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S1 – Development and main assumptions in the model  

The two-fluid formalism is based on the application of the momentum and the mass balances on the 

dispersed phase and on the fluid phase (Jackson, 1997). This formalism allows to account for the different 

transport phenomena (and then forces) acting on the “particles” (that can be solute or colloids) and on the 

fluid. In a recent paper (Bacchin, 2017), the presence of a membrane has been accounted for in this model 

through the solving of these equations on an energy landscape. The parameter describing the energy 

landscape is the interfacial pressure, 𝛱𝑖 (𝑥, 𝑦, 𝑧) representing the colloid/membrane interactions. If 

neglecting the gravity forces and if considering isotropic pressures, the momentum and the mass balances 

for the dispersed phase (dispersed colloids or solubilized molecules), the fluid phase (water molecules) and 

by addition for the mixture are: 

 
Momentum balance 

On the dispersed phase 

                    +  𝑛𝑭𝑑𝑟𝑎𝑔                                       − 𝛻𝛱𝑐𝑐 𝑡ℎ − 𝛻𝛱𝑐𝑐 𝑚𝑐  −  𝜙𝛻𝛱𝑖      =  0 (S1-1) 

On the fluid 

 −
𝜂𝑚𝒖𝒎

𝑘𝑝
  −   𝑛𝑭𝑑𝑟𝑎𝑔 −  𝛻𝑝   + 𝜂𝑚𝛻2𝒖𝑚    + 𝛻𝛱𝑐𝑐 𝑡ℎ                                             =  0 (S1-2) 

On the mixture 

   −
𝜂𝑚𝒖𝒎

𝑘𝑝
                          − 𝛻𝑝   + 𝜂𝑚𝛻2𝒖𝑚                           − 𝛻𝛱𝑐𝑐 𝑚𝑐  −  𝜙𝛻𝛱𝑖   =  0 (S1-3) 

Mass balance 

On the dispersed phase 

        
𝜕𝜙

𝜕𝑡
      =         − 𝛻 ∙ (𝜙𝒖𝒄) (S1-4) 

 

On the fluid 

      𝜕(1−𝜙)

𝜕𝑡
  =    − 𝛻 ∙ ((1 − 𝜙)𝒖𝒇) (S1-5) 

On the mixture 

         0        =              𝛻 ∙ 𝒖𝒎 (S1-6) 
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The different contributions in these equations can be dissipative or elastic in nature (Bacchin, 2017) : 

The dissipative contributions are : 

• the drag force, 𝑭𝑑𝑟𝑎𝑔 =
𝒖𝒎−𝒖𝒄

𝑚(𝜙)
, represents the forces due to the friction induced by the relative 

velocity between the phases (colloid/fluid friction) 

• the viscous dissipation, −𝜂𝑚𝛻2𝒖𝑚, due to the viscosity mixture in the Eqs. 2 and 3 (fluid/fluid 

friction induced by the shear) 

• the viscous dissipation in the fluid due to the interface that can be link to a porous media 

permeability, −
𝜂𝑚

𝑘𝑝
𝒖𝑚 in the Eqs. 2 and 3 (fluid/membrane friction) 

The elastic storage (non dissipative contributions) are : 

• the thermodynamic (reversible) colloid pressure gradient , 𝛻𝛱𝑐𝑐 𝑡ℎ , that corresponds to the water 

activity difference (colloid/colloid interaction) 

• the mechanical (non-reversible) colloid pressure, 𝛻𝛱𝑐𝑐 𝑚𝑐  , due the shear and the associated shear 

induced diffusion (colloid/shear interaction) or due the compressibility of an arrested deposit if any 

(aggregated colloid/fluid interaction) 

• the interfacial pressure, 𝜙𝛻𝛱𝑖  , in the Eq. 1 and 3 (colloid/membrane interaction) 

• the pressure drop, −𝛻𝑝, representing the energy dissipated in the system (fluid/fluid interaction) 

 

If considering a process where only the reversible part of the osmotic pressure is present, 𝛻𝛱𝑐𝑐 𝑚𝑐 = 0, (i.e. 

no effect of shear induced diffusion and no consolidated deposit on the membrane), the momentum balance 

can be written :  

 
𝜙

𝑉𝑝

𝒖𝑚−𝒖𝑐

𝑚(𝜙)
 −   𝛻𝛱𝑐𝑐  −  𝜙𝛻𝛱𝑖  =  0 (S1-7) 

    
𝜂𝑚

𝑘𝑝
𝒖𝒎     +    𝛻𝑝    +  𝜙𝛻𝛱𝑖   =  0 (S1-8) 

The first equation means that the velocity of the colloids (or more exactly the force needed to have a colloid 

velocity larger than the mixture velocity) is induced by the gradient of osmotic pressure and is modified by 

colloid/membrane interactions. The second equation indicates that the mixture velocity is induced by the 

gradient of fluid pressure and is modified by colloid/membrane interactions.   



S2 – Energy map model and Boltzmann exclusion 

 

In the absence of advection, uc=um=0, the equation 6 can be simplified:  

𝑑𝛱𝑐(𝜙)

𝑑𝑥
− 𝜙

𝑑𝛱𝑖(𝑥)

𝑑𝑥
= 0 (S2-1) 

If considering the ideal case, where the osmotic pressure for colloids follows the Van’t Hoff law, 𝛱𝑐 =

𝑘𝑇
𝜙

𝑉𝑝
, the differential equation can be written : 

𝑑𝜙

𝜙
=

𝑉𝑝

𝑘𝑇
𝑑𝛱𝑖(𝑥) (S2-2) 

When this expression is integrated through the exclusion barrier where the interfacial pressure is varying 

from 0 to 𝛱𝑖𝑐 𝑚𝑎𝑥 , the partition coefficient representing the volume fraction on the exclusion boundary in 

the membrane side over the volume fraction on the exclusion boundary in the bulk side can be written : 

𝐾 = 𝑒−
𝑉𝑝𝛱𝑖𝑐 𝑚𝑎𝑥 

𝑘𝑇 = 𝑒−𝐸𝑥 (S2-3) 

The exclusion number, Ex, is then directly linked to the partition coefficient, K, through the Boltzmann 

exclusion induced by the energy map.  



 

S3 – Integration along the membrane composite layers 

The concentration profiles can be determined through the integration of the eq. 2. When considering the 

continuity of the mass flux through the dimension perpendicular to the membrane, x, a constant mass flux 

has to be considered. This mass flux is also the one coming out through the membrane: 

 𝑢𝑐𝜙 = 𝑢𝑚𝜙𝑝 (S3-1) 

The equation 2 can then be written: 

𝑢𝑚𝜙𝑝 = 𝒖𝑚𝜙 − 𝑉𝑝𝑚(𝜙) (
𝑑𝛱𝑐(𝜙)

𝑑𝑥
− 𝜙

𝑑𝛱𝑖(𝑥)

𝑑𝑥
) (S3-2) 

The gradient in osmotic pressure is related to a diffusive mass flux if defining the diffusion coefficient 

with the Stokes-Einstein generalized law: 

𝐷 = 𝑚(𝜙)𝑘𝑇
𝑑𝛱𝑐

𝑑𝜙
 (S3-3) 

If considering that the ideal case where the osmotic pressure follows the Van’t Hoff law, 𝛱𝑐 = 𝑘𝑇
𝜙

𝑉𝑝
 and 

leads to a constant diffusion coefficient, the equation S3-2 can be written as a classical convection-

advection balance with an additional mass flux due to the interaction with the membrane.  

𝑢𝑚𝜙𝑝 = 𝒖𝑚𝜙 − 𝐷
𝑑𝜙

𝑑𝑥
+ 𝑉𝑝𝑚(𝜙)

𝑑𝛱𝑖(𝑥)

𝑑𝑥
𝜙 (S3-4) 

The mass flux due to the interaction with the membrane (already introduced in model accounting for 

membrane-colloid interaction, (Bacchin et al., 2011, 1995)) can be written as an advective flow with a 

velocity, 𝑢𝑖𝑐, due to the interface/colloid interaction :  

𝑢𝑖𝑐 = 𝑉𝑝𝑚(𝜙)
𝑑𝛱𝑖(𝑥)

𝑑𝑥
 (S3-5) 

This last velocity is constant is considering the specific case where the interfacial pressure is varying linearly 

with x (Fig. 2). In these conditions, the equation 6 can be simplified to:  

(𝑢𝑚 − 𝑢𝑖𝑐)𝜙 − 𝐷
𝑑𝜙

𝑑𝑥
= 𝑢𝑚𝜙𝑝 (S3-6) 

This equation can be integrated through all the layers representing the membrane in order to determine the 

volume fraction profile (subscript are defined in Fig.1) :  

 

Polarisation layer 

The integration of the transport equation, 𝑢𝑚𝜙 − 𝐷
𝑑𝜙

𝑑𝑥
= 𝑢𝑚𝜙𝑝, can link the volume fractions at the 

extremities of the polarization layer to the Peclet number defined for the polarization layer, 𝑃𝑒𝑃𝐿 =
𝑢𝑚𝛿𝑃𝐿

𝐷
 : 

𝜙𝑚𝑖−𝜙𝑝

𝜙𝑏−𝜙𝑝
= 𝑒𝑃𝑒𝑃𝐿 (S3-7) 



This equation can also be rewritten to express the ratio of the volume fraction at the boundary to the 

transmission, 
𝜙𝑝

𝜙0
 

𝜙𝑚𝑖

𝜙𝑏
= 𝑇𝑟 + (1 − 𝑇𝑟)𝑒𝑃𝑒𝐶𝑃 (S3-8) 

 

Inlet Exclusion layer 

The integration of the transport equation, (𝑢𝑚 − 𝑢𝑖𝑐)𝜙 − 𝐷
𝑑𝜙

𝑑𝑥
= 𝑢𝑚𝜙𝑝, can link the volume fractions at 

the extremities of the inlet exclusion layer to the Peclet number defined for the exclusion layer, 𝑃𝑒𝐸𝑥𝑖 =
𝑢𝑚𝛿𝐸𝑥𝑖

𝐷
 : 

𝜙𝑚𝑖−
𝑃𝑒𝐸𝑋𝑖

𝑃𝑒𝐸𝑋𝑖−𝐸𝑥
𝜙𝑝

𝜙𝑒𝑖−
𝑃𝑒𝐸𝑋𝑖

𝑃𝑒𝐸𝑋𝑖−𝐸𝑥
𝜙𝑝

= 𝑒𝑃𝑒𝐸𝑋𝑖−𝐸𝑥 (S3-9) 

 

Membrane 

The integration of the transport equation, 𝑢𝑚𝜙 − 𝐷
𝑑𝜙

𝑑𝑥
= 𝑢𝑚𝜙𝑝, can link the volume fractions at the 

extremities of the membrane to the Peclet number defined for the membrane, 𝑃𝑒𝑀𝐵 =
𝑢𝑚𝛿𝑀𝐵

𝐷
 : 

𝜙𝑚𝑜−𝜙𝑝

𝜙𝑚𝑖−𝜙𝑝
= 𝑒𝑃𝑒𝑀𝐵 (S3-10) 

 

Outlet exclusion layer 

The integration of the transport equation, (𝑢𝑚 − 𝑢𝑖𝑐)𝜙 − 𝐷
𝑑𝜙

𝑑𝑥
= 𝑢𝑚𝜙𝑝, can link the volume fractions at 

the extremities of the outlet exclusion layer to the Peclet number defined for the exclusion layer, 𝑃𝑒𝐸𝑥0 =
𝑢𝑚𝛿𝐸𝑥0

𝐷
 : 

𝜙𝑒𝑜−
𝑃𝑒𝐸𝑋𝑜

𝑃𝑒𝐸𝑋𝑜+𝐸𝑥
𝜙𝑝

𝜙𝑚𝑜−
𝑃𝑒𝐸𝑋𝑜

𝑃𝑒𝐸𝑋𝑜+𝐸𝑥
𝜙𝑝

= 𝑒𝑃𝑒𝐸𝑋𝑜+𝐸𝑥 (S3-11) 

where 𝜙𝑒𝑜is equal to the volume fraction of the permeate 𝜙𝑝. 

 

  



S4 - Expression of the transmission 

The equations given in S3 can be combined in order to determine the solute transmission : 

𝜙𝑝

𝜙0
=

1

1+𝐸𝑥(
(𝑒−(𝑃𝑒𝐸𝑋𝑜+𝐸𝑥)−1)𝑒−𝑃𝑒𝑀𝐵−𝑃𝑒 𝑐𝑝−𝑃𝑒𝐸𝑋𝑖+𝐸𝑥

𝑃𝑒𝐸𝑋𝑜+𝐸𝑥
+

(1−𝑒−𝑃𝑒𝐸𝑋𝑖+𝐸𝑥)𝑒−𝑃𝑒𝐶𝑃

𝑃𝑒𝐸𝑋𝑖−𝐸𝑥
)

 (S4-1) 

In the case of Péclet exclusion tending to 0 (for an infinitively thin membrane defined with a partition 

coefficient), the equation can be simplified:  

𝜙𝑝

𝜙0
=

1

1+(𝑒−(𝐸𝑥)−1)𝑒−𝑃𝑒𝑀𝐵−𝑃𝑒 𝑐𝑝+𝐸𝑥−(1−𝑒+𝐸𝑥)𝑒−𝑃𝑒 𝑐𝑝 (S4-2) 

𝜙𝑝

𝜙0
=

1

1+
1−𝐾

𝐾

1−𝑒−𝑃𝑒𝑀𝐵

𝑒𝑃𝑒𝐶𝑃

 (S4-3) 

This last equation is the one given in (Bacchin et al., 1996; Opong and Zydney, 1991) for convective and 

diffusive transfer through membrane or for electrokinetic salt rejection (Jacazio et al., 1972). 

If the polarization effect are negligible, 𝑃𝑒𝐶𝑃 → 0 : 

𝜙𝑝

𝜙0
=

1

1+𝐸𝑥(
(𝑒−(𝑃𝑒 𝑒𝑥𝑜+𝐸𝑥)−1)𝑒−𝑃𝑒 𝑚−𝑃𝑒 𝑒𝑥𝑖+𝐸𝑥

𝑃𝑒 𝑒𝑥𝑜+𝐸𝑥
+

(1−𝑒−𝑃𝑒 𝑒𝑥𝑖+𝐸𝑥)

𝑃𝑒 𝑒𝑥𝑖−𝐸𝑥
)

 (S4-4) 

If the exclusion layers are infinitively thin 𝑃𝑒𝐸𝑥𝑖𝑎𝑛𝑑 𝑃𝑒𝐸𝑥𝑜 → 0 :  

𝜙𝑝

𝜙0
=

𝐾𝑒𝑃𝑒 𝑚

𝑒𝑃𝑒 𝑚−(1−𝐾)
 (S4-5) 

 
Fig. S1-1 : Variation of the transmission as a function of the Peclet number. The full line is the results of 

the full calculation with the following conditions 𝑃𝑒𝐸𝑋𝑜 = 𝑃𝑒𝐸𝑋𝑖 = 0.1𝑃𝑒𝑀𝐵 = 0.1𝑃𝑒𝐶𝑃 . The hyphen 

dashed line represent the calculation for the simplifying conditions of 𝑃𝑒𝐸𝑋𝑜, 𝑃𝑒𝐸𝑋𝑖 → 0.  The dotted 

dashed line is the calculation when considering 𝑃𝑒𝐶𝑃 → 0. For all calculations, the value of the partition 

coefficient is 𝑒−𝐸𝑥 = 𝐾 = 0.1. 

  



S5 – Relationships for the counter pressure 

From the model presented in the paper, the counter pressure can be expressed from different set of 

parameters. This section inventories the main relationships and gives the limits of these relationship for the 

conditions of thin exclusion layers.  

Eq. 5 allows to determine the permeability of the membrane. When integrated along the layers of the 

membrane (Fig. 1), the counter pressure is expressed through the integration of the interfacial pressure,  

∫ 𝜙𝑑𝛱𝑖𝑐. The gradient is only existing inside the exclusion layers. The integral can then be defined as 

∫ 𝜙𝑑𝛱𝑖𝑐𝐸𝑥𝑖+𝐸𝑥𝑜
. The integral can be linked to the osmotic pressure difference and the drag force acting on 

the exclusion layer:  

∫ 𝜙𝑑𝛱𝑖𝑐 =
𝐸𝑥𝑖

− ∫ 𝑑𝛱𝑐𝐸𝑥𝑖
+ ∫

𝜙

𝑉𝑝
𝐹𝑑𝑟𝑎𝑔𝑑𝑥

𝐸𝑥𝑖
 (S5-1) 

The filtration law can then be expressed as a function of the osmotic pressure difference and the drag forces 

inside the exclusion layers: 

𝑢𝑚     =
𝐿𝑝

𝜇
  (𝛥𝑝𝑓 − 𝛥𝛱𝐸𝑥𝑖 − 𝛥𝛱𝐸𝑥𝑜 − ∫

𝜙

𝑉𝑝
𝐹𝑑𝑟𝑎𝑔𝑑𝑥

𝐸𝑥𝑖+𝐸𝑥𝑜
)     

 (S5

-2)  

The drag force can be expressed as a function of the volume fraction inside the layers:  

∫
𝜙

𝑉𝑝

𝑢𝑚−𝑢𝑝

𝑚𝐸𝑋𝑖
𝑑𝑧 =

𝑢𝑚

𝑚0𝑉𝑝
∫ (𝜙 − 𝜙𝑝)𝑑𝑧

𝐸𝑋𝑖
 (S5-3) 

The out-of-equilibrium counter pressure is then be expressed as the product of the drag force on immobile 

particles 
𝑢𝑚

𝑚0
  and the excess number of arrested colloids in the membrane (𝜙 − 𝜙𝑝)/𝑉𝑝 .  

The concentration profile being determined (S3-9), this term can be defined for each layers according: 

(𝑢𝑚 − 𝑢𝑖𝑐)𝜙 − 𝐷
𝑑𝜙

𝑑𝑧
= 𝑢𝑚𝜙𝑝 (S5-4) 

(𝑢𝑚 − 𝑢𝑖𝑐)(𝜙 − 𝜙𝑝) − 𝑢𝑖𝑐𝜙𝑝 − 𝐷
𝑑𝜙

𝑑𝑧
= 0 (S5-5) 

(𝑢𝑚 − 𝑢𝑖𝑐) ∫ (𝜙 − 𝜙𝑝)𝑑𝑧
𝐸𝑋𝑖

= 𝐷 ∫ 𝑑𝜙
𝐸𝑋𝑖

+ 𝑢𝑖𝑐𝜙𝑝𝛿 (S5-6) 

∫ (𝜙 − 𝜙𝑝)𝑑𝑧
𝐸𝑥𝑖

=
𝐷 ∫ 𝑑𝜙𝐸𝑋𝑖 +𝑢𝑖𝑐𝜙𝑝𝛿

(𝑢𝑚−𝑢𝑖𝑐)
 (S5-7) 

∫ (𝜙 − 𝜙𝑝)𝑑𝑧̂
𝐸𝑥𝑖

=
1

𝑃𝑒𝐸𝑋𝑖−𝐸𝑥
(𝜙𝑚𝑖−𝜙𝑒𝑖 + 𝜙𝑝𝐸𝑥) (S5-8) 

The counter pressure can then be expressed as a function of the osmotic pressure at the boundary of the 

exclusion layers, 𝛱𝑒𝑖 , 𝛱𝑚𝑖 , 𝛱𝑒𝑜 , 𝛱𝑚𝑜: 

𝐶𝑃 = 𝛱𝑒𝑖 − 𝛱𝑒𝑜 + 𝛱𝑚𝑜−𝛱𝑚𝑖 +
𝑃𝑒𝐸𝑋𝑖

𝑃𝑒𝐸𝑋𝑖−𝐸𝑥
(𝛱𝑚𝑖−𝛱𝑒𝑖 + 𝛱𝑝𝐸𝑥) +

𝑃𝑒𝐸𝑋𝑜

𝑃𝑒𝐸𝑋𝑜+𝐸𝑥
(𝛱𝑒𝑜−𝛱𝑚𝑜 − 𝛱𝑝𝐸𝑥) (S5-9) 



𝐶𝑃 =
𝐸𝑥

𝐸𝑥−𝑃𝑒𝑒𝑥𝑖 
(𝛱𝑒𝑖−𝛱𝑚𝑖) +

𝐸𝑥

𝐸𝑥+𝑃𝑒𝑒𝑥𝑜
(𝛱𝑚𝑜 − 𝛱𝑒𝑜) + 𝛱𝑒𝑜

𝐸𝑥2(𝑃𝑒𝑒𝑥𝑖+𝑃𝑒𝑒𝑥𝑜)

(𝑃𝑒𝑒𝑥𝑖−𝐸𝑥)(𝑃𝑒𝑒𝑥𝑜+𝐸𝑥)
 (S5-10) 

 

The counter pressure can also be expressed as a function of the osmotic pressure at the extremities 

of the system membrane+ exclusion layers 𝛱𝑒𝑖 , 𝛱𝑚𝑖 , 𝛱𝑒𝑜 , 𝛱𝑚𝑜 by considering the expression for the 

osmotic pressure at the vicinities of the membrane from concentration profile (S3-9 and S3-11) :  

𝜙𝑚𝑖 = (𝜙𝑒𝑖 −
𝑃𝑒 𝑒𝑥𝑖

𝑃𝑒 𝑒𝑥𝑖−𝐸𝑥
𝜙𝑝) 𝑒𝑃𝑒 𝑒𝑥𝑖−𝐸𝑥 +

𝑃𝑒 𝑒𝑥𝑖

𝑃𝑒 𝑒𝑥𝑖−𝐸𝑥
𝜙𝑝) (S5-11) 

𝜙𝑚𝑜 = (𝜙𝑒𝑜 −
𝑃𝑒 𝑒𝑥𝑜

𝑃𝑒 𝑒𝑥𝑜+𝐸𝑥
𝜙𝑝)𝑒−𝑃𝑒 𝑒𝑥𝑜−𝐸𝑥 +

𝑃𝑒 𝑒𝑥𝑜

𝑃𝑒 𝑒𝑥𝑜+𝐸𝑥
𝜙𝑝 (S5-12) 

Then 

𝐶𝑃 =
𝐸𝑥

𝐸𝑥−𝑃𝑒𝐸𝑋𝑖 
𝛱𝑒𝑖(1 − 𝑒𝑃𝑒 𝐸𝑋𝑖−𝐸𝑥) +

𝐸𝑥

𝐸𝑥+𝑃𝑒𝑒𝑥𝑜
𝛱𝑒𝑜(𝑒𝑃𝑒 𝐸𝑋𝑖−𝐸𝑥 − 1) − 𝛱𝑒𝑜

𝐸𝑥

𝐸𝑥−𝑃𝑒𝐸𝑋𝑖 

𝑃𝑒 𝐸𝑋𝑖

𝑃𝑒 𝐸𝑋𝑖−𝐸𝑥
(1 −

𝑒𝑃𝑒 𝐸𝑋𝑖−𝐸𝑥) + 𝛱𝑒𝑜
𝐸𝑥

𝐸𝑥+𝑃𝑒𝐸𝑋𝑜

𝑃𝑒 𝐸𝑋𝑜

𝑃𝑒 𝐸𝑋𝑜+𝐸𝑥
(1 − 𝑒−𝑃𝑒 𝐸𝑋𝑜−𝐸𝑥) + 𝛱𝑒𝑜

𝐸𝑥2(𝑃𝑒𝐸𝑋𝑖+𝑃𝑒𝐸𝑋𝑜)

(𝑃𝑒𝐸𝑋𝑖−𝐸𝑥)(𝑃𝑒𝐸𝑋𝑜+𝐸𝑥)
 (S5-13) 

Or  

𝐶𝑃 = 𝛱𝑒𝑖(1 − 𝑒−𝐸𝑥) + 𝛱𝑒𝑜(𝑒−𝐸𝑥 − 1) +
𝛱𝑒𝑖(𝐸𝑥𝑒−𝐸𝑥(1−𝑒𝑃𝑒 𝐸𝑋𝑖)+𝑃𝑒 𝐸𝑋𝑖(1−𝑒−𝐸𝑥)

𝐸𝑥−𝑃𝑒𝐸𝑋𝑖 
−

𝛱𝑒𝑜
𝐸𝑥

𝐸𝑥−𝑃𝑒𝐸𝑋𝑖 

𝑃𝑒 𝐸𝑋𝑖

𝑃𝑒 𝐸𝑋𝑖−𝐸𝑥
(1 − 𝑒𝑃𝑒 𝐸𝑋𝑖−𝐸𝑥) + 𝛱𝑒𝑜

𝐸𝑥

𝐸𝑥+𝑃𝑒𝐸𝑋𝑜

𝑃𝑒 𝐸𝑋𝑜

𝑃𝑒 𝐸𝑋𝑜+𝐸𝑥
(1 − 𝑒−𝑃𝑒 𝐸𝑋𝑜−𝐸𝑥) +

𝛱𝑒𝑜
𝐸𝑥2(𝑃𝑒𝐸𝑋𝑖+𝑃𝑒𝐸𝑋𝑜)

(𝑃𝑒𝐸𝑋𝑖−𝐸𝑥)(𝑃𝑒𝐸𝑋𝑜+𝐸𝑥)
 (S5-14) 

Similarly, the osmotic pressures 𝛱𝑒𝑖 and  𝛱𝑒𝑜can be written as a function of the bulk osmotic 

pressure and the the permeate osmotic pressure by considering the concentration profile (S3-8 and 

S3-12) 

𝐶𝑃

𝛱𝑝𝐸𝑥2 = −
(𝑒−𝑃𝑒𝐸𝑋𝑖+𝐸𝑥−1)(𝑒−𝑃𝑒𝐸𝑋𝑜−𝐸𝑥−1)𝑒−𝑃𝑒𝑀𝐵

(𝑃𝑒𝐸𝑋𝑖−𝐸𝑥)(𝑃𝑒𝐸𝑋𝑜+𝐸𝑥)
+ (

1

𝑃𝑒𝐸𝑋𝑖−𝐸𝑥
)

2

(𝑒−𝑃𝑒𝐸𝑋𝑖+𝐸𝑥 − 1) + (
1

𝑃𝑒𝐸𝑋𝑜+𝐸𝑥
)

2

(𝑒−𝑃𝑒𝐸𝑋𝑜−𝐸𝑥 − 1) +

(𝑃𝑒𝐸𝑋𝑖+𝑃𝑒𝐸𝑋𝑜)

(𝑃𝑒𝐸𝑋𝑖−𝐸𝑥)(𝑃𝑒𝐸𝑋𝑜+𝐸𝑥)
 (S5-15) 

𝐶𝑃

𝛱𝑏𝐸𝑥2

=

𝑃𝑒𝐸𝑋𝑜 + 𝐸𝑥
𝑃𝑒𝐸𝑋𝑖 − 𝐸𝑥

(𝑒−𝑃𝑒𝐸𝑋𝑖+𝐸𝑥 − 1) +
𝑃𝑒𝐸𝑋𝑖 − 𝐸𝑥
𝑃𝑒𝐸𝑋𝑜 + 𝐸𝑥

(𝑒−𝑃𝑒𝐸𝑋𝑜−𝐸𝑥 − 1) + 𝑃𝑒𝐸𝑋𝑖 + 𝑃𝑒𝐸𝑋𝑜 − (𝑒−𝑃𝑒𝐸𝑋𝑖+𝐸𝑥 − 1)(𝑒−𝑃𝑒𝐸𝑋𝑜−𝐸𝑥 − 1)𝑒−𝑃𝑒𝑀𝐵

(𝑃𝑒𝐸𝑋𝑖 − 𝐸𝑥)(𝑃𝑒𝐸𝑋𝑜 + 𝐸𝑥) + 𝐸𝑥((𝑃𝑒𝐸𝑋𝑖 − 𝐸𝑥)(𝑒

−(𝑃𝑒

𝐸𝑋𝑜

+𝐸𝑥)

− 1)𝑒

−𝑃𝑒

𝑀𝐵

−𝑃𝑒 𝑐𝑝−𝑃𝑒

𝐸𝑋𝑖

+𝐸𝑥

+ (𝑃𝑒𝐸𝑋𝑜 + 𝐸𝑥)(1 − 𝑒

−𝑃𝑒

𝐸𝑋𝑖

+𝐸𝑥)𝑒

−𝑃𝑒

𝐶𝑃 )
 

(S5-16) 

 

This last equation (that can also be written in a slightly different way accounting for the 

transmission as given in Eq. 6) allows to link the counter pressure to the operating conditions that 

are the different Péclet numbers and the exclusion number.   

 

Counter pressure limit for an infinitively thin membrane  

If considering an infinitively thin exclusion layer, 𝑃𝑒𝐸𝑋 → 0, these equation are tending toward  : 



𝐶𝑃 = 𝛱𝑒𝑖(1 − 𝑒−𝐸𝑥) + 𝛱𝑒𝑜(𝑒−𝐸𝑥 − 1) (S5-17) 

𝐶𝑃 → (𝛱𝑒𝑖−𝛱𝑒𝑜)(1 − 𝐾) (S5-18) 

The counter pressure relationship can also be simplified when considering, 𝑃𝑒𝐸𝑋 → 0 

𝐶𝑃

𝛱𝑏𝐸𝑥2 =
−(𝑒𝐸𝑥−1)−(𝑒−𝐸𝑥−1)−(𝑒+𝐸𝑥−1)(𝑒−𝐸𝑥−1)𝑒−𝑃𝑒𝑀𝐵

−𝐸𝑥2+𝐸𝑥2𝑒−𝑃𝑒𝐶𝑃((1−𝑒𝐸𝑥)−(𝑒−(𝐸𝑥)−1)𝑒−𝑃𝑒𝑀𝐵+𝐸𝑥)
 (S5-19) 

𝐶𝑃 = −𝛱𝑏
(1/𝐾−1)+(𝐾−1)+(1/𝐾−1)(𝐾−1)𝑒−𝑃𝑒𝑀𝐵

(1−1/𝐾)(1−𝑒−𝑃𝑒𝑀𝐵)𝑒−𝑃𝑒𝐶𝑃−1
 (S5-20) 

 

𝐶𝑃 = 𝛱𝑏
(1−𝐾)𝑒𝑃𝑒𝐶𝑃

1+
𝐾𝑒𝑃𝑒𝐶𝑃

(1−𝐾)(1−𝑒−𝑃𝑒𝑀𝐵)

= 𝛱𝑏(1 − 𝐾)𝑒𝑃𝑒𝐶𝑃(1 − 𝑇𝑟) (S5-21) 

If considering an ideal case for the osmotic pressure, 𝑇𝑟 =
𝜙𝑝

𝜙𝑏
=

Π𝑝

Π𝑏
, the counter pressure can be 

expressed as a function of the transmembrane osmotic pressure : 

𝐶𝑃 = 𝛱𝑏(1 − 𝐾)(
𝛱𝑒𝑖

𝛱𝑏
−

𝛱𝑝

𝛱𝑏
) (S5-22) 

It can be noted that this last writing is equivalent to the relationship including a Staverman 

coefficient equal to (1-K). The model is then coherent with the model classically used. It allows to 

give a new explanation for the counter osmotic pressure and a new framework for the dynamic 

description of the osmosis flow.  

 



S6 – Possibilities of separation with pulsed flow through asymmetric membranes 

If the transmission through a membrane depends on the direction of the flow, the transmission may 

have different values for permeation fluxes (or Peclet numbers) having the same amplitude but 

different directions (positive or negative). The application of a pulsed flow through the membrane 

should make it possible to work with a series of filtration steps with a different transmission across 

the membrane as outlined in Figure S6-1. 

 

 

Fig. S6-1 : If the transmission is direction-dependent (top part of the figure), the application of 

pulsed flow with time (bottom part of the figure) should allow to have a difference in 

transmission for the filtration cycle realized in the different direction. 

 

With this mode of filtration, a gradual increase in concentration in the compartment from which 

the transmission is lower should be expected. After a series of pulses, separation should then occur 

between the compartments without net overall filtration of the fluid through the membrane. It is 

interesting to note here that a pulsed flow (or shaking) could lead to a separation; when shaking 

and separation can be considered a priori as an antagonist. 

Simple calculations taking into account a succession of stationary states can show how separation 

can occur. These calculations are based on the mass balances on the two compartments separated 

by the membrane. Fig. S6-2 shows the concentration in the left compartment and the right 

compartment during a flow pulsation. These calculations are performed for different conditions of 

asymmetry. When there is no asymmetry (left part in Fig. S6-2), the pulsed flow leads to the mixing 

and the concentration becomes identical. For weak asymmetry (determined from the experimental 

data presented in Fig. 7), the separation occurs after a series of square pulsed flows (median part 

of Fig. S6-2). This separation can be even faster in the case of a perfect diode with perfect 

transmission in one way and full retention in the opposite direction (right part in Figure S6-2). 



   

 

Fig. S6-2 : Concentration of the left compartment (in red) and the right compartment (blue) when 

filtrating with a square pulse flow through a membrane having a direction-dependent 

transmission. On the left, the transmission is symmetrical and equal to 0.4 for both directions; in 

the middle, transmission asymmetry is weak with a transmission of 0.4 from left to right and 0.1 

from right to left; on the right, transmission asymmetry is maximum (perfect diode) with a 

transmission of 1 from left to right and 0 from right to left. 
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