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Abstract: In the present work, ceramic-supported chitosan hybrid membranes were prepared for the
pervaporation dehydration of ethanol. Mullite and combined mullite-alumina (50% alumina content)
tubular low-cost ceramic supports were fabricated, and their influence on membrane performance
was compared to a commercial α-alumina support. The membrane preparation parameters were
different ceramic supports and the concentration of chitosan solution (varying from 2 wt.% to
4 wt.%). The supports and hybrid membranes were characterized by field emission scanning electron
microscopy (FE-SEM) and contact angle measurements. The results show, with increasing chitosan
concentration, the permeability decreases, and selectivity increases. It was also found that the
separation factor decreases with increasing feed temperature and feed water content, while the
permeation flux increases. The membrane that was coated on α-alumina support with a 3 wt.%
chitosan concentration exhibited the best pervaporation performance, leading to a permeation flux
and separation factor of 352 g·m−2·h−1 and 200 for 90 wt.% ethanol in feed at 60 ◦C, respectively.
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1. Introduction

Dehydration of alcohols, particularly ethanol, due to the formation of an azeotrope is one of the
applications of the pervaporation process. Pervaporation in comparison with azeotropic distillation or
extractive distillation consumes less energy and does not require a third component [1–5]. In recent
decades, dehydration of ethanol by polymeric, ceramic, and zeolite membranes has received increasing
attention [6]. Although ceramic membranes have more chemical, physical and thermal stability
compared to polymeric membranes, the high costs and difficulty of fabrication limit their application
in the industry [7]. Various hydrophilic polymers such as PVA, alginate, chitosan, and polyamides
have been used in pervaporation of ethanol [6,8–10]. Among these polymers, chitosan has attracted
much attention in this field because of its relatively low price, appropriate film-forming, non-toxicity,
facile structure modification and high hydrophilicity [11–13].

There are some restrictions on the use of polymeric membranes such as low mechanical and
thermal stability, loss of surface integrity and poor processability. In addition, one of the other
difficulties in polymeric membranes is the stretching of polymer chains and the formation of voids
in aqueous solutions, known as swelling. To overcome these problems for chitosan membranes,
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blending with other polymers, for example PVA [14–16], alginate [17,18], hydroxyethylcellulose [19,20],
Nylon 66 [21], etc.; cross-linking with phosphoric acid [22], glutaraldehyde [13], APTEOS [23],
GPTMS [24], etc.; or incorporating inorganic particles for instance zeolites [12,25], carbon
nanotubes [26], SiO2 [27], TiO2 [28], etc., have been proposed by researchers. Using a porous ceramic
substrate as support for selective polymers can be effective for achieving defect-free surface and high
mechanical and thermal resistance. In these organic-inorganic membranes, the polymer-coated dense
layer is responsible for separation and the porous ceramic support provides mechanical, thermal, and
chemical stability and improves the permeability and processability [29–31].

Despite the fact that numerous ceramic supports such as α-alumina [32], zirconia [31],
γ-alumina [30], Silica [33], kaolin [34], etc. have strongly influenced the performance of polymeric
membranes, their high cost makes them less attractive for industrial applications. Research must
continue in this field to make membranes more competitive. A number of various inexpensive raw
materials, such as natural clay, apatite powder, dolomite, kaolin, bauxite, and mineral coal fly ash have
been used for production of ceramic membranes that could be also employed as ceramic supports
for polymeric selective layer [35]. Therefore, it was decided to prepare an inexpensive support using
kaolin as a raw material. The extrusion method was applied to fabricate tubular ceramic supports
providing a higher effective area in a lower space.

In this study, mullite and combined mullite-alumina tubular supports were prepared. The chitosan
selective layer was coated on the outer surface of the supports by the simple dip-coating technique.
The objective of this work was to compare the effect of the prepared mullite and mullite-alumina low-cost
ceramic supports with commercial α-alumina supports in the pervaporation process. In addition to
the support type, the influence of chitosan concentration on membrane performance was investigated
at three levels. The performance of the synthesized membranes was assessed by the pervaporation
dehydration of ethanol and their characterization was achieved using both FE-SEM and the contact
angle measurement. The effect of operational conditions on the pervaporative ethanol dehydration
was also examined by using different feed concentrations as well as feed temperatures.

2. Materials and Methods

2.1. Materials

Chitosan (medium molecular weight) was obtained from Aldrich (St. Louis, MO, USA). Acetic acid
and absolute ethanol were of reagent grade and manufactured by Merck (Darmstadt, Germany).
Deionized water was produced in the laboratory by ELGASTAT (London, UK). Kaolin powder, which
used in the preparation of supports, was purchased from the Iran China Clay Industries Company
(Tabriz, Iran). An aluminum oxide with a purity of 99.6 wt.%, was supplied by the Fibrona Company
(Tehran, Iran). Chemical analysis of kaolin and aluminum oxide are presented in Tables 1 and 2.
α-alumina support with a pore size of 600 nm was obtained from the Pall company (New York, NY, USA).

Table 1. The analysis of the Kaolin clay.

Components Percentage Phases Percentage Mesh Percentage

SiO2 61–62 Kaolinite 64.00 <32 µ 100
TiO2 0.40 Calcite 2.40 <20 µ 99

Al2O3 24–25 Quartz 27.00 <2 µ 45
Fe2O3 0.45–0.65 Feld spar 6.60
K2O 0.40 Total 100

Na2O 0.50
L.O.I 9.5–10
Total 100
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Table 2. The analysis of the α-Al2O3 powder.

Components Percentage Properties Value

Al2O3 99.6 Specific Gravity 3.9
Na2O 0.35 Average Particle Size (µm) 1
SiO2 0.03 Specific Area (m2/g) 6

Fe2O3 0.03 Bulk Density (g/cc) 0.82
TiO2 0.006
L.O.I 0.07
Total 100

2.2. Ceramic Support Preparation

In this work, different ceramic supports, mullite, mullite-alumina, and α-alumina were used.
Mullite and mullite-alumina tubular supports were fabricated from kaolin clay and Al2O3 powder.
As presented in our earlier work [36], tubular mullite supports (id: 10 mm, od: 13 mm, and L = 10 cm)
were made by the extrusion of the homogeneous mud composed of about 62–65% kaolin and 35–38%
deionized water. The wet extrudate supports were dried at an ambient temperature for 48 h and
then calcinated for 3 h at 1250 ◦C in an electric Exciton furnace. Then to increase the porosity of
supports, their free silica was removed in a 20 wt.% NaOH aqueous solution bath at 80 ◦C for 5 h.
Ceramic supports were then washed with deionized water at 80 ◦C for 12 h to remove NaOH and
a neutral pH was obtained. Combined mullite-alumina supports with a 50 wt.% alumina powder
content were synthesized in a similar way but were calcinated at 1300 ◦C.

2.3. Membrane Preparation

To prepare the polymeric coating layer, chitosan was dissolved in a 2 wt.% acetic acid aqueous
solution under stirring at 50 ◦C. The duration of stirring to form a homogenous solution depends on
the solution concentration. Three different chitosan concentrations of 2, 3, and 4 wt.%, were used to
coat the polymer on the different supports. The solution was then filtered through a mesh No. 250 to
remove undissolved residue particles. The resultant solution was coated on the polished outer surface
of ceramic supports by dipping them in the solution for about a minute. The coated supports were
dried at room temperature for about 5 h under the slow rotation of 60 rpm and then annealed at 60 ◦C
for 8 h in an oven to achieve complete evaporation of the solvent.

2.4. Membrane Characterization

The pore size of fabricated ceramic supports was determined using mercury porosimetry.
The porosity of the supports was measured by the water absorption method. The morphology
and structure of surface and cross-section of supports and membranes were studied by field
emission scanning electron microscopy (FE-SEM) using Hitachi S4160 (Hitachi, Tokyo, Japan).
The hydrophilicity of the used supports was evaluated by a contact angle measurement system
made in the Nanotechnology Laboratory of the Institute of Petroleum Engineering of the University of
Tehran, Tehran, Iran. In this system, the contact angle of a decane drop in contact with three different
points of the ceramic supports surface was measured. The preconditioning of ceramic supports was
done by polishing of outer surface of supports using various sandpapers (No. 240, 400, and 1200) while
the tubular support was rotating in order to obtain a homogeneous smooth surface and no visible hole
or bump was seen on the surface. The contact angle measurement error was less than 5 percent.

2.5. Pervaporation

Pervaporation dehydration of ethanol was performed using a laboratory-scale setup shown in
Figure 1. The water composition in the feed mixture was 10 wt.% for all of the membranes and 10, 20,
30, 40, and 50 wt.% for the best one in order to study the feed concentration effect. The experiments
were carried out at 60 ◦C for all of the membranes and 30, 40, 50, 60, and 70 ◦C for the best membrane
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for investigation of the temperature effect. The effective surface area of the membrane in contact with
the feed was 16.33 and 11 cm2 for membranes coated on the fabricated mullite and mullite-alumina
supports and on the commercial α-alumina support, respectively. The downstream pressure of the
module was maintained at 10 Torr using a vacuum pump. The test membrane was immersed in the
feed mixture for about 24 h at the process temperature to equilibrate. The permeate was collected in
the liquid nitrogen cold trap. The obtained permeate was weighed on the digital laboratory balance.
The permeate composition was estimated by measuring its refractive index within an accuracy of
0.00001 using an ABBE refractometer AR4 (KRUSS, Hamburg, Germany) and by comparing it to
the calibration graph of refractive indices of known ethanol/water mixtures. Refractometry is a
straightforward, fast, inexpensive, and accurate way of ethanol concentration determination being
widely used in the food and beverage industries. Although the obtained refractive indices could be
rather dependent on the operator, it is a suitable analytical method giving an accurate determination
when it is used by a researcher to measure the alcohol content by comparing the value of the refractive
index of a solution to that of a standard curve. All the experiments were carried out three times and
the average results are reported.
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Figure 1. The schematic diagram of laboratory pervaporation set-up: (1) feed tank; (2) thermometer;
(3) temperature controller; (4) feed pump; (5,6) Valve; (7) rotameter; (8) membrane module; (9) pressure
gage; (10) vacuum regulator; (11) permeate collection trap; (12) liquid nitrogen tank; (13) vacuum pump.

The pervaporation performance of the membranes was assessed in terms of permeation flux (J),
separation factor (α), and the pervaporation separation index (PSI). These were calculated using the
following equations respectively:

J =
Q
At

(1)

α =
Yw/Yeth
Xw/Xeth

(2)

PSI = J × (α − 1) (3)

where Q is the weight of the permeate (g); A represents the effective area of membrane (m2); t is the
experiment time (h); Y and X are the mass fractions of permeate and feed, respectively; subscripts w
and eth, denote water and ethanol respectively.
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3. Results and Discussion

3.1. Ceramic Supports Characterization

Figure 2a shows the pore size distribution of the fabricated ceramic supports. As it can be seen,
the average pore radius of mullite support is approximately 250 nm and that of the mullite-alumina
support is 300 nm. Moreover, pore size scattering of mullite support is higher than mullite-alumina
support indicating more regular and uniform distribution of mullite-alumina pores. The porosity of
mullite and mullite-alumina supports was estimated by the water absorption technique as 21% and
24%, respectively. According to the manufacturer, commercial α-alumina support has an average pore
radius of 300 nm and a porosity of approximately 33%.
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Figure 2. (a) The Mercury Porosimetry analysis of supports; (b) The decane drop contact angle with
different ceramic supports.

As earlier mentioned, a contact angle measurement device was used to measure the hydrophilicity
of the ceramic supports. Using this device, one can measure the contact angle of a static drop on the
surface of a solid surface. Determination of the angle was done by drop shape analysis. Using the
available facilities, a decane drop contact angle with the surface of mullite, mullite-alumina, and the
commercial α-alumina supports can be measured. In fact, using this experiment, the affinity of the
support surface for an organic drop can be determined. A smaller contact angle between the decane
drop and the support surface means that the supports are more hydrophilic. According to Figure 2b,
the hydrophilicity of α-alumina is more than the other two supports. Mullite-alumina stands in second
place. This happens because of the intrinsic hydrophilicity of alumina particles compared to kaolin
particles; the more alumina in the supports the more the hydrophilicity would be.

Figure 3 shows surface FE-SEM images of ceramic supports used in the hybrid membranes.
Both macropores and mesopores can be seen in mullite and mullite-alumina support surfaces
(Figure 3a,b). However, the mullite-alumina support surface is more uniform than the mullite one
and fewer macropores are seen there. As can be seen in Figure 3c, the outer surface of the commercial
α-alumina support is more uniform and is almost free of macropores. Therefore, it can be concluded
that as a result of the uniformity of the α-alumina support surface, membranes laid on this support
have a uniform thickness all over the support surface. In contrast, for the synthesized supports and
especially the mullite support, the polymer solution penetrates into the macropores and reduces
the uniformity of the polymer layer thickness on the support. This means that in the macroporous
regions, a higher amount of polymer solution penetrates and increases the thickness of the membrane.
This phenomenon is more pronounced for solutions with lower viscosity. The non-uniformity of
the polymer membrane layer on the ceramic support leads to a reduction in permeation flux and
membrane selectivity. Figure 3d–f illustrate the cross-section of ceramic supports. It is clear that the
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structure of supports synthesized in this work is denser than the commercial ones and this increases
the flow resistance for the permeating molecules.
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3.2. Membrane Characterization

Increasing the polymer concentration results in a decrease in the amount of the solvent.
After drying the membrane, a small fraction of the mentioned layer will be removed. In other
words, by increasing the polymer concentration, the layer thickness will decrease less during the
drying process. Therefore, the polymer layer thickness will increase and this will naturally increase
the flow resistance and decrease permeability. This hypothesis is confirmed by Figure 4 illustrating
the membranes cross sections at different concentrations. The mean polymer layer thickness of the
membranes with chitosan concentrations of 2%, 3%, and 4% is 13, 15.4, and 25.7 µm, respectively.
Pore penetration in mullite support macropores can be seen in the membrane with 2% chitosan
concentration (Figure 4a). Figure 4b,c show that polymer penetration decreases in mullite support
macropores with 3 and 4 percent concentrations as a result of an increased solution viscosity, and the
membrane thickness will thus be more uniform.
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3.3. Pervaporation Experiments

In this research, the dehydration of ethanol in a pervaporation process has been studied in order
to evaluate the hybrid membranes’ performance. Table 3 lists the obtained results of 9 synthesized
membranes in the pervaporative ethanol dehydration at a temperature of 60 ◦C and a 90% concentration of
ethanol in the feed. The effect of operational conditions on membrane performance will be discussed next.

Table 3. The results of ethanol dehydration pervaporation process at a temperature of 60 ◦C and a 90%
concentration of ethanol in the feed.

Sample Ceramic Support Chitosan Concentration
(wt.%)

Permeation Flux
(g·m−2·h−1)

Separation
Factor

PSI
(kg·m−2·h−1)

S1 mullite 2 253.0 25.6 6.2
S2 mullite-alumina 2 269.3 55.3 14.6
S3 α-alumina 2 582.1 91 52.4
S4 mullite 3 186.1 72.8 13.4
S5 mullite-alumina 3 220.4 103.5 22.6
S6 α-alumina 3 351.7 200.3 70.1
S7 mullite 4 159.2 83.8 13.2
S8 mullite-alumina 4 183.7 119.6 21.8
S9 α-alumina 4 236.5 291 68.6
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3.3.1. The Effect of Ceramic Supports on the Performance of Membranes

Using a ceramic support increases the mechanical and thermal strengths as well as the
processability of the hybrid membranes. Furthermore, ceramic supports might indirectly influence
the permeation and selectivity of membranes in a pervaporation process. As previously discussed
on the contact angle results (Figure 2b), α-alumina supports have the highest hydrophilicity and are
more compatible with the hydrophilic chitosan polymer. Figure 5 shows the changes in the separation
factor and permeation flux for ceramic supports at different chitosan concentrations. The membranes
covered on mullite supports have the lowest separation factors while those on commercial α-alumina
supports have the highest. According to the FE-SEM images in Figure 3, the surface of mullite and
mullite-alumina supports have macropores that are not as uniform as α-alumina supports. Therefore,
the polymer solution penetrates into these pores leading to an increased polymer layer thickness
in those spots. Therefore, the membrane layer will not be uniform after drying. Under these
conditions, the liquid molecules tend to pass through thin regions having less resistance against
diffusion. The lower thickness of membranes as will be discussed in the next section results in a
decrease in the water separation factor.
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index (PSI).

The permeation flux for chitosan membranes covered on the combined mullite-alumina support
is higher than the mullite support and the maximum values were obtained for membranes covered
on the commercial α-alumina supports. Due to the lower compaction and higher porosity of the
α-alumina support cross-section (Figure 3), the permeated molecules have a better chance to pass
through the membranes covered on these supports. Moreover, in the case of membranes covered on
mullite supports, due to the non-uniformity of the thickness of the coated layer, the thicker section
of the membranes is practically non-existent. Therefore, a less effective surface is exposed to the
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feed, resulting in a decrease in membrane permeate flux. This phenomenon is more pronounced in
the case of membranes made by a lower chitosan concentration in which the lower viscosity of the
chitosan solution facilitates the polymer penetration into the surface macropores. Hence, in the case of
membranes made by 2% chitosan, the difference between the permeability of membranes covered on
commercial support and the others is more considerable.

3.3.2. The Effect of Chitosan Solution Concentration on Membrane Performance

The membranes were synthesized at three concentrations of 2, 3, and 4 wt.% in order to study how
the membranes perform with respect to the changes in chitosan solution concentration. As mentioned
in Figure 4, the more concentrated chitosan solution is the thicker membrane layer will form. In the
pervaporation process, a thicker polymer layer is more appropriate for a higher selectivity, but on the
other hand, it lowers the membrane permeability. This tradeoff between selectivity and permeability
is confirmed by Figure 5 showing the trend of the permeation flux and separation factor for selected
membranes covered on different supports. Such a behavior is due to the separation mechanism
for dense polymer membranes, which is solution-diffusion. Feed components, water, and ethanol
are dissolved in the chitosan layer. However, because of the higher affinity of chitosan for water,
it is dissolved more than in ethanol. Due to their concentration gradients across the membrane,
permeants diffuse through the polymer from the feed side to the permeate side. The thicker and more
compact membrane layer increases both the components’ diffusion resistances and also their diffusion
difference [37]. Therefore, a rise in diffusion resistance leads to a decrease in permeability, while the
increase in the diffusion rate difference causes an increase in selectivity.

In order to find the optimum concentration, the quantity previously defined as PSI must be used.
Figure 5c shows the PSI changes versus the chitosan concentration in membranes covered on different
supports; the membranes have the best pervaporation overall performance at a chitosan concentration
of 3 wt.%.

3.3.3. The Effect of Feed Temperature on Membrane Performance

To investigate the effect of the operational conditions of feed temperature and concentration on
the pervaporation process, the S6 sample, having shown the best performance, was used.

As expected, the temperature change has a significant effect on membrane performance.
By increasing the temperature of the feed which is in direct contact with the membrane surface, the
polymer chain mobility increases and, consequently, the permeability will increase [38]. Furthermore,
one can mention, the effect of the increase in feed vapor pressure, which can provide an extra driving
force for transfer while the vacuum pressure inside the membrane is fixed. In the pervaporation process,
the feed enters in the liquid phase and the permeate exits in the vapor phase. It can be concluded
that the liquid will turn into vapor somewhere in the middle of the membrane. By increasing the
temperature, the phase transfer from liquid to vapor pushes the feed and the permeated molecule to
pass through a larger part of the membrane thickness in the vapor phase. Since the velocity in the
vapor phase is greater than that in the liquid phase, one observes an increase in permeability.

The mobility of the polymer chain increases by an increase in temperature and more space
is created (membrane swelling), so ethanol molecules can pass through the membrane. Therefore,
at higher temperatures, ethanol has a better chance to pass through the membrane and the selectivity
decreases. Figure 6a depicts the change in selectivity and permeability as a function of temperature for
the S6 sample.
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ethanol content.

3.3.4. The Effect of Feed Concentration on Membrane Performance

The dependence of the pervaporation process on feed concentration was investigated in the
range of the ethanol weight fraction of 50–90% and at a feed temperature of 60 ◦C. A reduction in
ethanol fraction (which is equivalent to an increase in water fraction) in the feed for the S6 sample,
as shown in Figure 6b, results in an increase in permeability and a decrease in selectivity for the
membranes. As mentioned before, the swelling of the polymer chains in the water solution is one of
the disadvantages of polymer membranes such as chitosan. Therefore, by increasing the water weight
fraction in the feed, the swelling of chitosan chains may increase, resulting in a less-selective passage of
feed through the membrane. Thus, the membrane permeability increases while its selectivity decreases.

4. Conclusions

Mullite and mullite-alumina tubular supports were fabricated from kaolin clay and alumina
powder and successfully coated by the polymeric chitosan layer. The hydrophilicity and pore
uniformity of ceramic supports affect the pervaporation performance of the hybrid membranes.
The best pervaporation performance belonged to the membranes coated on commercial α-alumina
supports due to uniform macropores and more hydrophilicity. Increasing the chitosan concentration
increased the membrane layer thickness, which led to a higher separation factor and lower permeation
flux. The pervaporation tests showed an optimum of 3 wt.% for chitosan concentration. The permeation
flux increased remarkably with increasing either water content or the feed temperature, whereas the
separation factor decreased. However, a comparison between the fabricated membranes in this study
and the reported chitosan membranes (Table 4) modified by various methods demonstrates that
the ceramic-supported chitosan hybrid membranes are suitable candidates for the pervaporation
dehydration of ethanol providing high mechanical resistance in aggressive operating conditions.
The use of ceramic supports can also be combined with other modification techniques such as
cross-linking or using fillers for obtaining chitosan membranes with a superior performance in
pervaporative alcohol purification.
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Table 4. The comparison between synthesized membranes in this study with the literature.

Membrane Filler Support Feed Temperature (◦C) Separation Factor Permeate Flux (g·m−2·h−1) Reference

Cs - α-alumina Eth (90%)/W 60 200.3 351.7 This study
Cs - mullite-alumina Eth (90%)/W 60 119.6 183.7 This study

Cs—Alginate - PES Eth (95%)/W 30 85 - [39]
Cs—PSS - α-Al2O3 Eth (90%)/W 70 904 495 [40]

Cs - BC Eth (95%)/W 24 9.2 42,800 [41]
Cs—PVA - PAN Eth (95%)/W 30 93.7 320 [42]

Cs - PAN Eth (90%)/W 70 256 1247 [43]
Cs - ZrO2-Al2O3 Eth (90%)/W 60 3780 100 [31]

Cs—H3PO4 - Eth (96%)/W 24 213 580 [22]
Cs—GA-MA - - Eth (90%)/W 50 634 300 [44]

Cs HY Zeolite (20%) - Eth (90%)/W - 102 353 [12]
Cs H-ZSM-5 Zeolite (8%) - Eth (90%)/W 25 29.4 56 [25]
Cs TEOS - Eth (90%)/W 80 460 284 [45]
Cs TiO2 - Eth (90%)/W 80 196 340 [28]
Cs CNT - Eth (90%)/W 40 574 293 [26]

PVA Silica fume Mullite Eth (90%)/W 45 80 1200 [43]

Cs: Chitosan; PES: Polyethersolfune; PSS: poly(4-styrenesulfonic acid); BC: bacterial cellulose; PVA: poly (vinyl alcohol); PAN: polyacrylonitrile; GA: glutaraldehyde; MA: maleic acid;
CNT: carbon nanotubes.
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