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Abstract: In this study, the antifouling properties of polyethersulfone (PES) membranes blended with
different amounts of ZnO nanoparticles and a fixed ratio of N-methyl-2-pyrrolidone (NMP)-acetone
mixture as a solvent were investigated. The properties and performance of the fabricated membranes
were examined in terms of hydrophilicity, porosity, pore size, surface and cross-section image using
scanning electron microscopy (SEM), surface roughness using atomic force microscopy (AFM), pure
water flux, and humic acid filtration. Addition of ZnO as expected was found to improve the
hydrophilicity as well as to encourage pore formation. However, the agglomeration of ZnO at
a higher concentration cannot be avoided even when dissolved in a mixed solvent. The presence of
highly volatile acetone contributed to the tight skin layer of the membrane which shows remarkable
antifouling ability with the highest flux recovery ratio and negligible irreversible fouling. ZnO NPs in
acetone/NMP mixed solvent shows an improvement in flux and rejection, but, the fouling resistance
was moderate compared to the pristine membrane.

Keywords: polyethersulfone; zinc oxide; mixed matrix membrane; humic acid removal; mixed
solvent; antifouling

1. Introduction

The contributions of membranes in many industries such as food processing [1], the petrochemical
industry [2], energy applications [3,4], as well as wastewater and water purification technology [5]
have been highly successful and are much sought-after. Due to the ever expanding world population,
healthy water resources have become a luxury for over 2.1 billion people worldwide who do not have
access to safely managed water [6]. In order to have clean and accessible water for all, the United
Nations has made ‘Clean Water and Sanitation’ their 6th sustainable development goal which is
targeted to be achieved by 2030 [7]. Membrane technology obviously has some major advantages as
compared to other technologies such as energy efficiency and reasonable cost [8]. However, membrane
fouling has been identified as one of the most difficult problems that restrict the use of membranes in
industry from a technical and economical point of view [9,10].

Fouling is a phenomenon that occurs when the colloids, particles, macromolecules, salts, etc.
are deposited or adsorbed on the pore walls, inside pores or/and the surface of the membrane.
However, nonporous membrane mainly experience an external fouling [11]. Fouling can be reversible
or irreversible. The weakly bound foulants, which cause the reversible fouling can be removed by
a mere hydraulic cleaning method. During irreversible fouling, the foulants have a strong affinity

Membranes 2018, 8, 131; doi:10.3390/membranes8040131 www.mdpi.com/journal/membranes

http://www.mdpi.com/journal/membranes
http://www.mdpi.com
https://orcid.org/0000-0003-3686-7522
http://dx.doi.org/10.3390/membranes8040131
http://www.mdpi.com/journal/membranes
http://www.mdpi.com/2077-0375/8/4/131?type=check_update&version=2


Membranes 2018, 8, 131 2 of 13

towards the membrane surface and are strongly attached to it and as such require chemical cleaning
which may shorten the longevity of the membrane [12].

Fouling control is an important step for membranes to be competitive compared to other
technologies. Many researchers have shown that improving the hydrophilicity of the membrane will
reduce the hydrophobic interaction between the foulants in the feed and the membrane surface [13–15].
Polyethersulfone (PES) is one of the versatile polymers used for the preparation of membranes with
high chemical resistance and high glass transition temperature but hydrophobicity of this material leads
to severe fouling in the membrane. The PES membrane can be modified to be more hydrophilic by
grafting, coating, and blending methods. Blending has a certain advantage compared to coating and
grafting as it enables membrane modification during the fabrication stage, while grafting and coating are
post-fabrication modifications. Blending is also considered to be the most facile among these three routes.

Incorporation of inorganic nanoparticles (NPs) exists such as multiwalled carbon nanotube
(MWCNT) [16], silicon dioxide (SiO2) [17], titanium dioxide (TiO2) [18], graphene oxide (GO) [19], and
zinc oxide (ZnO) [20,21]. The popularity of TiO2 as fouling resistant agent has been confirmed by many
researchers [22,23]. However, ZnO can be an excellent alternative to TiO2 as an antifouling material.
The increase of the surface to volume ratio and inexpensiveness make ZnO a potential candidate that
can meet the demand for efficient and lower-cost NPs [10]. Since the size distribution and surface area
are not related to toxicity, the use of ZnO-NPs does not increase toxicity [10]. Balta et al. observed
an improved hydrophilicity and water permeability upon introduction of ZnO. The adsorption of
humic acid (HA) within the membrane structure was also reduced due to ZnO incorporation.

The solvent used to dissolve the polymer can have a significant effect on the morphology of
the membrane. Madaeni and Taheri reported significant effects on morphology of polyvinylidene
fluoride (PVDF) by varying the solvent used such as NMP, dimethylacetamide (DMAc), and
dimethylformamide (DMF). In their study, DMAc was found to result in a highly porous membrane
with slightly finger-like macrovoid at the substructure after the skin layer. In the case of DMF, a highly
denser membrane with little pores was observed compared to all other solvents [24]. Few researchers
have combined two or more solvent mixtures in the casting solution to get a desirable morphology on
the membrane [25,26]. Kim et al. showed the possibility to form an integrally-skinned nanofiltration
membrane with well-developed skin layer supported by a porous sublayer by manipulating the
composition of diethylene glycol dimethyl ether (DGDE) and acetic acid (AA) in NMP solution. This
significant change in morphology directly affected the performance of the membrane, with PEG
600 removal maintaining a constant value of up to 83% [25]. Acetone which is a highly volatile solvent
used together with low volatile solvent results in membranes with slightly lower permeation coupled
with excellent rejection rates as shown by Ahmed et al. [27]. By applying a similar concept, NMP can
be used with acetone to create a membrane with similar morphology hence create a similar effect for
the performance of the membrane.

To the best of our knowledge, no report has been published regarding the characterization
and antifouling properties of fabricated PES/ZnO mixed matrix membranes by using a mixture of
acetone–NMP as a solvent. Therefore, in this study, antifouling PES membranes blended with different
concentration of ZnO nanoparticles and a fixed ratio of NMP–acetone were fabricated using the
phase inversion method. A series of experiments including SEM, AFM, porosity, pore size, and water
contact angle measurements were carried out for membrane characterization. The performance and
antifouling properties of the fabricated membranes were evaluated by testing the water permeability
and humic acid rejection.

2. Materials and Methods

2.1. Materials

Polyethersulfone (PES, Ultrason E6020P; Mw = 58,000 g/mol) was purchased from BASF (Kuala
Lumpur, Malaysia) Acetone was supplied from Merck (Selangor, Malaysia) while N-methyl-2-
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pyrrolidone (NMP) was purchased from Sigma Aldrich, Malaysia (Selangor, Malaysia). Zinc oxide
nanoparticle (40 nm average) and humic acid (HA) were also from Sigma. Deionized water was used
throughout the experiment.

2.2. Membrane Preparation

In this study, flat sheet membranes were prepared via non-solvent induced phase separation
(NIPS). In detail, cast solutions (Table 1) were prepared using the following steps. Mixed solvent,
acetone and NMP were mechanically stirred at 400 rpm for 1 h. Then, various amounts of ZnO-NPs
(0 wt%, 0.5 wt%, 1.0 wt%, 1.5 wt% and 2 wt%) were dispersed in NMP and acetone solution.
The solution was mechanically stirred at 600 rpm for 3 h at room temperature followed by sonication
for 1 h. After sonication, the solution was stirred again for another 1 h. PES polymer was dried at
70 ◦C in a vacuum oven overnight prior to use. The pre-dried PES polymer was slowly added to the
dope solution over a period of 2 h to avoid precipitation of the polymer. Then, the solution was stirred
at a speed of 500 rpm at a temperature of 60 ◦C for 24 h followed by degassing. The solution was cast
with a casting machine filmograph (K4340 automatic Film Applicator, Elcometer, Manchester, UK)
using a casting knife with an opening of 200 µm. The membranes were left on a glass plate at ambient
temperature for 60 s before being immersed in deionized water overnight to allow for precipitation.

Table 1. The recipe of the cast solution.

Membrane PES Weight Percent (wt%) NMP: Acetone Ratio of Solvent ZnO Weight Percent (wt%)

PZ1 18 1:0.05 0
PZ2 18 1:0.05 0.5
PZ3 18 1:0.05 1.0
PZ4 18 1:0.05 1.5
PZ5 18 1:0.05 2.0

2.3. Membrane Characterization

2.3.1. Scanning Electron Microscopy (SEM) Analysis

The cross sections, top and bottom surfaces of the membrane were characterized by using
a HITACHI Tabletop SEM (TM3000, Tokyo, Japan). The membranes samples were dried at room
temperature and were cryogenically fractured using liquid nitrogen to observe the cross-sectional
image of samples. The membrane surface was coated under vacuum condition with a thin layer of
gold (80%)/palladium (20%) to avoid electrostatic charging.

2.3.2. Atomic Force Microscope (AFM) Analysis

The surface roughness of the membrane was investigated using AFM (Park System XE100, Suwon,
Korea). The membrane mounted on a glass slide was scanned with a laser beam reflected by the
cantilever. AFM was performed over 5 µm × 5 µm of the scanning area with a scanning rate of 0.25 Hz
under tapping mode.

2.3.3. Viscosity Analysis

The viscosity of the dope solution with various ZnO-NPs loading was measured using a Brookfield
digital Rheometer (Model DV-III, Massachusetts, USA). The viscosity value of the dope solution was
obtained at a temperature of 25 ± 2 ◦C and a shear rate of 10 s−1. The average viscosities of seven
measurements were recorded.

2.3.4. Porosity and Pore Size Determination

The porosity of the membrane was determined through its dry-wet weight. The membrane was
immersed in water for 24 h. After that, the weight of the wet membrane was measured after wiping off
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excess water with filter paper. Then, the wet membranes were dried in an oven for 10 h at 25 ◦C and
the weight of the dried membrane was measured. The porosity was calculated using the following
equation [28]:

ε(%) =
(ww − wd)/ρw

(ww − wd)/ρw + wd/ρp
× 100 (1)

where ε is the membrane porosity, ww is the wet membrane weight (g), wd is the dry membrane weight
(g), ρw is the pure water density while ρp is the polymer density.

The mean pore radius size (rm) was calculated based on the pure water flux and porosity data
obtained previously using the Guerout–Elford–Ferry equation as follows [29,30]:

rm =

√
(2.9 − 1.75ε)8ηl JWF

ε × A × ∆P
(2)

where η is the viscosity of water, l is membrane thickness (m), while JWF is the pure water flux
(g/m2·s), A is area of the membrane (m2), and ∆P is the operating pressure. Membrane thicknesses
were measured using the Mitutoyo caliper ±2 µm.

2.3.5. Contact Angle Measurements

The surface hydrophilicity of the membrane was characterized using the contact angle goniometer
(Ramé-hart 200 Series, Ramé-hart, Succasunna, NJ, USA) at room temperature using deionized water.
The hanging drop method was used to measure the contact angle on the membranes surfaces. A drop
of water (1 µL) was deposited on the surface of the membrane using a motor. In order to establish the
balances of forces involved, the contact angle reading was obtained after 10 s of the water droplet.
To reduce experimental error, a series of seven measurements for each sample was taken and their
mean values were calculated.

2.4. Membrane Performance Evaluation

2.4.1. HA Feed Solution Preparation and Characterization

HA solution was used as a foulant in this study. HA solution was prepared by dispersing 0.1 g of
HA in 2 L of deionized water. To aid the HA dispersion in water, the solution was sonicated for 1 h.
The solution was stirred vigorously before used for membrane rejection test. The concentration of HA
was measured using a UV spectrophotometer Pharo 300 (Merck, MA, USA) at a wavelength of 254 nm.

2.4.2. Membrane Permeation Test and Fouling Analysis for Membrane

The membrane permeation test was carried out using a dead-end filtration unit. The membrane
sample was immersed in deionized water for 1 day before being used in the membrane testing rig.
Initially, the membrane sample was compressed for 30 min at a pressure of 10 bar. Then, the pure
water flux measurement was performed at a pressure of 9 bar for 1 h. The initial pure water flux was
calculated as follows:

JWF =
m

Amt
(3)

where m is the mass of permeate (g), Am is the effective filtration area (m2), and t is the measurement
time (s).

The filtration was continued by replacing the pure water with the prepared HA at a pressure of
9 bar. The HA concentration before filtration was measured as mentioned in Section 2.4.1. The filtration
of HA was performed for 1 h and the concentration of the permeate was measured at the end of the
experiment. The flux was calculated using Equation (3). The anti-fouling capability of the membrane
was evaluated through the relative flux reduction (RFR) which was calculated using Equation (4).
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RFR(%) =

(
1 − JHA

JWF

)
× 100 (4)

where JHA is the permeate flux (g/m2·s) of tested solution (HA solution) and JWF is the initial
water flux.

The membrane was washed using deionized water for 15 min and then the filtration was
continued. The pure water flux measurement was performed again at a pressure of 9 bar for 1 h.
The pure water flux after flux was evaluated using Equation (3). This was intended to evaluate the flux
recovery ratio (FRR) of the membrane using Equation (5):

FRR(%) =
JWF2

JWF
× 100 (5)

where JWF2 is the pure water flux (g/m2·s) after the washing step.
The fouling resistance of the membranes was calculated using Darcy’s law as shown in

Equation (6).

JWF =
TMP
µΣR

=
TMP
µRt

(6)

where TMP is the transmembrane pressure (Pa), µ is the permeate viscosity (Pa·s) and ΣR is similar to
Rt which is the total resistance (m−1).

The total resistance includes the fouling resistance (R f ) and intrinsic membrane resistance (Rm).
For Rm, it was calculated using the Equation (8).

Rt = Rm + R f (7)

Rm =
TMP
µJWF

(8)

The R f consist of the fouling and concentration polarization effect. These two effects are
considered as one factor due to the difficulty to differentiate them. R f is assumed to be the
summation of the reversible (Rr) and irreversible (Rir) fouling resistance. The concept is outlined in
Equations (9)–(12).

R f = Rr + Rir (9)

R f =
TMP
µJHA

− Rm (10)

Rir =
TMP
µJWF2

− Rm (11)

Rr = R f − Rir (12)

3. Results and Discussion

3.1. Morphological Variation of Membrane

Figure S1 shows that PZ1 to PZ5 membranes have a finger-like macro void at the substructure,
followed by the sponge-like bottom. The difference between the membranes is not obvious and all of
them seem to have similar morphology. When the addition of ZnO-NPs exceeded 1.0 wt%, obvious
cluster/agglomeration of ZnO was visible on the top layer and in the cross-section of PZ4 and PZ5
membranes. As reported by Balta et al. and Dipheko et al. and, it is common for the clustering of NPs
to occur when the addition of NPs is increased beyond a certain limit [10,21], but serious agglomeration
may lead to pore plugging.
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3.2. Pore Size and Porosity

Based on Table 2, the porosity increases from PZ1 to PZ3 (1.0 wt% of ZnO), but further addition
of ZnO in the membrane led to a decrease in porosity. The presence of ZnO-NP induces both the
viscosity effect and hydrophilicity effect [31]. ZnO has a high affinity for water and can easily draw
water into the casting suspension. Hence, it can increase the exchange rate between non-solvent
(water) and solvent. However, the viscosity also keeps increasing as the addition of ZnO-NPs increase.
The increase in viscosity of the PES/ZnO membrane when the amount of ZnO exceeds a certain level
was also observed by researchers such as Nasrollahi et al. and Shen et al. [8,31]. Highly hydrophilic
ZnO favors the formation of macro voids and as a consequence enhances the porosity. However, as the
viscosity significantly increases from PZ3 to PZ5, membranes (PZ4 and PZ5) become less porous due
to kinetic hindrance in the exchange of NMP/acetone and water. Initially, the hydrophilic effect of
ZnO was dominant but the effect of viscosity started to take place after the ZnO concentration in
the membrane exceeds 1.0 wt%. Furthermore, the decline in pore size could be due to clogging of
pores caused by the ZnO agglomeration as mentioned earlier. Studies also have confirmed that higher
loading of ZnO could lead to pore blockage in the membrane [20,32].

Table 2. The porosity, mean pore radius, and viscosity of PZ1 to PZ5.

Membrane Porosity (%) Mean Pore Size (nm) Viscosity (cP)

PZ1 37.29 ± 2.86 6.80 ± 1.45 920 ± 10
PZ2 42.87 ± 1.24 14.01 ± 3.45 950 ± 5
PZ3 47.34 ± 3.24 13.96 ± 5.78 990 ± 10
PZ4 43.73 ± 6.32 11.26 ± 3.42 1160 ± 15
PZ5 41.87 ± 2.34 7.38 ± 2.52 1290 ± 10

3.3. Contact Angle and Surface Roughness

Figure 1 shows that membranes with ZnO-NPs loading (PZ2 to PZ5) have a lower contact angle
value compared to the pristine membrane PZ1. A consistent decrease in the contact angle with the
addition of ZnO-NPs proved that the addition of hydrophilic ZnO-NPs on the surface of the PES
membrane improves the hydrophilicity of the membrane. The improved wettability of the membrane
may increase the water flux, but, other factors such as pore size also have significant influence on the
water permeation. Surface roughness analysis from AFM (Figure 2) was obtained to further investigate
the characteristics of the surface of the membrane.
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Figure 1. The contact angle of membrane PZ1 to PZ5.

Table 3 shows that the surface roughness Ra of the membrane increases with ZnO addition but
the increment was not obvious and PZ1 to PZ3 membranes seem to have nearly the same roughness.
For PZ4 and PZ5 membranes, the agglomeration slightly increases the roughness. Overall, all the
membranes have very little difference in roughness due to the incorporation of acetone. The acetone
modified membrane gives a smoother membrane due to the volatility of acetone. Partial evaporation
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of volatile acetone causes the polymer concentration to significantly increase at the top layer of the
membrane forming a nearly defect-free, tight skin layer [33]. Ong et al. stated that the surface
roughness of membranes prepared from mixed solvent (less volatile and more volatile solvent) is
generally smoother than the membranes formed from pure NMP only at moderate evaporation
temperature [34].
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Figure 2. The atomic force microscope (AFM) image of surface roughness of membrane (A) PZ1,
(B) PZ2, (C) PZ3, (D) PZ4 and (E) PZ5.

Table 3. The statistical analysis of membrane roughness for membrane PZ1 to PZ5.

Membrane Ra (nm) Rq (nm) Rz (nm)

PZ1 23.73 ± 3.25 29.36 ± 3.43 165.37 ± 4.47
PZ2 24.28 ± 6.15 29.98 ± 8.53 184.88 ± 4.32
PZ3 24.74 ± 6.75 30.63 ± 7.21 182.55 ± 4.31
PZ4 25.96 ± 3.22 36.98 ± 2.64 210.17 ± 6.53
PZ5 25.78 ± 5.20 31.77 ± 2.98 278.09 ± 2.41

Average roughness (Ra), root mean square of Z data (Rq) and mean difference between the highest peaks and the
lowest valleys across the scanned area (Rz).

3.4. Performance Evaluation of the Membrane

Initially the pure water flux (PWF) of the membrane increases, but it gradually decreases
after reaching a peak. The two major factors that affect the PWF are porosity and hydrophilicity.
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The combined effect of increased hydrophilicity and porous membrane structure leads to an increase
in flux. The drastic drop of flux from PZ3 to PZ5 is as a result of ZnO-NPs accumulation and decreased
porosity. Dispersion of ZnO-NPs on the membrane offers a larger surface area of NPs which leads
to adsorption of more water molecules on the surface of the membrane. In contrast to that, a large
amount of NPs which has a tendency for aggregation cause the effective surface of NPs to reduce
and therefore hydroxyl groups on the surface of membranes to decline [35]. So, the agglomeration
of ZnO which is evident in PZ4 and PZ5 membrane contributes to the decline in water flux for the
respective membranes.

Referring to Figure 3, the rejection of HA decreased from PZ1 to PZ2 but the rejection slowly
improved. The decrease in pore size and tight skin layer could improve the rejection of HA. Aside from
that, increasing the hydrophilicity of the membrane decreases the adsorption of hydrophobic HA onto
the membrane and hence the rejection potential increases. A lower concentration of HA in permeate is
maybe due to slower diffusion of HA solute through membrane PZ2 to PZ5 than the neat membrane
(PZ1). Balta et al. suggested that an effective way to improve the rejection of hydrophobic organic
matters is to avoid hydrophobic interaction at the interface of the solute–membrane surface [10].
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Figure 3. The trade-off graph of pure water flux (PWF) and rejection of humic acid (HA) of membrane
PZ1 to PZ5.

3.5. Fouling Evaluation of Membrane

A higher value of FRR reflects a lower level of persistent HA adsorption onto the membrane
surface. The lower the RFR value, the lower the fouling tendency of the membrane. Based on Table 4,
the membrane modified with ZnO shows a lower FRR value compared to the unmodified. The FRR
value of ZnO modified membranes improves as the addition of ZnO increase. Similarly, the RFR value
of PZ1 is the lowest among all the membranes. The RFR value continuously increases up to 1.0 wt% of
ZnO loading (PZ3), but the value decreases with further addition of NPs. It is interesting to note that
the membrane (PZ1) modified with acetone-only has the highest FRR and lowest RFR value than the
other ZnO–Acetone membranes, signifying the best antifouling ability. The large pore of PZ2 and PZ3
membrane could also contribute to the lower FRR value since HA molecule can strongly adsorb at
inner pore cause pore narrowing [36].

To enable a detailed discussion on fouling, the resistance of membranes such as Rm, Rf, Rr, and
Rir are evaluated and presented in Figure 4. As observed, the value of Rm decreases from PZ1 to
PZ3 but increases from PZ3 to PZ5. Kinetic hindrance for the flow which is caused by the small
and clogged pores as the ZnO addition increases provides more obstacles in the liquid flowing path
causing the membrane resistance to increase. The reversible fouling resistance Rr of all the membrane
is relatively similar. A very insignificant increase in roughness between the membrane did not give any
impact to the reversible fouling. While the irreversible fouling has a noticeable increase from the neat
membrane to PZ1, the membrane prepared with only acetone has a tight skin layer with little open
pores. Although PZ1 is more hydrophobic than PZ2, the porosity and pore size played an important
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role in determining the severity of irreversible fouling to the membrane in this case. Katsoufidou et
al. stated that accelerated irreversible fouling occurs due to internal pore adsorption [37]. The size
exclusive effect and the surface gel layer effect of the tight pore skin layer of PZ1 might prevent
thrusting of HA molecules causing inner pore adsorption. Lin et al. also mentioned that surface gel
layer formation with very little inner pore adsorption is the primary form of fouling in tight pore
membranes [38]. Addition of ZnO encourages the formation of more open pores which increases the
surface area for adsorption of HA. Zhao et al. and Aryanti et al. have also shown that an open, large
pore is more prone to fouling compared to small pores [39,40].

Table 4. The numerical analysis of initial water flux JWF, humic acid (HA) filtration JHA, second water
flux JWF2, flux recovery ratio (FRR) and relative flux reduction (RFR) for membrane PZ1 to PZ5.

Membrane JWF
(g/m2·s)

JHA
(g/m2·s)

JWF2
(g/m2·s)

FRR
(%)

RFR
(%)

PZ1 3.51 3.37 3.44 97.93 3.94
PZ2 19.72 8.08 8.59 43.55 59.03
PZ3 22.44 8.19 8.72 38.89 63.52
PZ4 13.09 5.62 5.92 45.24 57.06
PZ5 5.30 3.56 3.68 69.38 32.83
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Figure 4. The membrane resistance Rm, Rf, Rr and Rir of PZ1 to PZ5.

The ZnO-Acetone membranes show good performance in terms of flux and rejection of humic
acid. But, the FRR value of these membranes is lower compared to the membranes prepared with only
acetone. Acetone alone is capable of producing a membrane with high antifouling capability and the
membrane has a lower level of irreversible and reversible fouling than the ZnO-Acetone membranes.
Although the FRR value improves with 2.0 wt% loading of ZnO (PZ5) (69.3%), the value is still lower
compared to the membrane prepared with only acetone by 28.55%.

Table 5 shows the comparison of this study with current similar studies. Other studies used
different types of additives to enhance the properties of the membranes. In this study, we only used two
different solvents to create a better membrane. The comparison is made to have a deeper knowledge of
the influence of ZnO on the membrane characteristics and antifouling properties. The data presented in
Table 5 clearly shows that the addition of ZnO nanoparticles influenced the membrane characteristics
and performance regardless of the types of polymer used as membrane materials. Nevertheless, since
there is a large variation in the conditions in which the studies were performed, it was difficult to make
a general deduction.
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Table 5. Comparison between this study and similar studies.

Casting Conditions and
Membrane Characteristics Nasrollahi et al. (2018) [8] Zinadini et al. (2017) [41] Chung et al. (2017) [42] Rabiee et al. (2015) [32] This Work

Polymer PES PES PSF Polyvinyl Chloride (PVC) PES

Polymer dosage (wt%) 18 20 20 15 18

Solvent DMAc DMAc NMP NMP NMP and Acetone (0.05 mass ratio of
NMP to acetone in a mixed solvent)

Additive and dosage PVP (2 wt%) and Copper
oxide (CuO)

PVP (1 wt%) and
MWCNTs GO Polyethylene glycol (PEG

6 kDa); 4 wt% -

ZnO dosage (wt%) 0.1, 0.2, 0.5 and 1.0 a 0.1, 0.5 and 1.0 b 0.1, 0.3 and 0.6 c 0.3, 1.0, 2.0, 3.0 and 4.0 0.5, 0.1, 1.5 and 2.0

Contact angle (◦) 66.5 (0.2 wt% CuO/ZnO) 57.2 (0.5 wt%
ZnO/MWCNTs) 40 (0.6 wt% ZnO/GO) 54.5 (3 wt% ZnO) 60.9 (0.1 wt% ZnO)

Foulant Bovine Serum Albumin
(BSA), (500 mg/L) Powder milk (8000 ppm) Humic acid (10 ppm) BSA (500 ppm) Humic acid (50 mg/L)

Rejection (%) 99 (0.2 wt% CuO-ZnO) 95 (0.5 wt%
ZnO/MWCNTs) d 99 (0.6 wt% ZnO/GO) 97.5 (3 wt% ZnO) 94 (0.1 wt% ZnO)

Pure water flux 679 kg/m2·h
(0.2 wt% CuO-ZnO)

16.7 kg/m2·h
(0.5 wt% ZnO/MWCNTs)

5.11 kg/m2·h·bar
(0.6 wt% ZnO/GO)

401.9 kg/m2·h
(3 wt% ZnO) 80 kg/m2·h (0.1 wt% ZnO)

Flux recovery ratio 50.1 (0.2 wt% CuO-ZnO) 88.6 (0.5 wt%
ZnO/MWCNTs) 99 (0.6 wt% ZnO/GO) 91.8 (3 wt% ZnO) 38.89 (0.1 wt% ZnO)

a The percentage represents ZnO/CuO nanocomposite. b The percentage represents ZnO coated multiwalled carbon nanotube nanocomposite. c The percentage represents ZnO-GO
nanohybrid which produced via sol-gel method by incorporating 20 wt% of ZnO onto the GO nanosheets support. d This is the rejection percentage of Direct Red 16 dye at pH = 6 and
30 ppm concentration.
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4. Conclusions

In this study, the effect of ZnO in a mixed solvent (NMP and acetone) on the morphology and
performance of membranes was studied. The agglomeration of ZnO at a higher concentration cannot
be solved by even a dual-solvent system (NMP and acetone). The dispersion of ZnO in this dual solvent
is questionable since the agglomeration was really visible in the SEM image at higher concentration.
ZnO in the presence of acetone, is able to produce a membrane with high hydrophilicity and porosity.
The flux was tremendously improved and rejection slightly improved in these membranes. However,
the antifouling ability of the membrane prepared with only acetone was greater than the ZnO–acetone
modified membranes. The acetone which creates a tight skin layer reduces fouling better than the
hydrophilic ZnO. The potential of acetone as an antifouling agent was identified and further studies
regarding its effect can be carried out by varying acetone concentration with a fixed amount of ZnO to
obtain further knowledge on the antifouling capability of acetone in the presence of ZnO. Although
the antifouling ability of ZnO/acetone is moderate, it is still plausible to obtain good membranes using
these two materials since acetone shows a remarkable fouling resistance.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0375/8/4/131/s1,
Figure S1: SEM micrographs of PZ1, PZ2, PZ3, PZ4, and PZ5 membrane (i). cross-section at 1200× magnification
and (ii). Top surface at 2000× magnification.
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