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Abstract: This work provides additional insights into the identification of operating conditions
necessary to overcome a current limitation to the scale-up of the breath figure method, which is
regarded as an outstanding manufacturing approach for structurally ordered porous films. The major
restriction concerns, indeed, uncontrolled touching droplets at the boundary. Herein, the bulk of
polymeric solutions are properly managed to generate honeycomb membranes with a long-range
structurally ordered texture. Water uptake and dynamics are explored as chemical environments are
changed with the intent to modify the hydrophilic/hydrophobic balance and local water floatation.
In this context, a model surfactant such as the polyoxyethylene sorbitan monolaurate is used in
combination with alcohols at different chain length extents and a traditional polymer such as
the polyethersufone. Changes in the interfacial tension and kinematic viscosity taking place in
the bulk of composite solutions are explored and examined in relation to competitive droplet
nucleation and growth rate. As a result, extensive structurally ordered honeycomb textures are
obtained with the rising content of the surfactant while a broad range of well-sized pores is targeted
as a function of the hydrophilic-hydrophobic balance and viscosity of the composite polymeric
mixture. The experimental findings confirm the consistency of the approach and are expected to give
propulsion to the commercially production of breath figures films shortly.
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1. Introduction

Well-defined porous polymeric architectures are in a great demand for use in advanced devices,
including membranes [1–3] and sensors [4–6]. There is a deep-seated awareness that desired properties
can be decided and programmed or more simply controlled at the macroscopic level when chemistry
and tight placement of each single component are properly directed on multiple length scales, including
nanometers and micrometers. This necessarily implies an extensive structural order over the entire
surface area that must be managed. As an example, extensive structural order is highly desired for
the implementation of water membrane processes, including membrane distillation. In this case,
narrow pore distribution together with pore size and shape decide extensiveness and stability of the
interfacial area, which are necessary for an efficient process with a long operational time [1]. Also, the
increasing demand to move from passive to active sensors requires the use of platforms wherein
sensing and transport functions can be allocated and associated according to fine structure-property
relationships [5].
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Several manufacturing methodologies have been proposed for the fabrication of highly defined
textures [6–10], but often overly expensive materials/production processes, the use of pollutant
materials, as well as the loss of controlled texture at long range have resulted in being too restrictive
for related scale-up. Among the most breakthrough strategies, there is one inspired to by the natural
condensation of water droplets from humid air on cold surfaces, which is well known as breath figure
self-assembly [11]. The approach is based on a bottom-up strategy and exploits the ability of water
droplets to self-assemble in semi-crystalline lattices under dragging Marangoni forces. The propagation
of the droplet assembly through the polymeric solution leaves air bubble arrays, where each single
pore can be regarded as the result of the imprinting action of a droplet. Such a technique has important
advantages over conventional approaches, including the use of largely available and nontoxic template
and a reduced amount of solvent as well as the requirement of only one fabrication step. All this
makes it attractive for the greener and time-saving design of well-architectured interfaces from several
polymers. Indeed, this kind of honeycomb structure has been successfully proven to work as a highly
breathable membrane when equipping membrane distillation plants [1,12] as well as porous platforms
for the build-up of high-quality charge transfer pathways for humidity detection and regulation [13].
However, the commercial development of advanced devices based on materials with this long-range
texture type necessarily requires a massive production. A current limitation to the breath figure method
is, indeed, the difficulty to control the organization of droplets into ordered and modular structures
over the entire surface area exposed to the humid air, especially when polymers with a low ability to
stabilize droplets are used. In addition, the technique is rather sensitive to changes, which can take
place in the surrounding environment, and the perfect control of the external conditions is not trivial
at a larger scale.

Despite the literature referring to several models of honeycomb structures [14–16], the formation
of highly ordered multiscale polymeric textures still remains a hard struggle. On the other hand,
thermodynamics, kinetics, and entropy factors, which regulate the materials assembly, are generally
somewhat complex and unclear [17–21].

Currently, there is a still considerable lack of knowledge about the forces dominating the degree of
structural order on the scale, while the scale-up of defined structures realistically needs to use practical
and efficient means for achieving desired features at longer range.

Also, there is the necessity to demonstrate this technique as a practical route for the preparation
of honeycomb membranes with open regular pores from a large number of polymers, including those
with traditionally poor affinity to water and scarce ability to stabilize floating droplets at longer range.

In this context, this study provides additional insights into the identification of synergic
interactions to accomplish the entrapment and motion of water droplets through a continuous
hydrophobic phase, thus preventing the formation of locally disordered regions at the boundary
of touching droplet islands and yielding full order throughout the surface. A further advantage is
the possibility to make polymeric architectures with a modular pore diameter by directing nucleation
and growth rate events through the manipulation of kinetic and thermodynamic factors, including
viscosity and surface free tension. Herein, a common polyethersulfone (PES) with low affinity to
water is chosen as a polymer type due to its excellent thermal stability, outstanding toughness and
suitability to come in contact with food and water. Also, a commercial nonionic surfactant such
as polyoxyethylene (20) sorbitan monolaurate (Tween20) is chosen as a model surfactant and is
combined with alcohols with different lengths and bulks of the chain. The aim is to generate different
chemical microenvironments and study the behavior of floating water droplets during self-assembly
as the hydrophilic/hydrophobic balance in the solution is changed. Fine driving forces, including
encapsulation and reciprocal affinity of touching systems, are tuned at the interfacial level and are
concerned with the organizations of droplet lattices achieved over the entire surface area exposed
to the humid atmosphere. As a result, a very high degree of order is obtained through honeycomb
film textures with well-shaped and well-sized pores when fruitful interactions are established at the
water-casting solution interface. The major result is the suppression of disordered and confused regions
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as a suitable hydrophilic/hydrophobic balance is provided to the polymeric solution. In this case, it is
demonstrated how the combination of PES/surfactant/alcohols enables one to move from traditional
self-assembly to assisted self-assembly, taking the advantage of packing pores with modulated size in
extensively controlled PES honeycomb geometries where local disorders are entirely suppressed.

These experimental achievements can be regarded as the result of well-identified tools, which
represent, in turn, a solid precondition to the scale-up of reliable interfaces with structural features
which are in accordance with requirements of regular and uniform pore size, high interfacial area and
defined and reproducible volumetric space.

2. Experimental Section

Materials and Methods

Polyethersulfone (PES, Radel A100NT, Solevey Solexis, Alpharetta, GA, USA) was dissolved
in dicloromethane (DCM, 99.5%, Carlo Erba Reagents, Milan, Italy) at 2.0 wt %. Polyoxyethylene
(20) sorbitan monolaurate (Tween20, Mw = 1227.54, Sigma-Aldrich SRL, Milan, Italy) and various
alcohols with different chain length ((CH2)n = 2–4OH, water content < 0.02%, degree of purity of
99.5%, Carlo Erba Reagents) were added at different ratios in the polymer solution, resulting in
a concentration of 10´5–10´3 M for the surfactant and 12 wt % for alcohols. The clear dopes were
placed in clean and dried stainless steel supports having an area of around 4 cm2 located inside
a pre-equilibrated box at 20 ˝C and under a partial pressure of water vapor of 17.54 mmHg until
the films were formed. The viscosity of the various polymer dopes was measured at 20 ˝C by
a capillary rheometer (c = 0.00243 cst/s). Dynamic Light Scattering (DLS) measurements were carried
out to evaluate changes in the aggregation state by using a 90 plus Particle Size Analyzer (Malvern
Instruments Ltd., Worcestershire, UK). The surface free tensions of the solutions were estimated
according to the pendant drop method by using a micro-syringe with an automatic dispenser and
a digital camera to capture images (CAM 200-KSV Instrument Ltd., Helsinki, Finland), while the
parameters of solubility were calculated according to the following equations [22]:

ecoh “
´ γs

0.75

¯
3
2 , δ “ pecohq

1{2 (1)

where ecoh (106 J/m3) is the energy cohesion density and δ (103 J1/2/m3/2) the solubility parameters.
Interfacial tensions between water and dichloromethane solutions containing polymer at 2.0 wt % and
Tween20, within a range of concentration from 0 to 10´3 M, were also measured by pendant drop
method at 20 ˝C. Each solution was poured in the quartz glass cuvette, and then a water drop was
injected into the solution by using a syringe connected to an automatically liquid volume dispenser.
The interfacial tensions were measured at 0 and 60 s after water injection. The average interfacial
tension values were calculated from five measurement results with a standard deviation that decreases
from ˘0.23 to ˘0.13 with rising surfactant content into the mixture [23].

Membrane morphology was investigated by scanning electron microscopy (SEM; Quanta FENG
200, FEI Company, Milan, Italy). Pore size and pore distribution were estimated from SEM images
by using the Image J software (version 1.37, Softonic Internacional S.A., Barcelona, Spain). The pore
size had a log-normal distribution for all membranes and was expressed as the probability density
function [24].

The cumulative distribution function was obtained for each single membrane by plotting the
median rank on the ordinate versus the ascending pore size on the abscissa and was a straight line on
log-normal probability paper with correlation coefficients R2 higher than 0.90.

3. Results and Discussion

The breath figure is regarded as a greener and time-saving manufacturing approach for ordered
porous honeycomb structures (Figure 1).
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Figure 1. Representative scheme of formation of ordered porous membranes according to breath
figure method.

As mentioned, the target is to use water droplets as natural pore builders, thus yielding
three-dimensionally-defined polymeric architectures (Figure 2). However, a major limitation to
commercially producing large-scale films is the lack of control on the structural order at long-range
through the surface area of the films realized.
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Figure 2. SEM micrographs related to a honeycomb membrane prepared from a PSU/DCM/2-propanol
solution: (a) top surface and (b) cross-section of the membrane.

Briefly, when liquid films come in contact with humid air, water condensation on the liquid
surface is induced for cooling effects due to solvent evaporation (Figure 1). After nucleation, floating
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water droplets form more or less extended domains apart from each other. These domains are dragged
by thermo-capillary forces that would direct the self-assembly to the area exposed to the humid air.
At the same time the polymer has the ability to envelope the droplets when touching the solution and
form a semisolid protective layer around each one. However, as the polymer layer is too weak and/or
harsh and virulent collisions occur at the margin of the droplet rafts, coalescence phenomena take
place shaping more or less extensive irregular and/or inhomogeneous regions upon the starkness of
the impact (Figure 2).

With this concern, the purpose of this work is to identify one way to reduce and prevent local
disorder through controlled kinematic and thermodynamic forces in order to give new inputs to the
production of this kind of membrane on a larger scale, especially for polymers exhibiting low ability to
stabilize water droplets during flotation through the solution. The possibility to modulate the pore
size within packed honeycomb geometries is explored as well.

For this reason, compounds, by virtue of their capability to rearrange and interact with different
chemical environments, have been chosen as models to study. A common surfactant such as Tween20
has been used alone and in combination with alcohols, including ethanol, n-propanol, 2-propanol,
and n-butanol, in order to increase the local kinematic viscosity of PES solutions, but also to generate
chemical microenvironments favorable for hosting and stabilizing water droplets during condensation
and flotation events. PES has been demonstrated to be poor in stabilizing droplets in the absence of
surfactant, while extensively regular honeycomb textures have been obtained when surface-active
molecules have been used to strengthen cooperative interfacial forces [25].

3.1. Influence of the Surfactant on the Surface Structural Order

Initially, mixtures of PSU in DCM containing 2-propanol at 12 wt % and Tween20 at different
content (10´5–10´3 M) were prepared. The behavior of the solutions with increasing content
of surfactant has been examined when coming in contact with humid air, while kinetics and
thermodynamic aspects have been analyzed as well. As the concentration of the surfactant increases,
a local increase in gelation comes through the solution, resulting in an increased kinematic viscosity
(Figure 3).

Membranes 2016, 6, 27 5 of 12 

water droplets form more or less extended domains apart from each other. These domains are 

dragged by thermo-capillary forces that would direct the self-assembly to the area exposed to the 

humid air. At the same time the polymer has the ability to envelope the droplets when touching the 

solution and form a semisolid protective layer around each one. However, as the polymer layer is too 

weak and/or harsh and virulent collisions occur at the margin of the droplet rafts, coalescence 

phenomena take place shaping more or less extensive irregular and/or inhomogeneous regions upon 

the starkness of the impact (Figure2). 

With this concern, the purpose of this work is to identify one way to reduce and prevent local 

disorder through controlled kinematic and thermodynamic forces in order to give new inputs to the 

production of this kind of membrane on a larger scale, especially for polymers exhibiting low ability 

to stabilize water droplets during flotation through the solution. The possibility to modulate the pore 

size within packed honeycomb geometries is explored as well. 

For this reason, compounds, by virtue of their capability to rearrange and interact with different 

chemical environments, have been chosen as models to study. A common surfactant such as Tween20 

has been used alone and in combination with alcohols, including ethanol, n-propanol, 2-propanol, 

and n-butanol, in order to increase the local kinematic viscosity of PES solutions, but also to generate 

chemical microenvironments favorable for hosting and stabilizing water droplets during 

condensation and flotation events. PES has been demonstrated to be poor in stabilizing droplets in 

the absence of surfactant, while extensively regular honeycomb textures have been obtained when 

surface-active molecules have been used to strengthen cooperative interfacial forces [25]. 

3.1. Influence of the Surfactant on the Surface Structural Order 

Initially, mixtures of PSU in DCM containing 2-propanol at 12 wt % and Tween20 at different 

content (10−5–10−3 M) were prepared. The behavior of the solutions with increasing content of 

surfactant has been examined when coming in contact with humid air, while kinetics and thermodynamic 

aspects have been analyzed as well. As the concentration of the surfactant increases, a local increase 

in gelation comes through the solution, resulting in an increased kinematic viscosity (Figure 3). 

 

Figure 3. Effects of the surfactant loading on the kinematic viscosity of the PSU/DCM/2-propanol (12 

wt %) solutions. 

In the absence of surfactant, 2-propanol is unable to provide the assistance necessary to fully 

prevent local disorder for the polymer PES, as shown in Figure 2a. Undesired broadness in the pore 

distribution takes place due to the coexistence of different porous domains, thus resulting in an 

average pore size of approximately 3.6 um (Figure 4a). 

Figure 3. Effects of the surfactant loading on the kinematic viscosity of the PSU/DCM/2-propanol
(12 wt %) solutions.

In the absence of surfactant, 2-propanol is unable to provide the assistance necessary to fully
prevent local disorder for the polymer PES, as shown in Figure 2a. Undesired broadness in the pore
distribution takes place due to the coexistence of different porous domains, thus resulting in an average
pore size of approximately 3.6 um (Figure 4a).
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Figure 4. Changes in the pore size and distribution with rising content of surfactant (a); Effects of
surfactant/alcohol complex on membrane morphology (SEM micrographics (b–d) and formation of
aggregates in precursor polymeric solutions (Dynamic Light Scattering (a’–d’)).

Instead, a progressive addition of Tween20 to the solution leads to the gradual control of the
dynamics of the water droplets, making the collisions softer. SEM micrographs show how larger
and geometrically confused air bubbles progressively make space for more defined lattices as the
content of the surfactant increases in the mixture (Figure 4b–d). This suggests a slowing down of
the droplets during motion, which avoids coalescence or uncontrolled growth rate at the margin of
the single lattices. As a result, an enhanced degree of the order of the texture is obtained (Figure 4a).
In this context, the surfactant assists the polymer in the stabilization of droplets during self-assembly,
producing additional fluid viscosity at the droplet-solution-droplet interface. The reduced kinetics
prevents the nearest soft particles from merging in bigger bubbles, limiting or, at best, suppressing local
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disorder at the boundary of the droplet islands. Dynamic Light Scattering (DLS) experiments yield
further indications about a cooperative interaction between the surfactant and polymer (Figure 4a’–d’).
In the absence of surfactant, two distinct populations of aggregates can be appreciated in solution
within a size range of 5–5000 nm, the first one covering a broader range of heterogeneous assemblies
(Figure 4a’). The gradual addition of the surfactant in solution significantly reduces the broadness of
two populations, decreasing the aggregates’ size by one order of magnitude, and leads to a gradual
diminution of the second population in favor of the smallest one (Figure 4b’–d’). Because of the
complexity and heterogeneity of the mixtures, establishing the shape and type of the aggregates is not
easy at this stage; however, it is undoubtedly due to the relationship between the increasing uniformity
of aggregates in solution and the major order of the final texture, which can be regarded as the result of
a cooperative action of the various components dispersed in the mixture. It is also relevant to observe
how a mono-dispersive pore distribution matches with a gradual reduction of the pore size as the
surfactant rises in content (Figure 4).

Given that the radius of the droplets is time-dependent and proportional to R < t1/3 in the
beginning, and to R < t in the end [15], very narrow pore size distributions with the formation of
a smaller pore size can be regarded as the result of a massive nucleation and a reduced droplet growth
rate. There seems to be quick droplet saturation over the liquid surface in contact with moisture, while
the boundary of each single droplet island becomes indiscernible at nearly the highest loading of
surfactant (Figure 4d). In this regard, the imprinting action of the droplets is exhausted when the lattice
is formed over the entire surface area of the solution touching the moisture. However, this can also be
considered a reasonable consequence of a very fast and assisted moisture uptake. Indeed, an increase
in the overall surface tension—a value of 28.30 mJ/m2 against 26.50 mJ/m2 estimated for the pure
solvent—has been measured for solutions at the highest amount of surfactant. This would suggest
that a large number of polar head groups is directed outward from the surface and is prepared to
interact with condensing droplets. In order to confirm the ability of the surfactant to interact favorably
with the water droplets, interfacial tensions have been measured at the interface established between
a single water droplet and the surrounding polymeric solution with increasing content of Tween20.
The droplets have been automatically injected into the solution by using a syringe and the surface
tension value has been measured according to the pendant drop method. Indeed, the decrease in
the interfacial tension values with rising concentration of the surfactant confirms a tendency of the
system to reach a minimum of energy (Figure 5). This means that when the surfactant dissolved in the
polymeric solution comes in contact with water droplets, the related polar heads establish attractive
hydrophilic interactions at the interface while the hydrophobic tails are pointed towards the rest of
the nonpolar solution, thus causing a decrease in the overall interfacial tension. These experimental
findings are in full agreement with those found by Kojima et al. [23] about the ability of amphiphilic
copolymers to establish hydrophilic interfacial forces with water droplets during the formation of
honeycomb patterns. Herein, the ability of the surfactant to enhance the process of stabilization of
the droplets becomes much stronger at higher concentrations, resulting in a higher uniformity of the
structural order as well as in a gradual reduction of the pore size (Figure 3a–d). This means that the
larger availability of the surfactant leads to quicker water uptake and stabilization over the entire
surface area of the solution exposed to humid air.

On this basis, there is a clear indication about the necessity to adjust the hydrophilic/hydrophobic
balance in solution in order to move water droplets from self-assembly to assisted self-assembly,
especially when using polymers with poor ability to rearrange themselves and interact at the interface
of local different microenvironments.

It is relevant to observe how the hydrophilic/hydrophobic balance becomes somewhat marked at
higher concentrations of surfactant, which is greater than that indicated as a necessary to reach the
critical micelle concentration in a binary aqueous solution (CMC, 10´2 mM) [26]. In this respect, it
must be stressed that the working chemical environment is rather different from the aqueous one,
the mixture being nonpolar and containing four different components. This makes it difficult to
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unequivocally identify the aggregation state of the surfactant, especially in the presence of additional
amphiphilic compounds such as alcohols, which allow intermolecular interactions to establish within
hydrophilic and hydrophobic domains, causing important changes in CMC as well [27]. Nevertheless,
it is unquestionable that the increase in the concentration of surfactant causes a major number of
monomers in proximity to the surface and in the bulk; these monomers could aggregate but also
continue to migrate freely towards the surface, making polar heads promptly more available to interact
with water and assist the dispersion of the aqueous phase in the continuous oil phase, as clearly
confirmed by decreasing interfacial tension values (Figure 5).
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containing increasing amount of surfactant.

The result is a quicker formation of lattices from a larger number of smaller, stabilized water
droplets, which leave an open pore size uniformly distributed over the entire surface area of the film.
This clearly implies a predominance of droplet nucleation over the related growth rate.

3.2. Influence of the Alcohol Chain Length on the Pore Size

The pore size can be regarded as the result of a different balance between droplet nucleation
and the growth rate steps. A massive droplet nucleation is, in fact, expected to lead to a very fast
coverage of the surface with a formation of smaller pores, whereas a lengthy rearrangement extends
the growth rate, yielding bigger air bubbles. In this respect, the chemistry of the polymeric mixture
has been further changed with the purpose to direct the time-scale of nucleation and the growth rate,
respectively. Alcohols with different structure (CH2)n = 2–4 containing the OH end group have been
added to the mixture, keeping the concentration of the surfactant constant at 10´4 M, in order to
examine the effects of changing hydrophobic/hydrophilic balance on the pore formation. As shown in
Figure 6, the addition of alcohols to the polymeric mixture brings about a marked effect on the value
of the overall surface free tension. The latter tends to increase with the length and bulky chain of the
alcohol, while the pore size decreases from 4.0 to 0.8 um through the overall film surface.

It is instructive to stress that the increase in the surface free tension affects the scale of affinity,
causing inevitably higher values of the solubility parameter (δ) of the solution. The latter is
a thermodynamic indicator of the attractive or repulsive interactions established between two systems
coming in contact [28]. The difference between the solubility parameters (∆δ, 103J1/2/m3/2) of two
media yields a clear indication about the level of affinity; thus, small differences indicate a great affinity,
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whereas large differences suggest a poor attraction. Concerning the systems investigated in this study,
smaller differences have been estimated between the solubility parameters of water (72.86 mJ/m2

at 20 ˝C) and the composite solutions when the lipophilic component of the alcohol overcomes the
hydrophilic one. In this case, a smaller pore size is obtained (Figure 5a). Differently, a larger pore
size is measured for films prepared from solutions containing alcohols with higher polar character
(Figure 6a).
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bulky chain of alcohols contained in PSU/DMC solutions with surfactant at 10´4 M.

Undeniably, alcohols with shorter tails exhibit increased polarity and have a higher ability to
interact with the polar heads of the surfactant, thus reducing their availability towards water droplets.
On the contrary, alcohols with longer and bulky chains exhibit more amphiphilic character, taking
their dissolution closer to the hydrophobic regions of the surfactant, where dispersive cooperative
intermolecular interactions are better established. This implies a larger availability of the polar heads
to face water droplets. As a result, a quicker nucleation of droplets with formation of smaller pore
size is obtained when polar heads of the surfactant are more available. This can be envisaged as
a direct consequence of a higher hydrophobic molecular interaction established into the bulk of the
polymeric solution.

In this regard, it is also relevant to observe that such an availability of the head polar groups at the
solution surface-air interface becomes much higher in the absence of alcohols. This suggests a decisive
role of the alcohol in the rearrangement of the surfactant at the water-solution interface. Indeed, the
difference between the solubility parameters of water and the casting solution is somewhat low in
absence of alcohol (Figure 6a). In this case, intermolecular interactions between alcohols and surfactant
fail necessarily and a larger number of free monomers in solution orient the polar part outward,
yielding major availability to interact with floating droplets. Under these conditions, a larger number
of small droplets are formed and stabilized over the entire surface area in contact with humidity.
The consequence is a massive nucleation, which leads to highly ordered textures with pores of 0.8 um
(Figure 6b).

Again, it is also relevant to examine the incidence of the alcohol length chain on the kinematic
viscosity. Figure 7 shows how the rising molecular weight together with the bulky structure of the
alcohol causes an effective increase in the solution viscosity (Figure 6).

This is expected to further enhance the capability of encapsulation of the polymeric solution,
thereby reducing the risk of coalescence and harsh collisions.
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The viscosity factor becomes, however, non-influential in the absence of alcohols; the rate of
moisture uptake and coverage for the entire surface area rather than speedy droplet flotation seems
to decide the smaller pore arrangement in ordered textures. Comparing a solution of PSU/DMC
containing surfactant at 10´4 M with ethanol at 12 wt % and a solution of PSU/DMC containing
surfactant at 10´3 M without alcohol, similar values of kinematic viscosity can be appreciated (Figure 7);
however, a significant reduction of around 80% is observed for the pore size as the polymeric solution
contains surfactant alone. This suggests that different mechanisms can take place during droplet
self-assembly. The surfactant favors moisture uptake and a quicker nucleation rate, whereas the
alcohol competes with water in the establishment of intermolecular interactions with the surfactant,
reducing the related degree of freedom with the effect of extending the growth rate of the floating
droplets depending on the intrinsic polar character of the mixture.
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and alcohols with different length and bulky chains.

On this basis, the surfactant seems to have a decisive and predominant role in the uptake and
stabilization of floating water droplets, whereas the alcohol affects the time scale, resulting in a modular
pore size.

It is unquestionable that changes in the hydrophilic-hydrophobic balance cause a competition
between droplet nucleation and growth rate steps. Using other classes of amphiphilic compounds,
changes in this balance are expected to further modify the time scale with consequences on the final
texture of the polymeric porous film [13].

The intent of this work is to demonstrate the necessity to move from traditional self-assembly to
assisted self-assembly approaches as a precondition to make the technique scalable, thus preserving
structural order and yielding uniformly modulated pore size at longer range. Of course, the
precondition for a successful scale-up has to pass through the adjustment of thermodynamic and
kinetic parameters and, consequently, the manipulation of bulk properties of the solutions used,
enabling one to contrast undesired effects due to low ability of the polymer to stabilize the droplets but
also to the frequent sensitivity of the droplet assembly to little changes in the external environment.

4. Conclusions

Assisted self-assembly of droplets in a honeycomb pattern is herein discussed. Composite
polymeric solutions have been prepared and exposed to moisture according to the breath figure
approach. Condensing water droplets have been directed to generate uniform and well-shaped pores
in polymeric architectures over the entire surface area of the films. In order to get water droplets
in extensively ordered honeycomb textures, changes in the hydrophilic-hydrophobic balance of the
solution have been induced using polyoxyethylene (20) sorbitan monolaurate as a traditional surfactant.
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The latter has been also combined with alcohols with increasing length and bulky chains in order to
obtain pore size within a broad range of microns. Depending on the local microenvironment generated,
droplet nucleation and growth rate steps have been competitively promoted due to controllable forces
established at the water-solution interface. Kinematic viscosity and water affinity have been discerned
in relation to the degree of order and the size of the pores packed in honeycomb geometry. Changes in
the interfacial tension have been concerned with the ability of amphiphilic components of the solution
to stabilize water droplets through the hydrophobic fluid. The role of the hydrophilic-hydrophobic
balance in the competition between the nucleation and growth rate has been discussed. As a result, it
has been demonstrated that the manipulation of the polymeric solution makes a better control of the
water droplet dynamics at longer range possible, leading to open pores uniformly packed in orderly,
extensive honeycomb textures. This is expected to give a great boost to the scale-up of this fabrication
process, which has the potential to meet the increasing demand to commercially produce large-scale
ordered porous films at low cost.
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CMC critical micelle concentration
DCM dicloromethane
DLS Dynamic Light Scattering
ecoh energy cohesion density
PSU polysulphone
SEM scanning electron microscopy
Tween20 polyoxyethylene (20) sorbitan monolaurate
γ surface free tension
δ solubility parameter
∆δ difference of solubility parameters
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