membrane to the permeation cell, the thickness of the 

membrane was measured on 10 different points using a micrometer screw. The gas permeation 

measurements were performed at steady state conditions using the pressure rise method at 30 °C. The 

membrane is placed into the cell while the permeate side is evacuated, then the feed side is evacuated 

too. After that the valve on the feed side is closed and put under defined pressure (e.g., 3 bars) with a 

single gas (beginning with the slower permeating gas, i.e., nitrogen if oxygen/nitrogen separation is 

investigated). After pressurizing the feed side for 2 h the permeation measurements can be started. The 

line between the permeate side and the vacuum pump is closed and the feed pressure adjusted. Since 

the gas permeates from the feed side through the membrane to the permeate side the pressure there 

increases. The linear pressure rise is recorded with an x–y printer and used to calculate the permeability 

P in barrer units (1 barrer = 1 × 10−10 cm3 (STP) cm/cm2 s cmHg or, in SI units, 7.5005 × 10−18 m2·s−1·Pa−1, 

see Supplementary Information) (Equation 1). Permeability ( ) = ××   (1)

From the single gas permeabilities the ideal gas selectivity was calculated according to the  

Equation (2): α ( ) =   (2)

For the pure polymer, four individual membranes with an area of 11.3 cm2 and thicknesses of about 

30 µm were analyzed in gas permeation experiments. In the case of the MMMs, samples with an area 

of around 11.3 cm2 and thicknesses between 30 and 75 µm were analyzed. Each gas permeation was 

measured three times with the same membrane (pure polymer and MMMs) for error estimation. 

2.6. Positron Annihilation Lifetime Spectroscopy (PALS) 

2.6.1. Measurements 

Positron annihilation experiments have been performed in a fast-fast coincidence setup with a 

homemade temperature-controllable sample holder under high vacuum conditions as described, e.g., in 

reference [89]. Experiments were performed with two different time resolutions and sources for 

mixed-matrix membranes and pure MOFs to take into account the long lifetimes in the MOF. For the 

measurements the membranes were cut into small pieces and filled into small aluminum pans  

(Figure 4). The pure MIL-101 was also filled into aluminum pans. Pans were stacked with a Na-22 

source (1 MBq, for mixed-matrix membranes and 0.1 MBq for pure MOF, both encapsulated in 

Kapton) in a sandwich like manner (total thickness ≈ 1.2 mm) to ensure complete absorption of the 

positrons in the sample. The pans were sealed with another membrane layer on the top and the whole 

device mounted into a sample holder in vacuum (10−5 mbar). Special care was taken to ensure relative 

comparison, i.e., same Na-22 source, same counting rate, same temperature program, same evaluation 
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method and boundary conditions were used for all mixed-matrix membrane samples, only the pure 

MOF was analyzed separately (see discussion). 

Positron annihilation spectra were recorded at a counting rate of ca. 350 cts/s with a total of 

typically 5 × 106 cts within several hours. The temperature was set to 30 °C, accuracy ±1 K. Evaluation 

was performed with the LT9.2 routine program [90], using the common background subtraction and 

the final resolution function, which was determined as a sum of two Gaussians with FWHMs (Full 

width at half maximum) of approx. 268 ps and 445 ps and weight of 80% and 20%; respectively. Up to 

five lifetime components were assumed. The resolution function was fixed for all spectra. Also τ1 was 

fixed at 125 ps for MMMs because further lifetime components, related to annihilation in the MOF 

were introduced. The fit of all other parameters was free. 

Figure 4. Schematic presentation of sample preparation for positron annihilation lifetime 

spectroscopy (PALS). 

 

2.6.2. Conversion o-Ps Lifetime to Hole Size (Tao-Eldrup Model) 

Once injected from a radioactive source, positrons form in most polymers hydrogen-like 

positronium (Ps) states. The pick-off lifetime of ortho-positronium (τo-Ps), is well correlated to the free-

volume hole size in polymers. The success of PALS in polymer research is largely due to the  

so-called standard model developed by Tao and Eldrup [78], later extended to larger holes [91]. This 

simple quantum mechanical model assumes the Ps to be confined to spherical holes with infinitely 

high walls and gives a direct relationship between τo-Ps and the size of the free volume holes. This can 

quantitatively be expressed as Equation (3): 
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where R is the average radius of holes (free volume element), R0 = R + ∆R and ∆R = 0.166 nm [92].  

The interpretation of the o-Ps intensity, which has often been used as a measure for the hole 

concentration in polymers, is questionable, as the intensity is also affected by the positronium 

formation probability [93]. However, for binary mixtures (here polysulfone and MOF), the intensity of 

the respective components can be correlated to their respective concentrations of polymer and MOF in 

the sample.  
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3. Results and Discussion 

3.1. Gas Permeation 

We had communicated the results of a study of polysulfone (PSF) mixed-matrix membranes 

containing the water-stable MIL-101(Cr). These MIL-101/PSF MMMs exhibited a remarkable  

four-fold increase in the permeability of O2 to technically needed values above 6 barrer, thereby, 

keeping the high PSF selectivity for O2 over N2 of 5–6 (Figure 5). High loads up to 24 wt % [94] of 

MIL-101(Cr) in PSF could be achieved with the MIL-101 particles showing very good adhesion with 

polysulfone in the mixed-matrix membranes (Figure 6) and excellent long term stability. Particle 

aggregation becomes obvious at the 19% loading (Figure 6c,d). The MMMs remain flexible even at 

19% loading and only start to markedly lose their flexibility at 24% loading. A comparison of  

these results with the separation performance of other MOF-MMMs shows that the MIL-101/PSF 

membranes exhibit much higher O2 permeabilities (>4 barrer) than any other MOF-based mixed-matrix 

membranes [15,85]. MIL-101/PSF was just recently surpassed for O2/N2 separation by the higher gas 

permeation performance of ZIF-8/PIM-1 nanocomposite membranes. In fact ZIF-8/PIM-1 performed 

above the 2008 upper bound for several gas pairs [84]. 

Figure 5. O2/N2 permeability and separation performance of pure polysulfone (PSF) and 

MIL-101/PSF membranes with different MIL wt % loadings (graphics with revised  

MIL-101 wt % [94] values compared to reference [85]). 

 

The polysulfone polymer does not appear impressive in terms of its separation performance. 

However, PSF is employed on the scale of several thousand tons per year for membranes for dialysis 

and water treatment. Polysulfone is one of the most important glassy polymers used in industrial 

membrane gas separation [6,95]. PSF is characterized through high temperature stability and very good 

mechanical properties. Further, it is industrially available with high molecular weights and consistent 
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specifications so that deviations which are observed from different polymer batches or impurities can 

therefore be eliminated.  

Figure 6. SEM photographs of MIL-101/PSF membranes based on 400 mg of PSF with 

different loadings of MIL-101. Left: membranes surface; right: cross section view. 

 

Single gas experiments with CO2, CH4 and N2 on the MIL-101/PSF membranes at different MOF 

loadings yielded increases in gas permeabilities with increasing MIL-101 weight percentage in PSF 

(Figures 7 and 8) [96]. CO2 is the faster permeating gas. The CO2 permeability increases from about  

5 to over 35 barrer from pure PSF to 24 wt % MIL-101/PSF. The increase for CO2 also raises the ideal 

selectivities for CO2/N2 and CO2/CH4 from about 20 to 25 [96].  
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Figure 7. CO2/N2 permeability and separation performance of pure PSF and MIL-101/PSF 

membranes with different MIL wt % loadings. 

 

Figure 8. CO2/CH4 permeability and separation performance of pure PSF and MIL-101/PSF 

membranes with different MIL wt % loadings. 

 

A comparison of the CO2/N2 results with the separation performance of other MOF-MMMs  

shows that the MIL-101/PSF membranes exhibit again higher CO2 permeabilities at its highest  

loading (>30 barrer) than most other MOF-based mixed-matrix membranes (Figure 9). ZIF-8/PIM-1 

membranes showed CO2 permeabilities of about 4000–6000 barrer [84]. 

For the CO2/CH4 separation the MIL-101/PSF membranes performed well but cannot surpass 

membranes made from ZIF-90/6FDA–DAM [6FDA: 2,2-bis(3,4-carboxyphenyl) hexafluoro-propane 

dianhydride; DAM: diaminomesitylene] [27] (Figure 10) and that of PIM-1/ZIF-8 [84]. The permeation 

properties of both pure highly permeable polymer 6FDA–DAM and 15 wt % ZIF-90/6FDA–DAM 

membranes were investigated for a CO2/CH4 gas mixture and show an enhancement of gas-separation 

performance of the ZIF-90/6FDA–DAM membranes [27]. Also an increase in the content of nano  

ZIF-8 (up to 43 wt %) in ZIF-8/PIM-1 MMMs increased the permeability coefficients [84]. 
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Figure 9. Comparison of CO2/N2 separation performance of MIL-101/PSF with other 

metal-organic framework (MOF)-containing mixed-matrix membranes from literature data 

(for further details on MOF-mixed-matrix membrane (MMM) data points see Tables S2 

and S4, Figure S6). The Robeson upper bound for polymer separation performance as 

defined 2008 is shown [10].  

 

Figure 10. Comparison of CO2/CH4 separation performance of MIL-101/PSF with other 

MOF-containing mixed-matrix membranes from literature data (for further details on 

MOF-MMM data points see Tables S3 and S5, Figure S7). The Robeson upper bounds for 

polymer separation performance as defined in 1991 and 2008 are shown [9,10].  

 

The experimental permeability of gas species through MMMs can be compared with theoretical 

predictions by several models [97]. The Maxwell and Bruggeman permeation models are usually used 

to assess the permeabilities of gases through MMMs [11,12,98]. The Maxwell model describes the 
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effective permeability (Peff) of gas species for a dispersion of filler particles in a polymer matrix, that 

is, a mixed-matrix membrane. The Maxwell equation can be expressed by Equation (4): = ∅ ( )∅ ( )   (4)

Pc is the permeability of the continuous (pure) polymer phase, and Pd is the permeability of the 

dispersed phase. Φd is the volume fraction of the dispersed phase as given in Equation (5):  ∅ =   (5)

Wd and Wc are the weight and ρd and ρc the density of the dispersed filler and continuous polymer, 

respectively. The densities may be taken from the literature or determined experimentally. 

By defining a “reduced permeation polarizability” β as (Equation (6)) [11], β =   (6)

Equation (4) can be rewritten to Equation (7): = ∅∅   (7)

The value of β is a measure of the permeability difference between the polymer phase (with Pc) and the 

dispersed MOF phase (with Pd). Three limiting cases exist: For highly permeable MOFs Pd >> Pc and 

β ≈ 1; for equal permeability in both phases β ≈ 0 and for non-permeable filler (Pd = 0) β ≈ −0.5 [11].  

The Maxwell model is intended to be applicable for low filler loadings (Φd < 0.2) since it assumes 

that the streamlines associated with diffusive mass transport around filler particles are not affected by 

the presence of nearby particles [99]. The Bruggeman model is an improved version of the Maxwell 

model [100], can be used at higher loads and correlates the effective permeability (Peff) with the 

volume fraction Φd of the dispersed phase in Equation (8): ( ) = (1 − ∅ )  (8)

For the maximum and minimum limits, the ratios of the effective permeability of the MMM (Peff) 

relative to the continuous (pure) polymer matrix (Pc) permeability are given in Equation (9) [99]: 

Pd >> Pc: = ( ∅ )   

Pd << Pc: = (1 − ∅ )   
(9)

The above Maxwell and Bruggeman models give similar results up to Φd ≈ 0.2 [99].  

Use of the Maxwell model with β ≈ 1 reproduces the approximate effective permeabilities and the 

ideal selectivity of ~6 and ~20 for the O2/N2 and CO2/N2 separation performance of the MIL-101/PSF 

membranes with different filler wt % loadings (given here filler volume fractions Φd) (Figure 11). 

Figure 11 is to be compared with Figures 5 and 7, respectively. Filler volume fractions of 0.14, 0.25, 

0.32 and 0.39 correspond to MIL-101 wt % loadings of 7.5, 14, 19 and 24 wt %, respectively (see 

Table S1 and Figure S5). We assign the lower calculated CO2 permeability to the limiting assumptions 

of the Maxwell model.  



Membranes 2013, 3 344 

 

 

Figure 11. Calculated permeability and selectivity for the MIL-101/PSF-MMMs using the 

Maxwell model under the assumption of a highly permeable dispersed (filler, MOF) phase, 

i.e., Pd >> Pc and β ≈ 1. Part (a) is to be compared with Figure 5 and (b) with Figure 7. 

 
(a) 

 
(b) 

3.2. PALS Experiments 

In order to attribute the o-Ps lifetimes reasonably to the respective contributions in the mixed-matrix 

membrane samples, first the pure constituents are discussed. For the pure polysulfone only one o-Ps 

lifetime of 2.1 ns and an intensity I3 of 20% is found and both values are typical for polymers (Tables S6 

and S7) [93].  

For the pure porous MIL-101 material PALS will probe an inner free volume with a diameter of 

~1.2 nm for pentagonal windows or ~1.47 nm for hexagonal windows but not ~3 nm for the 

mesoporous cages (cf. Figure 2) as PALS does only probe the shortest diameter [101,102]. Table 1 lists 

the diameters, the radii subtracted with the van der Waals radii of 0.14 nm and the expected o-Ps 

lifetimes due to the Tao-Eldrup model (see Section 2.6). As already indicated in the literature [103], 

there are longer lifetime contributions (~80 ns) in the spectra, which might arise from delocalized 



Membranes 2013, 3 345 

 

 

positronium states and, thus, represent an “artefact” of the measurement. We evaluated the corresponding 

spectra for the pure MOF with five and six components, the corresponding results are summarized in 

Tables S6 and S7.  

Table 1. Relevant distances and ortho-positronium lifetimes in MIL-101 for PALS. 

Inner free volume a Diameter (nm) a Effective radius (nm) b Expected o-Ps lifetime (ns) c 

Pentagonal window  1.2 0.46 4.7 
Hexagonal window 1.47 0.595 8 
small meso-cage 1 2.9 1.31 30.5 
large meso-cage 2 3.4 1.56 38 

a see Figure 2; b effective radius = diameter/2 − 0.14 nm (vdW radius); c o-Ps = ortho-positronium. 

Figure 12 displays the average free volume radii versus the weight content of MIL-101 in PSF. In 

Figure 13 the respective intensities are plotted vs. MOF content. Specific values are listed in Tables S6 

and S7. 

Figure 12. Pore radii of the average free volume as function of wt % MIL-101 in MMM. 

For details see Section 2.6.2. 

 

From Figure 12 it is obvious that there is no systematic change in the free volume radii of the PSF 

polymer and the MOF filler with different weight fractions. Neither the free volume radius of the 

polymer nor the pore radius of MIL-101 is altered by combining both in a mixed-matrix membrane 

with increasing MIL-101 content. Hence, the structure of the MIL-101 particles seems to be unaffected 

by the polymer and vice versa. No additional free volume is introduced in the polymer or at the  

MOF-polymer interface with the addition of the MIL-101 filler. Instead free volume sites inside the 

MIL-101 particles were brought into the MMM. Furthermore, one can assume that the mesocages in 

MIL-101 are not filled by polymer material. The mean value of the o-Ps lifetime in the MOF filler is 

7.8 ns, and the values of Table 1 indicate clearly that the o-Ps probes the pores of MIL-101. 
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Figure 13. o-Ps intensities as function of wt % MIL-101 in MMM. The o-Ps intensity is 

related to the relative contribution of annihilation events in the respective phase of the 

sample. For details see Section 2.6.2. 

 

In Figure 13 the intensity of the third PSF-component decreases nearly linear with MIL-101 

concentration and the fourth MOF-component increases with MIL-101 concentration. This can be 

explained easily, as with less (more) concentration of a component there will be less (more) 

contribution of the respective lifetime of that component. In other words, the intensity I3 of the third 

lifetime component τ3 which is associated with PSF decreases with the decreasing polymer content at 

the expense of increasing MIL-101 filler weight fraction. The intensity I4 of the fourth lifetime 

component τ4 is associated with MIL-101 filler content and increases accordingly. This graph is still a 

good proof for the statement that the third component can be contributed to a mixed lifetime of PSF 

and MIL-101 and the fourth component only to the MIL-101. 

4. Conclusions 

Isochorus, that is, single gas CO2, N2 and CH4 permeation experiments on MIL-101/PSF membranes 

show an almost linear increase in permeability for the fast gas CO2 with slight increases in ideal CO2/N2 

and CO2/CH4 selectivities with increasing MIL-101 content. The CO2/N2 separation performance of 

MIL-101/PSF with 19 wt % filler content surpasses those of most other known MOF-MMMs. The 

Maxwell model is able to reproduce the approximate effective permeabilities and the ideal selectivity 

for the O2/N2 and CO2/N2 separation performance of the MIL-101(Cr)/PSF membranes with different 

filler loadings under the assumption of a higher gas permeability P in dispersed MOF phase than in the 

continuous polymer phase, that is, Pd >> Pc. 

In PALS experiments the MIL-101/PSF-MMM samples show only minor changes in the lifetime of 

the third and fourth component, τ3 and τ4 with increasing wt % of MIL-101. But the MMM samples 

show a decreasing intensity for the third lifetime component and an increasing intensity for the fourth 

lifetime component paralleling the increased MIL-101 filler content. This indicates that the increased 

permeability for N2 and O2 in the MIL-101/PSF-MMMs is not due to free volume changes in the PSF 

but due to the added large free volume inside the MIL-101 filler particles. 
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