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Abstract: Forward osmosis (FO) membranes have gained interest in several disciplines for the
rejection and concentration of various molecules. One application area for FO membranes that is
becoming increasingly popular is the use of the membranes to concentrate or dilute high value
compound solutions such as pharmaceuticals. It is crucial in such settings to control the transport
over the membrane to avoid losses of valuable compounds, but little is known about the rejection
and transport mechanisms of larger biomolecules with often flexible conformations. In this study,
transport of two chemically similar peptides with molecular weight (Mw) of 375 and 692 Da across a
thin film composite Aquaporin Inside™ Membrane (AIM) FO membrane was investigated. Despite
the relative large size, both peptides were able to permeate the dense active layer of the AIM
membrane and the transport mechanism was determined to be diffusion-based. Interestingly, the
membrane permeability increased 3.65 times for the 692 Da peptide (1.39 × 10−12 m2·s−1) compared
to the 375 Da peptide (0.38 × 10−12 m2·s−1). This increase thus occurs for an 85% increase in Mw but
only for a 34% increase in peptide radius of gyration (Rg) as determined from molecular dynamics
(MD) simulations. This suggests that Rg is a strong influencing factor for membrane permeability.
Thus, an increased Rg reflects the larger peptide chains ability to sample a larger conformational
space when interacting with the nanostructured active layer increasing the likelihood for permeation.
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1. Introduction

Within the membrane community there has been an increasing focus on the filtration technique
forward osmosis (FO), where filtration is driven by a concentration gradient as opposed to the
traditional pressure gradient known from reverse osmosis (RO). FO membranes have gained
interest in several disciplines and are finding applications in different markets such as seawater and
brackish water desalination [1,2], wastewater treatment [3–5], treatment of high salinity waters [6–8],
fertigation [9,10], textile industry [11,12], dairy [13,14], food [15], and beverage [16,17], power
generation [18,19], and pharma industry [20,21].

One of the key performance indicators for FO membranes is the rejection of organic molecules.
In drinking water or wastewater treatment, high rejection is important to ensure that micropollutants
such as pesticides, pharmaceuticals, and endocrine disruptors do not end up in the final product.
In concentration or dilution applications, such as downstream processing of pharmaceuticals and
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fertigation, it is also important to control the transport of other molecules than water across the
membrane to avoid loss of valuable components.

Previous studies have focused on the rejection of relatively small organic molecules (MW < 365 Da)
and with a relatively well defined and rigid structure [22]. Therefore, very little knowledge is available
for the rejection of larger, more complex molecules. Based on the reported results in previous studies,
very high or complete rejection should be expected when filtrating larger molecules. Typically, rejection
has been found to be size dependent with higher rejections for larger molecules [22,23]. Size dependent
rejection indicates that steric hindrance is the underlying rejection mechanism during filtration and
therefore complete rejection should be possible to obtain. In reality however, rejections are not
found to be complete but instead only approximately complete with rejection values in the range of
99%–99.9%. This is due to the diffusion of molecules through the membrane matrix, where molecules
first adsorb to the active layer, then diffuse across it until they desorb on the support side of the
active layer. Recent findings report that for some membranes, especially dense thin film composite
(TFC) membranes, rejection is solely due to diffusion and not steric hindrance [23]. However, at the
molecular level, diffusion through the membrane matrix must also be a steric process. If molecules
can diffuse through the membrane matrix, they must be able to move in between the polymer chains
that constitute the selective layer. Following this logic, there could be an upper limit to the size of
molecules that are able to diffuse through the membrane and therefore it is interesting to investigate
whether larger molecules with complex structures, such as peptides or proteins, are still able to diffuse
through the membrane matrix or if they become entirely retained. Ultimately, this will have a large
impact not only on the chosen operating conditions of the system but it will also question the stability
and robustness of the fabrication process of biomimetic membranes with essential components in the
active layer such as proteins, peptides, polymers, and vesicles.

In this study, the rejection and transport mechanism through the membrane barrier of
two chemically similar peptides of different molecular size (375 and 692 Da) were investigated with a
biomimetic, high rejection, and dense TFC membrane. In an earlier study, the rejection mechanism for
the membrane had been found to be diffusion based, even for small molecules (MW = 149 Da) and the
membrane is as such ideal for the purpose of this study [23]. To investigate whether the peptides could
move through the membrane and if the transport was due to diffusion, the membranes were exposed
to different concentration gradients of peptides in a specially designed FO cell. Furthermore, being
complex molecules with no rigid structures, a radius of gyration for each peptide was obtained through
molecular dynamic simulations, which then that radius was related to the peptides permeability
through the membrane matrix.

2. Theory

2.1. FO Filtration

In FO, water transport is driven by an osmotic pressure gradient, ∆π [bar], between the feed
and draw solution. For an ideal membrane, the water flux, Jw [L·m−2·h−1], can be described by
Equation (1).

Jw = Lp∆π (1)

where Lp [L·m−2·h−1·bar−1] is the membrane permeability coefficient of the membrane.
For the same membrane, salt will diffuse from the draw to the feed solution as a result of the salt

concentration gradient, ∆C [g·L−1], as described by Equation (2).

Js = −B∆C (2)

where B [L·m−2·h−1] is the salt permeability coefficient and Js [g·m−2·h−1] is the salt flux.
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2.2. Separation Performance

The rejection of the solutes in an FO process is described by Equation (3).

R =

(
1 −

cp

c f

)
100% (3)

where R [%] is the rejection of the specific solute, cf is the average concentration of the solute in the
feed during experiments and cp is the solute concentration in the permeate. The average concentration
of the solute in the feed during experiments is described by Equation (4).

c f =
c0 + cend

2
(4)

where c0 is the initial concentration of the solute at the start of the experiment and cend is the
concentration at the end of the experiment. Any concentration unit can be used.

2.3. Modeling of Membrane Performance

In a previous study with the same membrane, the rejection of three small organic molecules
(atrazine, BAM, and DEIA; 215.69 Da, 190.03 Da, and 145.55 Da, respectively) was modeled with a
solution diffusion based model, while a pore flow model could not be fitted [23]. Since the peptides are
larger molecules than the previously investigated pesticides and the hydrodynamic model being based
on size exclusion, it was assumed that that a pore-flow model would not be applicable for the peptides.
Instead, the rejection mechanism was investigated with the Fickian’ Solution-Diffusion model [24,25].

In the solution-diffusion model, the membrane is viewed as a solid barrier, through which the
molecules move by first adsorbing to the surface and then diffusing through the membrane matrix
until they reach the other side of the membrane from where they desorb and move into the permeate.
The flux through the membrane is described by Equation (5).

Jp =
P
l

∆Cp (5)

where Jp [mol·m−2·s−1] is the flux of peptides, l [m] is the membrane thickness, P [m2·s−1] is the
permeability and ∆Cp [mol·m−3] is the average concentration difference across the membrane.

The permeability coefficient can further be described as a function of the diffusion coefficient
of the peptide through the membrane and the sorption coefficient of the peptide to the membrane
material as shown in Equation (6).

P = DS (6)

where D [m2·s−1] is the diffusion coefficient for the peptide in the membrane matrix and S is the
sorption coefficient of the peptide to the membrane material. S is dimensionless, since it is the ratio
of the peptide activity in solution relative to the membrane surface. In practice, it is sufficient to
determine the permeability coefficient when modeling the rejection.

Experimentally, the permeability coefficient for each peptide was determined by measuring the
flux of peptides across the membrane at different concentration difference values in the absence of
water flux. In the assays, the water flux was eliminated by removing the osmotic gradient over the
membrane, which in practice was done by using a solution of the same osmolarity on both sides of
the membrane. The peptide flux was then determined by measuring the peptide concentration in the
permeate after a given amount of time, and the permeability coefficient could be found as the slope of
the linear plot.
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3. Experimental

3.1. Forward Osmosis Membranes

Biomimetic FO membranes from Aquaporin A/S were used to study the diffusion mechanisms
through the membrane. The membranes contain functional aquaporin channels embedded in vesicles
of 200 nm size which are further incorporated in the membrane through a thin film composite active
layer formation [26]. The TFC layer is synthetized on a porous support for mechanical strength during
the operating procedure.

3.2. Selected Peptides

Two different peptides were used for the up-concentration assay and transport mechanisms
experiments, one larger peptide (GGG SGA GKT) of 692 Da and a second smaller peptide (AGKT) of
375 Da, see Figure 1. The two peptides have been tested with both experimental and computational
methods. The peptides are expected to be very flexible due to the lack of a rigid secondary structure,
making their geometrical size difficult to determine. Thus, the radius of gyration is used as a statistical
measure for the size of the peptides, a method that is used to represent the size of macromolecules [27].
Using Molecular Dynamics (MD), see Computational methods section, the radius of gyration is
calculated based on the most often occurring conformations. The radius of gyration is then correlated
to the permeability of the peptide through the membrane matrix obtained in experimental assays.
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Figure 1. Chemical representation of the two peptides. (a) AGKT (375 Da) and (b) GGG SGA
GKT (692 Da). The peptides are constructs based on the amino acid configuration described by
Bianchi et al. [28]. The peptide amine (N–H) backbone groups form a ‘nest’ structure toward phosphate
anions and the Lysine side chain participates in the binding when phosphorous compounds are present.
Color code: green = C, blue = N, red = O, and white = H.

From a practical point of view, the two peptides are interesting since they potentially can be
used to capture and recover phosphate. The peptide sequence Ser-Gly-Ala-Gly-Lys-Thr (SGA GKT)
is a reconstructed P-loop in which proteins are able to bind phosphate groups of GTP and ATP.
This hexapeptide has previously been reported to bind to HPO2−

4 at high pH [28] and may therefore
be able to bind phosphorous compounds as a means to address the future issues with diminishing
phosphorous resources.

3.3. Forward Osmosis Operating System

An FO operating module was designed, built, and used to conduct the experiments, as shown
in Figure 2. The device consists of two compartments, a static upper unit containing the buffer
solution and a lower unit where the peptide sample was recirculated. The device can also be used
for FO experiments, with one of the units containing a draw solution with osmotic potential for
up-concentration or dilution of samples. In this study, the device was used to conduct diffusion
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experiments without the effect of the osmotic gradient, therefore the draw solution was replaced with
a buffer solution. Thus, there was only a peptide concentration gradient over the membrane barrier.Membranes 2016, 6, 46 5 of 12 
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Figure 2. Forward osmosis operating module with static top compartment. (a) Showing the drawings
of the lower unit where the peptide sample was recirculated and (b) showing the assembled module.
The two units are separated by a flat sheet membrane tightened with an o-ring and fastened together
mechanically through screws.

3.4. Rejection Model Assay

The FO module was used to determine the diffusion of the peptide molecules through the
membrane matrix. A vial of each peptide (10 mg) was solubilized in TES buffer (2-[2-Hydroxy-1,1-
bis(hydroxymethyl)ethyl)amino]ethanesulfonic acid) consisting of 10 mM TES, 1 mM EDTA and the
pH was adjusted to 8 with 1 M NaOH to generate stock solutions of 100 mg/L. From this, peptide
solutions of 1 mg/L, 5 mg/L, and 10 mg/L were prepared. 0.5 mL of TES buffer (without peptide) was
placed in the reservoir compartment and 100 mL of the buffered peptide solution was re-circulated
in the bottom compartment. The system was saturated for five hours or overnight to avoid any start
up effects such as the loss of peptide to the chamber walls and the membrane. Before starting the
diffusion experiment, the reservoir compartment containing the pure TES buffer was emptied and
washed with TES buffer. The experiment was initiated by placing a fresh 0.5 mL aliquot of TES buffer
in the reservoir compartment and was then set to run for five hours. At the end of the experiment, the
TES buffer solution was removed from the reservoir compartment, weighed, and analyzed with HPLC
to quantify potential diffusing peptides. The previously described steps were followed for each of the
chosen concentrations for both the peptides.

3.5. Analytical Methods

The peptides were analyzed with HPLC/UV (1200 Infinity, Agilent Technology, Santa Clara, CA,
USA), equipped with a ZORBAX Eclipse XDB-C18 5 µm column (Agilent Technology, Santa Clara, CA,
USA). For GGG SGA GKT, an eluent mixture of acetonitrile and MilliQ (Merck Millipore, Darmstadt,
Germany) in the ratio 10/90 was used. The injection volume was 50 µL and the flow rate 1 mL/min.
For AGKT, the peptides were eluted with a 67 mM phosphate buffer at pH 7.4. The injection volume
was 50 µL and the flow rate 0.5 mL/min. The chosen absorption wavelength was 205 nm for
both peptides.

3.6. Computational Methods

The chosen peptides have a flexible structure making it difficult to determine their geometrical
size from a single conformational minima. Thus, the radius of gyration is used as a statistical measure
of the geometrical size of the peptides. Molecular Dynamics (MD) was used to determine the radius of
gyration of the peptides based on hierarchical clusters from the generated trajectory. Simulations were
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performed with the molecular modeling packages Amber14 and AmberTools14 [29]. Fully extended
peptides were created with LEaP in AmberTools14 using the ff14SB force field parameters [30] and
were explicitly solvated using the TIP3P model for water [31] in rectangular boxes with 10.0 Å to
each edge from the peptides. The systems were minimized for 10,000 steps: 5000 steps using the
steepest decent algorithm and 5000 steps using a conjugated gradient algorithm. The systems were
then heated to 300 K over 0.8 ns with a weak constraint of 1 kcal/mol on the peptide (NVT ensemble),
and subsequently equilibrated for 0.2 ns without any restraints at 300 K (NPT ensemble). Production
simulations were run for 800 ns using the Langevin thermostat with a collision frequency of 1 ps−1,
and the pressure was set to 1 bar using the Berendsen barostat. Non-bonded interactions were cut off
at 10.0 Å, full electrostatics for the periodic system were calculated using the Particle Mesh Ewald
approach [32], and hydrogen bonds were restrained using SHAKE [33].

The mass weighted radius of gyration, Rg [Å] from a molecular configuration can be calculated as
shown in Equation (7).

R2
g =

1
M ∑

i
mi(Ri − RCM)2 (7)

where M is the total molecular mass [Da], mi [Da] is the mass of the ith atom with position vector Ri
[Å]. RCM [Å] is the center of mass and calculated as shown in Equation (8).

RCM =
1
M ∑

i
miRi (8)

To compare the influence of a rigid secondary structure on permeability, the radius of gyration
was determined for three pesticides from a previous study [23]. The radius of gyration for both the
pesticides and peptides is calculated on all heavy atoms by the use of CPPTRAJ [34].

Table 1 provides an overview of the comparison between the peptides and the smaller pesticides.
Here, the permeabilites have been used to calculate a rejection value using Equation (9), owing to the
fact that rejection values are more commonly used in membrane studies to indicate the retention of a
given compound by the membrane.

R =

(
1 − P

t × Jw

)
× 100% (9)

where t is the membrane thickness (m) and Jw the water flux (m3·m−2·s−1). The equation assumes
that feed and retentate concentration are equal, appropriate for low recovery values typically used
to determine rejection values and that the concentration difference across the membrane can be
approximated to be equal to the feed concentration, which is a good approximation for high rejection
values (R > 95%).

Table 1. Overview and comparison of membrane transport parameters. The table shows characterization
parameters for each peptide and a comparison to three pesticides in a previous study with the same
membrane [23]. The rejection values are calculated on measured permeabilities and a water flux of
9.71 L·m−2·h−1 reported in the previous study. The membrane thickness was measured to be 112 µm
and the active area for the setup was 0.785 cm2. The flux is based on a feed concentration of 1 mg·L−1.

Compound Permeability
(m2·s−1)

Molecular Weight
(g·mol−1)

Radius of Gyration
(Å)

Flux
(µg·m−2·h−1)

Rejection
(%)

Peptide

AGKT 0.38 × 10−12 ± 1.14 × 10−12 375 4.4 ± 0.1 12 ± 37 99.9 ± 0.4
GGG SGA GKT 1.39 × 10−12 ± 0.9 × 10−12 692 5.9 ± 0.4 45 ± 29 99.5 ± 0.3

Pesticide

DEIA 5.36 × 10−12 146 1.24 172 98.2
BAM 3.9 × 10−12 190 1.30 125 98.7

Atrazine 4.31 × 10−12 216 1.73 139 98.6
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3.7. Data Analysis

To determine the rejection mechanisms, the permeate concentrations from the HPLC measurements
were used to determine the molar flux of the peptides. The concentration of the peptide was multiplied
with the volume in the draw chamber (0.5 mL) and divided with the membrane area (0.785 cm2)
to generate the peptide flux in mol·s−1·m−2. The molar flux was then plotted as a function of the
concentration difference across the membrane. A linear plot shows a diffusion driven process where
the slope is the permeability coefficient, P, from Equation (6).

4. Results and Discussion

4.1. Peptide Transport Mechanism

The peptides were found to be able to pass the membrane, although in small amounts. Roughly
less than 1% of the peptides were observed to pass the membrane barrier. From the plots in Figure 3
it can be seen that the molar flux of the peptides is linearly correlated to the concentration gradient
across the membrane. This strongly indicates that the transport mechanism is based on diffusion as
described by the solution-diffusion model.
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Figure 3. Molar flux of peptides across the membrane. The graph shows the molar peptide flux over
the membrane as a function of the concentration gradient across the membrane. Each concentration
point is a mean value of triplicate experiments at that concentration. The slope of the graph gives the
membrane permeability for each peptide. The linear regression coefficients are 0.99792 (375 Da) and
0.99817 (692 Da).

Interestingly, the larger peptide was found to have a higher permeability. Based on steric
considerations, the larger peptide would be expected to show a lower permeability, since its larger size
would make it more difficult to diffuse through the membrane matrix. Furthermore, similar constructs
of the peptides have previously been described to exhibit flexible structures, where the peptides can
assume several different conformations. To further investigate whether the permeability is affected by
the flexibility of the peptides, MD simulations were performed.

4.2. MD Analysis of Peptide Structure

Molecular dynamic simulations were run to determine the radius of gyration of each peptide
respectively. Hierarchical clusters of the peptides are shown in Figure 4.
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From Figure 4, it can be seen that the peptides are shown to exhibit a disordered nature,
assuming several different conformations, with the lysine residue in indeterminate orientations.
This is in accordance with a previous study where similar constructs (SGA GKT) of the peptides were
investigated by MD [35]. Here the peptide of inspiration (SGA GKT) was studied as peptide-only and
peptide-phosphate systems. The peptide conformational ensemble was stabilized by the presence of a
phosphate anion, however the isolated peptide was likely to spend most of the time in a disordered
state [35]. Thus, it is expected that the peptide will exhibit a flexible structure when in contact with the
membrane matrix.
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Figure 4. Hierarchical clusters of peptide simulations in water. (a) AGKT and (b) GGG SGA
GKT. The backbone is shown in green and the lysine side chain is marked in stick representation.
The illustrations show an ensemble of the same peptides in the many different structural conformations
they can exhibit.

From the molecular dynamic simulations, the radii of gyrations are obtained. These are shown
in Table 1. The GGG SGA GKT peptide has a radius of gyration 34% larger than the AGKT peptide.
The main difference between the two peptides is the additional GGGS amino acids on the larger
peptide, which primarily makes this peptide longer and not wider, since these amino acids have short
side chains. The longer chain provides the GGG SGA GKT peptide with a larger number of degrees of
freedom for conformational operation and for these two peptides the higher radius of gyration of the
larger peptide is as such also correlated to a greater flexibility and ability to bend, which have been
found to play a role in the transport of larger molecules through membranes [36,37].

4.3. Effect of Size, Flexibility, and Polarity in Membrane Transport

Size is still an important descriptor for permeability as shown in Figure 5a. Here the permeabilities
of the two peptides are compared to those determined previously for the smaller pesticides (DEIA,
BAM, and Atrazine) and this plot clearly indicates that there is a general tendency for larger molecules
to show lower permeabilities. The permeability of the pesticides is 5 to 10 times higher than for the
peptides. In Figure 5a, molecular weight is used to represent the size of the molecules, but molecular
weight might not be the best descriptor of size since it fails to take the complexity of the peptide
backbone chains into account. Compared to smaller molecules, it is not easy to fit large molecules
with a simple geometric shape such as a rectangle or a cylinder. To better accommodate the geometric
structure of the peptides, permeabilities have been plotted as a function of radius of gyration in
Figure 5b and it can be seen that this offers a better description. As argued before, for these peptides,
the radius of gyration is correlated to the degree of freedom and this may be important for large
molecules to pass the membrane barrier. The hypothesis is based on the increase in entropy with an
increasing number of conformations, which in practice means that the larger peptide can twist and
bend its way through the membrane layers and ultimately be traced on the draw side.
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Another factor influencing the permeability of the peptide through the membrane is their polarity
and charge. Polarity can influence the sorption of the peptides to the membrane surface, which would
be the first step in a solution-diffusion based transport mechanism, and the orientation of the molecule
towards the membrane surface [38]. Charge may also influence peptide orientation towards the
membrane surface and may lead to either attraction or repulsion depending on the relative charge
between peptide and membrane. Bianchi et al. investigated the charge of the SGA GKT peptide as
a function of pH and, based on these results, half the population of AGKT peptides are expected to
carry a positive charge in these experiments. The same is estimated for the GGG SGA GKT peptide.
The additional amino acids in the peptide structure carry no charge-bearing side groups and the
N-terminal of alanine and glycine have very similar pKa values (9.69 and 9.60) [39]. The charge of
the membrane has not been determined in this study. However, the membrane is a TFC membrane
and these membranes typically have a negative surface charge. Based on this and a previous study
where the AQP membrane was found to interact with cationic flocculants, the AQP membrane is most
likely negatively charged. The opposite charge of the membrane surface and the peptides will allow
for attraction. The peptides can as such become ionically bound to the negatively charged carboxylic
acid surface groups and the diffusion through the membrane matrix could then occur with the peptide
jumping from one negatively charged surface group to the next. This might also be used to explain why
the larger peptide has the highest permeability. Compared to the smaller peptide, it has an additional
chain of four amino acids (GGG S), and this may make it more difficult for the positively charged side
group of the larger peptide to get into contact with the negative surface groups. It would interact less
with the membrane surface and its diffusion through the membrane matrix would be relatively free.
In comparison, the AGKT peptide would be slowed down by the negative surface groups and thus
experience a lower permeability.

In Table 1, the 95% confidence interval for the peptide permeability coefficients are also given.
Compared to the permeability coefficients, they are relatively large, and this reflects the heterogeneity
of the membrane surface. The permeability coefficients were determined for several incremental pieces
of the same membrane sheet, and were found to vary significantly between pieces. The confidence
intervals can thus be understood as a measure of the heterogeneousness of the membrane surface.

The finding, that a molecule like the 692 Da peptide is capable of penetrating a selective layer
that has been found to show almost complete rejection of molecules that are 4.5 times smaller (DEIA,
146 Da) is highly interesting. It shows that for even dense and highly rejecting membranes, permeation
of significantly larger molecules is still possible. This phenomenon in FO filtration might lead to a slow
accumulation of the molecules in the draw solution, especially if the draw solution is recovered with
membrane distillation and the molecules have a low volatility, which is the standard for biomolecules.
The membrane penetration of the compounds might also ultimately alter the membrane performance.
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This is especially true for compounds that have a higher affinity for the membrane material and as
such move into the structure and accumulate, which may ultimately change membrane characteristics.
Also, within the FO community there is a constant search for the holy grail of draw solutes. If potential
candidates are toxic even in very low concentrations, it is crucial to know that they might cross the
membrane barrier to the feed side even when the size of the draw solute is relatively large.

Finally, biomimetic membranes are based on the concept that biologically active molecules
are incorporated in the selective layer of the membrane. This study shows that biomolecules not
too dissimilar to proteins are capable of diffusing through the membrane matrix. The question is
then at which size does it become completely impossible for these molecules to diffuse through the
membrane. Biomimetic membranes and in general mixed matrix composite membranes are based on
the incorporation of particles in the selective layer. The results of this study indicate that ultimately
the structure of a mixed matrix membrane might not be static, leading to a leakage of membrane
components to the surrounding medium. One way to overcome this could be to covalently bind the
proteins in biomimetic structures to their surrounding environment in the selective layer.

5. Conclusions

In this study, the transport of two peptides of molecular sizes 375 Da and 692 Da with
flexible structures across a biomimetic forward osmosis membrane with a dense selective layer was
investigated. The membrane exhibited high but incomplete rejection rates where 1% of the peptides
were still able to cross the membrane barrier in spite of their relatively large size. The peptide with the
smallest molecular mass was found to have the lowest permeability, which might be explained by the
radius of gyration. A higher radius of gyration enables the peptide to assume several conformations
when in contact with the membrane matrix, which ultimately could increase the probability of the
peptide being transported through the membrane. The transport mechanism was found to be diffusion
based. The overall finding of this study was that even relatively large molecules can cross an otherwise
dense membrane layer. This is significant primarily for choosing the optimal operating conditions
and run time of the system in downstream processing and needs to be considered for each and
every forward osmosis application. Ultimately, it has a significance in the robustness of the membrane
fabrication process where the incorporation of biomolecules in the selective layer is one of the key steps.
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