Supporting Information

Preparation of Porous Stainless Steel Hollow-Fibers through Multi-Modal Particle Size Sintering towards Pore Engineering

Francois-Marie Allioux, Oana David, Miren Etxeberria Benavides, Lingxue Kong, David Alfredo Pacheco Tanaka, Ludovic F. Dumée

1. Tables and Figures

Sample	Dope Flow Rate (mL·h ⁻¹)	Air Gap (cm)	Bore Flow Rate (mL·h ⁻¹)	Bore Composition
SS10 HF	300	3	100	Water
SS10/20 HF	300	1.5	150	Water
SS10/44 HF	300	1.5	100	Water

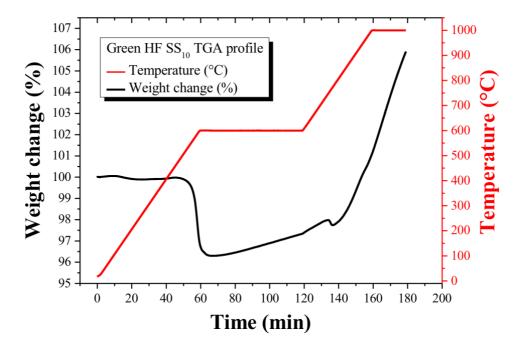

Table S1. Spinning conditions.

Table S2.	Size	distribution	of	stainless	steel	particles.	

Metal Particles	Equivalent Spherical Diameter in DI Water (μm)			Equivalent Spherical Diameter in IP (µm)		
Particles	d0.1	d0.5	d0.9	d0.1	d0.5	d0.9
SS10	3.1 ± 0.1	5.4 ± 0.1	8.6 ± 0.2	3.3 ± 0.1	6.1 ± 0.1	9.5 ± 0.2
SS20	2.5 ± 0.1	9.3 ± 0.1	20.2 ± 0.4	2.8 ± 0.1	10.8 ± 0.1	25.3 ± 0.2
SS44	17.3 ± 0.5	37.3 ± 1	71.9 ± 1.1	18.3 ± 0.1	39.3 ± 0.2	78.3 ± 0.4

Table S3. Metal powder properties: surface area, total BET surface area, average absolute density and relative density determined versus average bulk density of 316L grade stainless steel (8 $g \cdot cm^{-3}$).

Metal Powder	Surface Area (m ² ·g ⁻¹)	Total BET Surface Area (m ²)
SS10	0.034	0.087
SS20	0.036	0.096
SS44	0.052	0.139
	Average Absolute Density (a.cm-3)	Relative Density
	Average Absolute Density (g·cm ⁻³)	(%)
SS10	4.84	39.46
SS20	3.17	60.41
SS44	4.69	41.42
SS10/20	2.45	69.38
SS10/44	2.72	66.15

Figure S1. Thermal treatment and TGA profile of the green SS_{10} HF in air atmosphere with a heating rate of 10 °C·min⁻¹.

• <u>Green SS₁₀HFs</u>

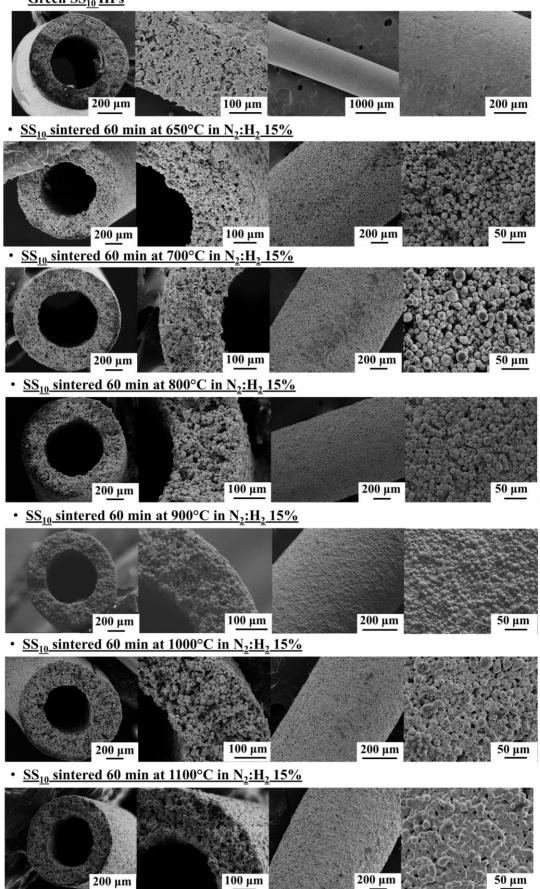


Figure 2. Cont.

• <u>SS₁₀ sintered 90 min at 650°C in N₂:H₂ 15%</u> 200 µm 100 µm 200 µm 50 µm • <u>SS₁₀ sintered 90 min at 700°C in N₂:H₂ 15%</u> 200 µm 100 µm 200 µm 50 µm • <u>SS₁₀ sintered 90 min at 800°C in N₂:H₂ 15%</u> 200 µm 200 µm 100 µm 50 µm • <u>SS₁₀ sintered 90 min at 900°C in N₂:H₂ 15%</u> 200 µm 100 µm 200 µm 50 µm • <u>SS₁₀ sintered 90 min at 1000°C in N₂:H₂ 15%</u> 200 µm 200 µm 100 µm 50 µm • <u>SS₁₀ sintered 90 min at 1100°C in N₂:H₂ 15%</u> 200 µm 100 µm 200 µm 50 µm

Figure S2. SEM images of the green and sintered SS₁₀ HFs at temperature ranging from 650 to 1100 °C for 60 or 90 min.

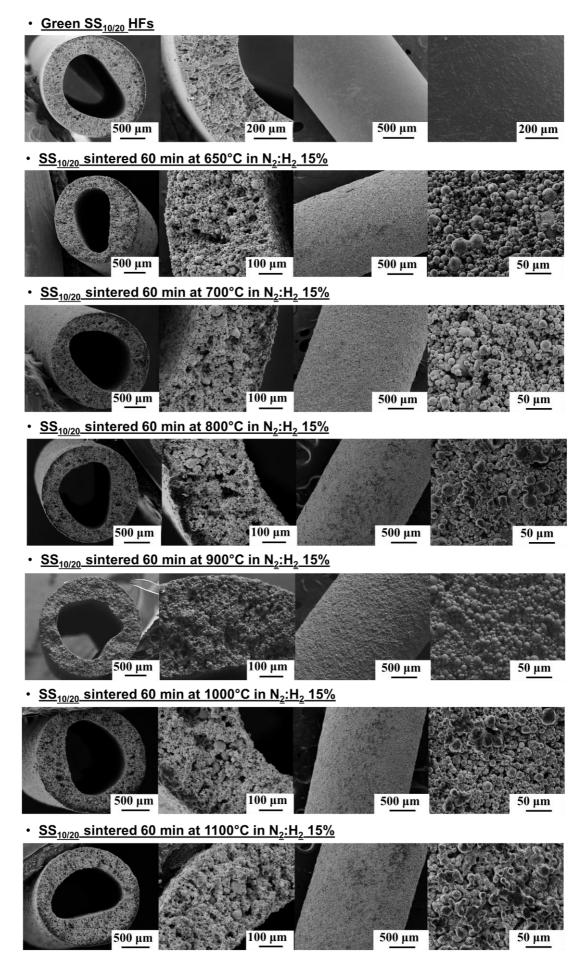
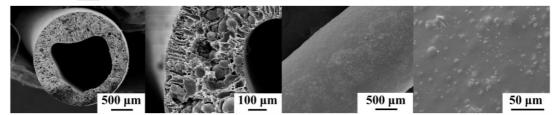


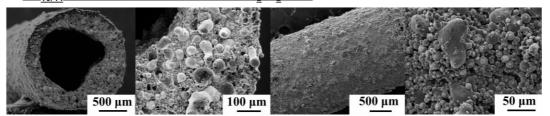
Figure 3. Cont.

<u>SS_{10/20} sintered 90 min at 650°C in N₂:H₂ 15%</u>

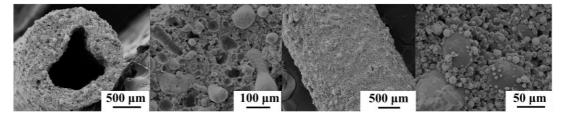
Figure S3. SEM images of the green and sintered SS_{10/20} HFs at temperature ranging from 650 to 1100 °C for 60 or 90 min.

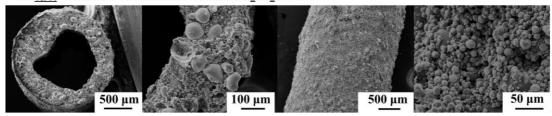

100 µm

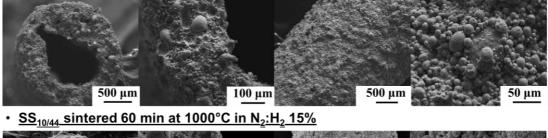
500 µm

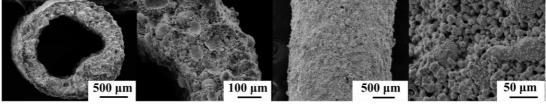

50 µm

500 µm


• Green SS_{10/44} HFs


• <u>SS_{10/44} sintered 60 min at 650°C in N₂:H₂ 15%</u>


<u>SS_{10/44} sintered 60 min at 700°C in N₂:H₂ 15%</u>



<u>SS_{10/44} sintered 60 min at 800°C in N₂:H₂ 15%</u>

<u>SS_{10/44} sintered 60 min at 900°C in N₂:H₂ 15%</u>

<u>SS_{10/44} sintered 60 min at 1100°C in N₂:H₂ 15%</u>

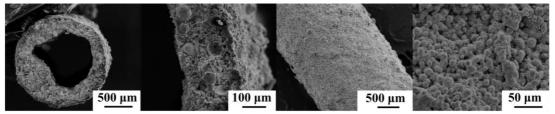
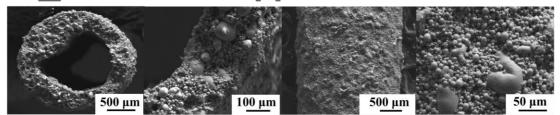
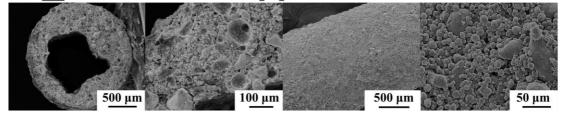
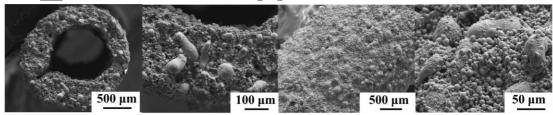
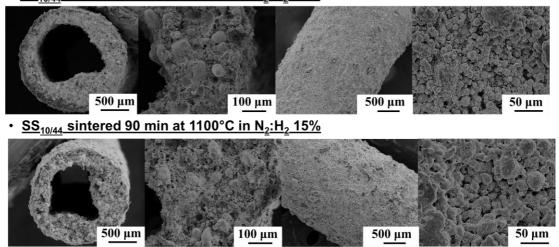



Figure 4. Cont.


<u>SS_{10/44} sintered 90 min at 650°C in N₂:H₂ 15%</u>


<u>SS_{10/44} sintered 90 min at 700°C in N₂:H₂ 15%</u>

A	
500 μm 100 μm	<u>500 μm</u>


<u>SS_{10/44} sintered 90 min at 800°C in N₂:H₂ 15%</u>

<u>SS_{10/44} sintered 90 min at 900°C in N₂:H₂ 15%</u>

<u>SS_{10/44} sintered 90 min at 1000°C in N₂:H₂ 15%</u>

Figure S4. SEM images of the green and sintered SS_{10/44} HFs at temperature ranging from 650 to 1100 °C for 60 or 90 min.

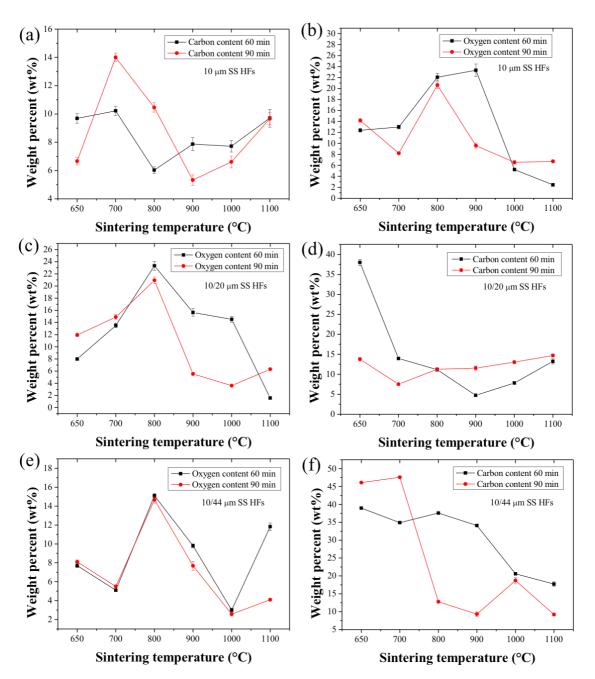
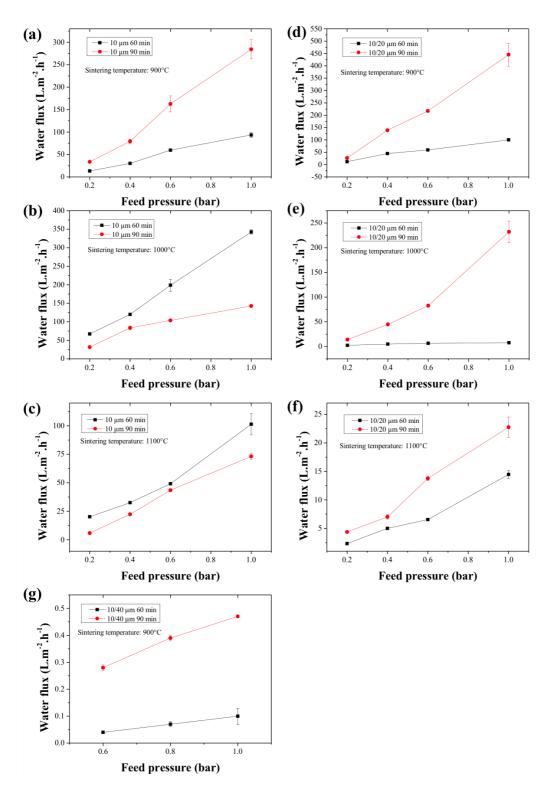



Figure S5. Carbon and oxygen elemental analysis of the SS₁₀ HFs (a,d), SS_{10/20} HFs (b,e) and SS_{10/44} HFs (c,f).

Figure S6. Pure water fluxes as a function of the feed pressure: (a), (b) and (c): SS_{10} HFs; (d), (e) and (f): $SS_{10/20}$ HFs; g: $SS_{10/44}$ HFs.