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Abstract: Membranes based on sulfonated synditoactic polystyrene (s-sPS) were thoroughly
characterized by contrast variation small-angle neutron scattering (SANS) over a wide Q-range in dry
and hydrated states. Following special sulfonation and treatment procedures, s-sPS is an attractive
material for fuel cells and energy storage applications. The film samples were prepared by solid-state
sulfonation, resulting in uniform sulfonation of only the amorphous phase while preserving the
crystallinity of the membrane. Fullerenes, which improve the resistance to oxidation decomposition,
were incorporated in the membranes. The fullerenes seem to be chiefly located in the amorphous
regions of the samples, and do not influence the formation and evolution of the morphologies
in the polymer films, as no significant differences were observed in the SANS patterns compared
to the fullerenes-free s-sPS membranes, which were investigated in a previous study. The use of
uniaxially deformed film samples, and neutron contrast variation allowed for the identification and
characterization of different structural levels with sizes between nm and µm, which form and evolve
in both the dry and hydrated states. The scattering length density of the crystalline regions was
varied using the guest exchange procedure between different toluene isotopologues incorporated into
the sPS lattice, while the variation of the scattering properties of the hydrated amorphous regions
was achieved using different H2O/D2O mixtures. Due to the deformation of the films, the scattering
characteristics of different structures can be distinguished on specific detection sectors and at different
detection distances after the sample, depending on their size and orientation.
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1. Introduction

Owing to their high conversion efficiency, high power density, low weight and volume, fast startup
time, low operating temperature (below 100 ◦C), and clean exhaust, polymer electrolyte membrane
(PEM) fuel cells (PEMFC) are considered an attractive energy conversion technology for transportation
applications, as demonstrated by the prototyped fuel cell vehicles and announced near future
production plans by almost all major car manufacturers [1,2]. With the potential to become an
alternative to the currently used fossil fuel technologies in light-duty transportation, and thus reduce
the dependence on conventional fuels and the CO2 emissions, PEMFCs show not only economical,
but also environmental benefits.
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In a simplistic picture of the working principle of a PEMFC, the PEM separates the anode from
the cathode and conducts at very high rates protons, which emerge from hydrogen oxidation reaction
that is facilitated by the catalyst in the anode chamber [3]. However, the transport phenomenon
in the PEM is a complex process because, on one hand, besides protons being the only ones to be
transferred through the membrane, other species are produced at the anode too, and, on the other
hand, the leaking of fuel (hydrogen) and oxidant (air) from the anode chamber to the counterpart
must be prevented [4]. Moreover, a very efficient PEMFC requires the membrane to function in a
hydrated state, which usually lowers the mechanical strength. Therefore, great efforts have been spent
in the last years to develop and characterize materials that are approaching the properties of an ideal
“separator” [5], and to understand and optimize the water management in different components of the
PEMFC [6–8]. PEM materials should be characterized by a nanoscale phase separation into hydrophilic
domains and hydrophobic regions, which is a combination that enables a high conductivity and
provides a good chemical and mechanical stability, and thus membrane durability. Perfluorosulfonated
ionomers (PFSI) present high performances and stability in PEMFC operational conditions. Among
them, the Nafion (Du PontTM) is the most well-known material, and was established as benchmark for
such applications [9]. However, despite their excellent properties, the PSFI materials present several
drawbacks such as their high cost, lack of safety, and the requirement of supporting equipment during
manufacturing and use [10]. Furthermore, they have limitations under operating conditions at high
temperature (>80 ◦C) and low relative humidity (RH), when a decrease in conductivity appears due to
dehydration of the membrane at the anode side [11]. Moreover, free radicals such as hydroxyl and
hydroperoxyl are produced during the operation of the PEMFC as a result of the reaction of hydrogen
and oxygen on the electrodes or the decomposition of hydrogen peroxide with metal contaminants
in the membrane. These radicals initiate processes of chemical degradation that affect the durability
and the lifetime of the PEM [12,13]. Thus, the PSFI membranes seem not to be the ideal choice for
the commercialization of PEMFC technology. Several approaches have been proposed to overcome
these issues, considering both the improvement of the properties of the Nafion membranes and the
development of alternative membrane materials with similar or better performance. However, there
is always a trade-off between improving one or another of these properties [12]. The ion-exchange
capacity (IEC), and hence the conductivity, can be increased by adding ionic groups to the Nafion,
but this may lead to deterioration of the mechanical properties of the membrane due to excessive
swelling. In addition, the incorporation of hygroscopic inorganic fillers into Nafion improves the
mechanical and thermal stability and the retention of water within the membrane, but this leads to a
decrease in the number of sulfonate groups per unit volume, which reduces the conductivity. Recently,
it has been demonstrated that the incorporation of CeO2 and amine-functionalized carbon nanotubes
(ACNTs) into the Nafion matrix has a bifunctional consequence toward improving the proton transport
due to acid–base interaction between the proton donor sulfonic group and proton acceptor amine
group without the aid of water and the mitigating chemical degradation of membranes due to free
radical reduction, which is promoted by the ceria [12].

Alternative low-cost materials that present similar conductive and chemo-mechanical properties
as the PFSI membranes are continuously searched for. Different crystalline-amorphous polymer
architectures and the interrelation of their properties with the microphase separation structures, such as
crystalline domains, the formation of conducting regions, and the distribution of ionic groups and
water in the conducting regions were extensively studied in recent years [13–20].

Given the recent developments, which enable a controlled sulfonation of only the amorphous
phase, preserving thus the crystallinity of the material [21], and an improved resistance to oxidation
decomposition when fullerenes are added [22], the sulfonated syndiotactic polystyrene (s-sPS) in
its β-form is a good potential candidate for some PEMFC applications, as it presents a high proton
conductivity comparable to Nafion [23], high chemical and thermo-mechanical stability, and a
low cost [24]. The preparation of a s-sPS membrane should start from the δ-form (clathrate with
guest molecules) to enable a homogeneous sulfonation of only the amorphous regions, and can
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be subsequently transformed into the thermodynamically stable β-form by chemical/annealing
treatment [23,25]. sPS-based membranes may also find application in the energy storage field,
for increasing the safety of high temperature operating Li-ion batteries, for example [26].

The nanomorphology of PEM materials and the elucidation of water domains and conductive paths
at the microscopic level are highly debated topics. Even in the case of Nafion, several microstructural
models are still under consideration [27]. In a previous work [28], we reported a detailed microstructural
characterization of highly sulfonated membranes (above 50% sulfonation degree) based on an s-sPS
δ-clathrate co-crystalline form [29,30]). The microstructural characterization was carried out by
small-angle neutron scattering (SANS) during the complex preparation procedure of the membranes,
from the production of the sPS film samples in α-form followed by clathration with toluene guest
molecules (to yield the δ-form [31]), sulfonation and in situ hydration under controlled RH by using a
humidity chamber (Anton Paar). The use of uniaxially deformed sPS films enabled the assignment of
the scattering signals observed on different sectors of the SANS detector to specific morphologies that
formed and evolved in the sample during the clathration, sulfonation, and hydration/dehydration
processes. Besides the structural characterization of the crystalline lamellar stacks and the water
cluster morphologies evolving in the amorphous regions with the increasing RH, information on the
mechanical strength and stability of the membranes due to the preservation of crystallinity could
be assumed from the interpretation of the SANS data and confirmed at a later time in subsequent
experiments by wide-angle X-ray diffraction (WAXD).

In this paper, we report a structural investigation by contrast variation SANS on uniaxially
deformed s-sPS films containing the crystalline δ-form that were prepared with different degrees of
sulfonation. The films were loaded with fullerenes, in order to reproduce the conditions proposed for
such materials to reach the optimal chemical stability in a PEMFC environment. Although still rarely
mentioned in the fuel cell applications, PEMs based on fullerene-hydrocarbon composites are under
development have shown at the laboratory scale an improved stability due to the radical scavenging
role that is played by fullerenes and the interfacial hydrogen bonding between the functionalized
fullerenes and the host matrix [22,32]. A first insight on the microstructure of s-sPS membranes
incorporating fullerenes can be obtained from the combined analysis of the data obtained by SANS
and other complementary methods, such as UV-Vis spectroscopy and wide-angle X-Ray diffraction
(WAXD).

The SANS experiments were carried out over a wide wave-vector transfer Q-range, between
0.001 and 2 Å−1, which enabled the observation of scattering features from morphologies and
structures formed at very different length scales in the membranes, such as the 010 crystalline peak
of the crystalline lattice characteristic of the lamellae in the crystalline domains, the ionomeric peak
representing the structural correlation length for the ionic hydrophilic domains in the amorphous
regions, the interlamellar peak representing the correlation length between the crystalline lamellae,
the form factor of the water domains, and the large-scale fractal of the membranes. Thus, a very
extended length scale, from a few Å to nm, could be explored in this investigation. Due to the uniaxial
deformation of the films, some of the scattering details from these morphologies appear distributed
on specific detector sectors, such as the features that are characteristic of crystalline domains: the 010
crystalline peaks appear on equatorial sectors, while the interlamellar peaks appear in the meridian
sectors direction. Other morphologies yield scattering that is isotropically distributed over whole
detection area, such as the features from the amorphous regions, thus the ionomer peak and the water
domains form factor. A schematic view of the experimental geometry approach used in this study,
and of the novelty we have implemented compared to our previous approach [28], is shown in Figure 1.

In order to minimize the SANS incoherent background, deuterated sPS films have been used in
the study. The contrast variation method was involved to vary the scattering length density (SLD) of
different film components in a controlled way, i.e., by using either deuterated or protonated species
for the guest molecules in the crystalline regions, or different H2O/D2O mixtures for the hydration of
the membranes. Thus, the formation and evolution of all these morphologies during the hydration
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process could be fully understood following the model interpretation of the scattering curves, which
were averaged over the meridian and equatorial sectors for each contrast condition.
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Figure 1. Schematic view of the experimental approach used in this study: the uniaxially polymer
film deformation is indicated by the pink arrows, while the morphologies occurring at different length
scales, which are shown in the left side of the scheme, yield on the two-dimensional small-angle neutron
scattering (SANS) detector scattering features that appear at different scattering angles, either in the
wide-angle (WANS) or small-angle (SANS) regime, as isotropic or localized details.

2. Materials and Methods

2.1. Materials

The preparation and subsequent treatment-clathration, sulfonation, guest exchange in the
crystalline region—of uniaxially deformed deuterated syndiotactic polystyrene films were done
following a procedure that is extensively described in [28]. Films with variable degrees of sulfonation
were produced via a so-called solid-state sulfonation procedure that allowed a uniform sulfonation of
the phenyl rings of the amorphous phase and preserved the crystalline δ-form [21]. The thickness of
the films was about 100 µm. To vary the neutron scattering contrast, either deuterated or protonated
toluene were loaded as the guest in the clathrate form, either before or after sulfonation, by dipping the
films for 1 d in solvent, followed by drying at 40 ◦C under vacuum for a couple of hours. Fullerenes
C60 or C70 were uploaded in some of the s-sPS membranes by dipping the samples for more than
three weeks in saturated solution of fullerenes and protonated toluene. During the SANS experiments,
two films of different composition were subjected to in situ controlled hydration under vapors of
different H2O/D2O mixtures, by using a humidity chamber [28]. All reagents were purchased from
Sigma-Aldrich (Munich, Germany) and used as received. The D2O was obtained from Cambridge
Isotope Laboratories (purity D 99.8%).

2.2. Methods

The degree of sulfonation was checked at the neutron prompt-gamma activation analysis (PGAA)
instrument of Technical University München (TUM) installed at the Heinz Maier-Leibnitz Zentrum
(MLZ), Garching, Germany. Full descriptions of the experimental method and data interpretation can
be found in [28].

Qualitative analysis of the sulfonation, the incorporation of fullerenes, and the degree of
crystallinity were checked by Fourier-transform infrared (FTIR) spectroscopy using a PerkinElmer
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(Spectrum Two, Rodgau-Jügesheim, Germany) spectrometer equipped with a triglycine sulfate (TGS)
detector. The scanned wavenumber range was 4000–400 cm−1.

WAXD analysis of sulfonated films with and without the addition of fullerenes was done prior to
the SANS experiments in the range of 2θ between 5 and 35◦ by means of an X-ray powder diffractometer
Bruker 2nd Gen-D2 Phaser (Cu-source) of Jülich Centre for Neutron Science (JCNS) at MLZ (Karlsruhe,
Germany). The degree of crystallinity was determined as 100 Ac/(Ac + Aa), where Ac and Aa are
the areas determined by resolving the diffraction pattern according to [33], and can be considered
proportional to the crystalline and amorphous fractions of the polymer.

UV-Vis analysis of the same films was carried out with a Cary 100 SCAN UV-Vis Varian
spectrometer of JCNS (Palo Alto, CA, USA) at MLZ with the films placed in a specific holder with
quartz windows. The spectra were collected in the range 200–800 nm at a resolution of 100 nm/min.

Preliminary SANS measurements were carried out at the KWS-2 high intensity/extended-Q range
pinhole SANS diffractometer (Forschungszentrum Jülich GmbH, Jülich, Germnay) of JCNS at MLZ [34].
A Q-range between 0.02 and 0.7 Å−1 was covered by using two sample-to-detector distances, LD = 1.5
and 4 m and a neutron wavelength λ = 4.5 Å. The film samples were placed in the beam by means of
sandwich-type cells with quartz windows.

Extended Q-range SANS experiments have been performed at the time-of-flight (TOF) SANS
diffractometer TAIKAN, at the Material and Life Science Experimental Facility (MLF) of the Japan
Proton Accelerator Research Facility (J-PARC), Tokai, Japan [35]. A Q-range between 0.008 and 2 Å−1

was covered by using a broad neutron wavelength range λ = 0.7 to 7.8 Å, and the simultaneous use
of only the small-angle and middle-angle detector banks (due to restrictions imposed by the sample
environment). Involving the additional use of the wide-angle and back-scattering detector banks,
which are available at this instrument, too, a Qmax = 20 Å−1 could be otherwise reached in a single
measurement for a sample geometry that would allow the detection of the scattered neutrons in a wide
angular range. At the small-angle scattering diffractometer TAIKAN, the film samples were exposed to
the in situ controlled hydration within the range RH = 50 to 80% by means of an Anton-Paar humidity
chamber [28]. Contrast variation SANS measurements were carried out by exposing the sample to
mixed H2O/D2O vapors for different ratios of the two components at RH = 80%.

For both SANS instruments, the raw data was treated by a standard corrections and reduction
procedure [34,35], and then calibrated in absolute units by using a Plexiglas (at KWS-2) or a glassy-carbon
(at TAIKAN) secondary standard. The corrected and calibrated 2D data were integrated into
one-dimensional intensity over equatorial or meridian sectors of a 20◦ width. The SLD values
for different compounds in the s-sPS film morphology are listed in Table 1, as it was calculated or taken
from literature.

Table 1. The calculated scattering length density (SLD) for different components of the sulfonated
synditoactic polystyrene (s-sPS) films.

Compound SLD, 1010 cm−2

sPS (crystalline) 6.47
sPS (amorphous) 6.00

s-sPS (amorphous) 6.34
–SO3H 1.32 (1.1 [36])

D2O 6.38
H2O −0.56
d-Tol 5.66
h-Tol 0.94
C60 5.50
C70 5.67
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2.3. Data Analysis

Supposing we have N identical particles of volume Vp, which are located at random positions
and random orientations in the sample, then NVp = φVsample, where φ is the volume fraction of the
scattering particles in the sample. The contribution to the small-angle scattering intensity from these
particles that are decorated with a constant contrast factor ∆ρ is:

I(Q) = φ ∆ρ2 Vp P(Q) S(Q) + Bckgd (1)

where P(Q) represents the particle form factor, which relates to the intraparticle correlations, and S(Q)
represents the structure factor, which denotes the interparticle correlation effects. The contrast ∆ρ = ρp

− ρenv is the difference between the SLD of the scattering particles ρp and their environment ρenv,
where the environment can be a solvent, a film, or a metallic matrix. Usually, the factor (φ ∆ρ2 Vp) is
called the “forward scattering” I0 from the ensemble of scattering particles. The term Bckgd represents
a constant background, which arises mostly from the incoherent scattering contribution, and can be
observed as a constant level at high Q.

In the current study, we used the combination of the form factor and the structure factor to
describe the scattering from the water domains in the amorphous phase of the s-sPS films and the
lamellar stacks in the crystalline regions. For the water clusters, the spherical form factor:

Psph(Q) =

3sin (QR) −QR cos(QR)

(QR)2

2 (2)

was combined with the hard-sphere structure factor [37]:

S(Q, RHS) = [1 + 24 ηHS G(RHSQ)/(RHSQ)]−1 (3)

where R is the radius of the spherical cluster, RHS is the “hard sphere” radius of the interaction potential,
and ηHS is the volume fraction of hard spheres. The function G(RHSQ) has a complicated analytical
dependence on ηHS [37]. The lamellar stacks consisting of oriented crystalline lamellae that alternate
with amorphous interlamellar regions was described by the two-dimensional crystalline-amorphous
form factor [38], where crystalline lamellae have amorphous layers attached on both faces:

Plam(Q) = (∆ρcrPcr(Q) + ∆ρamPam(Q))2 D(QRl/2)
(QRl/2)

(πR2
l )

2
(4)

in combination with the paracrystalline structure factor:

Spara(Q) =
sin h(Q2σ2

D/4)

cosh (Q2σ2
D/4) − cos (QLD)

(5)

where LD is the interlamellar distance (periodicity), σD is its dispersion, and Rl is the lateral size of
the lamellae. Since we are dealing here with a ternary system consisting of the crystalline lamellae,
the interlamellar amorphous region, and the surrounding bulk amorphous region, the contrast factor
from Equation (1) was included in the form factor definition in Equation (4), with the aim to express the
difference in SLD between these three components. The Dawson function D(u) exhibits the following
asymptotic behavior: for u→∞, 2D(u)→1/u2 and for u→0, D(u)/u→1. The partial form factor of the
crystalline lamellae Pcr(Q) is given by:

Pcr(Q) =

sin (Qd
2 )

(Qd
2 )


2

(6)
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with d represents the lamellar thickness, while the partial form factor of the interlamellar amorphous
layers Pam(Q) has a complicated analytical definition [38] that depends on both the lamellar thickness d
and the thickness of the interlamellar layer Lb. Hence, LD = d + Lb. The SLD for three distinct regions
of the modeled morphology were explicitly considered in the fitting procedure: ρlam is the SLD of
the crystalline sPS, ρinter-lam is the SLD of the sulfonated interlamellar amorphous region, and ρbulk

is the SLD of the sulfonated bulk amorphous region. Thus, the contrast factors in Equation (4) are
∆ρcr = ρlam − ρbulk and ∆ρam = ρinter-lam − ρbulk. These three regions are affected in a different way by
hydration. The bulk and interlamellar amorphous regions are hydrated, so they swell upon water
uploading, as reported before [28]. Therefore, their SLD is changed according to:

ρbulk, inter-lam = (φpolρs-sPS +φwaterρwater) (7)

with ρs-sPS and ρwater representing the SLD for the sulfonated polymer and the H2O, D2O, or H2O/D2O
mixtures, as defined in Table 1, and φpol and φwater representing the volume fractions of polymer and
hydrated water in the swollen amorphous regions. Disregarding the free volume in the amorphous
polymer, which typically is very small [39], we can roughly assume thatφwater = 1−φpol in these regions.

The global water fraction in the amorphous phase can be determined from the interpretation of
the “forward scattering” from the water domains. However, there is an unknown partition of water
between the bulk and interlamellar amorphous regions. Moreover, due to the loading with guest
molecules, either protonated toluene or fullerenes, the SLD of the lamellar region is lower than that
of the crystalline sPS (Table 1). Therefore, in the fitting procedure of the experimental data from the
lamellar stacks (Equations (1), (4)–(6)), the SLD parameters ρlam and ρinter-lam were considered free
parameters. The ρbulk in this procedure was considered that of the amorphous sPS (Table 1). This is a
reasonable assumption if we consider that the sulfonated segments of the sPS chains in the bulk region
are contained in the water domains, thus not affecting the SLD of the amorphous segments in the
vicinity of the lamellar stacks. The obtained value for ρinter-lam was further used for rationalization on
the polymer volume fraction and water content in the interlamellar amorphous regions (Equation (7)).
On the other hand, the crystalline lamellae are not hydrated; therefore, the ρlam delivered by the fitting
procedure was used for the estimation of the amount of guest molecule included in the crystalline
region, in a similar way as shown in Equation (7), with the guest molecule instead of water. According
to [30], the amount of guest molecules included in the crystalline region may vary up to about 9% in
case of the δ-clathrate form. Therefore, the SLD of the crystalline region in our films may decrease from
the value reported in Table 1 for the crystalline sPS up to ρlam = 5.9 × 1010 cm−2, taking into account
the contribution of the protonated toluene to the overall SLD of the crystalline region.

3. Results and Discussion

3.1. Composition and Crystallinity Characterization.

From the quantitative point of view, PGAA delivered the sulfur-to-carbon (S/C) ratio of 0.065 and
0.155 for the two uniaxially deformed sPS films studied in this work. Following the method reported
in [40], which was used also in our previous study [28], sulfonation degrees of S = 19.5 and 46.3%
(molar fraction of sulfonated monomer units) were determined for the samples, which were later
subjects of doping with C60 and C70 fullerenes, respectively.

The FTIR spectra of the films doped with C60 (blue curves) or C70 (black curves) fullerenes are
shown in Figure 2 in parallel to that from a δ-form sPS film (red curve). Due to the multitude of
characteristic bands of sPS, only weak differences between fullerene-free and fullerene-doped films
could be observed, similar to those indicated in the region 1440–1470 cm−1 (Figure 2a). However, it is
not clear that the origin of these infrared bands can be attributed to fullerenes. An experimental FTIR
characterization of fullerenes in bulk or functionalized polymers can be found in [41] for C60 or [42]
for C70, while theoretical calculations were done in [43].
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Figure 2. FTIR spectra from different synditoactic polystyrene (sPS) films: δ-form (red line), sulfonated
and loaded with C60 fullerenes (blue line); sulfonated and loaded with C70 fullerenes (black line).
The region where additional infrared ands to those from the polymer film are observed (blue and black
arrows) is shown in panel (a), while the IR bands from the sulfonic ionic group (green arrows) are
shown in panel (b). Panel (c) shows the bands characteristic of sPS: the arrows indicate the peaks that
were considered to correspond to chain conformations in crystalline (purple) and amorphous (dark
yellow) phases.

The region of symmetric and asymmetric stretching of the SO3
− group is shown in Figure 2b.

The bands corresponding to the sulfonic group were observed at around 1240 and 1040 cm−1, which is
in good agreement with early reports on sulfonated copolymers [44,45].

From the evaluation of the bands that are characteristic to crystalline and amorphous sPS, the
amount of polymer in the ordered TTGG sequences can be satisfactorily estimated following the
procedure described in [46]. This would give a rough indication of the crystallinity of the sample.
Information about the FTIR spectra from deuterated sPS either in film or solution/gel samples is very
scarce in the literature. Therefore, for this exercise, we considered the bands in the range 500–600 cm−1,
which is a range that was never discussed before in the case of the deuterated sPS system and, which,
according to our investigations on crystallization from solution (results to be published soon), contains
information about either the helical or amorphous polymer chain conformation. Assuming that the
two peaks shown in Figure 2c for each sample could be assigned to the sPS in crystalline (556 cm−1)
or amorphous (545 cm−1) phases, the fraction of conformationally ordered polymer obtained from
the interpretation of the areas of the peaks would be about 35 and 22% for the films with a higher
sulfonation degree (loaded with C70) and lower sulfonation degree (loaded with C60), respectively.
A more accurate evaluation of the crystallinity can be obtained from the WAXD spectra.

In Figure 3a, the UV-Vis absorption spectra of the three samples are shown in parallel. The polymer
characteristic absorption features occur below 300 nm; therefore, the strong but rather featureless
absorption observed in the region 300–700 nm in the case of fullerenes-doped polymers may be
considered indicative for the incorporation of fullerenes in the membranes. Although some broad
features may be observed in the 300–350 nm and 500–600 nm regions, however, the characteristic
absorption bands for C60 or C70 fullerenes [42,47,48] are not clearly visible in these spectra. At this
stage of the study, we do not have yet a clear explanation for this observation, remaining that the
behavior of fullerenes incorporated into the s-sPS by the dipping of polymer films in saturated fullerene
solution will be investigated in detail in a forthcoming study. Nevertheless, the prompt-gamma
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activation analysis (PGAA), FTIR, and UV-Vis results confirmed the successful sulfonation and loading
of the sPS membranes with either C60 or C70 fullerenes.
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Figure 3. UV-Vis (a) and WAXD (b) spectra from different sPS films. The lines indicate sulfonated film
with crystalline δ-form (red line), sulfonated (with crystalline δ-form) and loaded with C60 fullerenes
(blue line), and sulfonated (with crystalline δ-form) and loaded with C70 fullerenes (black line).

WAXD spectra from the s-sPS films containing fullerenes are presented in the Figure 3b in parallel
with the pattern from the s-sPS film with only protonated toluene loaded in the crystalline regions
(clathrates). The pair of peaks at around 8 and 10◦ in 2θ is indicative for the formation of the crystalline
δ-form of the clathrates [29,49]. The presence of these peaks in the patterns collected on the samples
loaded with fullerenes indicates that the sPS crystalline habit is preserved in these samples, too. Their
slight enhancement when C60 or C70 fullerenes were added may relate to anchoring of the fullerenes
to the sPS chains, as it was discussed in [49]. The positions of the diffraction peaks are the same in all
WAXD patterns, which indicates that the addition of fullerenes does not change the parameters of
the polymer crystalline lattice. Since the formation of the crystalline regions in the membranes is a
consequence of the initial exposure of the film samples to the action of toluene from solution [28] and
the fullerenes may replace the toluene molecules in the δ-form sPS co-crystals via the guest exchange
mechanism, we assume that the subsequent incorporation of fullerenes does not significantly alter the
crystalline degree of the membranes. This is different from the situation of the films that are produced
by common gelation of the sPS and fullerenes [49], when the incorporation of the fullerenes into the sPS
lattice was evidenced by the slight changes that were observed in the position of the diffraction peaks
from the polymer film containing fullerenes compared to the fullerenes-free polymer film. From the
fitting of the diffraction patterns, the Ac (peaks) and Aa (background) areas were estimated, and the
crystallinity of the membranes could be evaluated according to [33]. This was about 33 and 24% for the
films with a higher sulfonation degree (loaded with C70) and lower sulfonation degree (loaded with
C60), respectively, which is quite close to the results obtained from the analysis of the FTIR spectra.

As the detailed analysis of WAXD spectra and of fullerenes behavior in s-sPS films is beyond the
goal of this work, we limit ourselves here to a qualitative conclusion. Based on the characterization
methods applied prior to SANS on our samples, we can confirm the presence of the crystalline δ-form
in all films and the loading of samples with fullerenes, and we may only suppose that in some of
the cavities between the sPS helices in the crystalline region, the protonated toluene initial guest was
replaced by the fullerenes.
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3.2. SANS on Dry Films

The main objective of this work is the microstructural characterization of the s-sPS membranes
under hydration and the understanding of the formation and evolution of morphologies at te nanoscale
and mesoscale. In our previous study [28], we discussed the indirect observation on the preservation
of crystallinity in such systems during the chemical treatment and hydration procedures. A direct
observation of this effect together with a detailed microstructural characterization of the membranes
over a wide length scale can be achieved by using the contrast variation SANS over a wide Q-range.
This enables the collection of the scattering features from the crystalline ordering in the range of
nanometers up to the micrometer size large-scale domains in one experiment. For this purpose,
the novel approach that involves careful SANS measurements at high angle was checked first at the
KWS-2 SANS instrument in combination with the contrast variation method on two δ-clathrate sPS
films with toluene as the guest in the cavities between the polymer helices: one film was investigated
as produced, while the other one was investigated after subsequent sulfonation and loading with
C70 fullerenes.

In Figure 4, the scattering patterns from the uniaxially deformed sPS film containing
clathrate co-crystalline δ-form with either protonated toluene or deuterated toluene are shown
in two-dimensional (Figure 4a,b) and one-dimensional (Figure 4c) presentations, respectively, following
the averaging over the meridian and equatorial sectors. In Figure 4a, two strong maxima can be observed
in equatorial sectors at high angles, while two local maxima can be distinguished at low scattering
angles in the meridian direction, above and below the beam stop, which is visible in the middle of the
detector. These 010 reflections appear on the equator and the interlamellar reflections appear on the
meridian, respectively, as depicted in the sketch presented in Figure 1. In Figure 4b, these features are
either barely observable (the 010 reflections) or vanished (the interlamellar reflections). These features
are also depicted by the one-dimensional patterns in Figure 4c. The 010 reflections are yielded by
the correlation between polymer sheets that sandwich in between the guest molecules. The SLD of
deuterated crystalline sPS is ρ = 6.47 × 1010 cm−2, while that of the toluene is ρ = 0.94 × 1010 cm−2 and
ρ = 5.66 × 1010 cm−2 for the protonated and deuterated species, respectively. Thus, protonated toluene
molecules hosted between deuterated sPS helices provides a high neutron contrast, which is most
apparent from the correlation between 010 planes (see Figure 1, the crystalline lattice details). In case
of using deuterated toluene guests, the neutron contrast is much lower, and the peaks on the equator
become less obvious in the scattering pattern.
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characterized by a high sulfonation degree (S = 46.3%) and a crystallinity of roughly 35%, and was 
clathrated with protonated toluene and subsequently loaded with C70 fullerenes. The data are 
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Figure 4. Two-dimensional SANS patterns from a deuterated sPS film clathrated with protonated
toluene (a) or deuterated toluene (b), respectively, and the one-dimensional scattering profiles from
the same samples averaged over the equatorial (line) or meridian (symbol) directions, respectively
(c). The panels (a,b) show data collected at LD = 2 m, while the experimental curves in panel (c) were
obtained by merging data collected at LD = 2 and 4 m.
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On the other hand, the interlamellar correlation peaks appear due to the difference in SLD between
the amorphous and crystalline regions of the sPS co-crystals with guest molecules. The SLD of the
amorphous sPS is ρ = 6 × 1010 cm−2. Loading the crystalline regions with protonated toluene will
provide those regions with a lower SLD than the interlamellar amorphous regions, which will evidence
the interlamellar correlations. In contrast, by using deuterated toluene, the difference in SLD between
the crystalline lamellae and interlamellar amorphous regions will become much smaller than in the
case of using protonated toluene. This will cause the interlamellar peaks on the meridian direction in
the scattering patterns to vanish. Detailed SANS studies on the exchange of small guest molecules in
sPS co-crystals are reported in [31,50].

This contrast variation SANS investigation has proven that the status of the crystalline lattice
can be monitored during the s-sPS sample treatment by observing the scattering features yielded at
high angles. In Figure 5, we show the high Q scattering patterns from a dry s-sPS film. The film is
characterized by a high sulfonation degree (S = 46.3%) and a crystallinity of roughly 35%, and was
clathrated with protonated toluene and subsequently loaded with C70 fullerenes. The data are
presented two-dimensionally (Figure 5a) and averaged over the equatorial and meridian sectors
(Figure 5b). The 010 reflections are well visible in the equatorial sectors, while the ionomer peak,
which for the dry membrane is indicative of the mean distance between the sulfonic ionic clusters [51],
shows an isotropic distribution. The interlamellar reflections appear at much lower Q values in the
case of the sulfonated samples, and are thus not visible in this experimental configuration. This is
due to the swelling of the interlamellar amorphous regions, as already reported in [28]. A correlation
distance of ξion = 2π/Qion = 14.95 Å was obtained from the evaluation of the ionomer peak position in
Q. This distance is smaller than the one determined for dry Nafion [52]. Taking into account the fact
that the neutron SLD of fullerenes is very different from that of protonated toluene, but close to that of
deuterated toluene [53], we may conclude that the replacement of the initial protonated toluene guest
in the deuterated sPS crystalline region by the subsequently loaded fullerenes took place to a very
small extent only, since the scattering features characteristic of the crystalline lattice were not affected
apparently. Otherwise, the 010 reflections should have been reduced drastically, as in the case of using
deuterated toluene as the guest in the sPS co-crystals. Thus, the scattering features from the crystalline
regions in the s-sPS films can be still observed after the loading of samples with fullerenes.
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Figure 5. Two-dimensional SANS pattern from a dry s-sPS film containing the co-crystalline δ-phase
with protonated toluene and loaded with C70 fullerenes (a) and one-dimensional scattering profiles
from the same sample averaged over the equatorial (line) or meridian (symbol) directions, respectively
(b). All data were collected at LD = 2 m.
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3.3. SANS on Hydrated Films—Variation of Hydration Level

With this information at hand, two s-sPS samples with different degrees of sulfonation and
crystallinity, which were loaded with either C60 or C70, were investigated at the TOF SANS
diffractometer TAIKAN during hydration at different RH levels and with different mixtures of
H2O/D2O.

Figure 6 presents a selection of one-dimensional scattering data from the same s-sPS sample
that was discussed in Figure 5, and which was hydrated with H2O at different RH levels. The data
were averaged over the meridian and the equatorial sectors. The scattering patterns present three
distinct peak-like features, which are observable for all hydration levels. These features are indicative
of structural levels occurring at different length scales in the complex morphology of the polymer films.
In the high Q range, the 010 crystalline peak appears in the equatorial sectors at around Q010 = 0.6 Å−1,
as in the case of the sPS clathrates (Figure 4c) and the dry s-sPS sample (Figure 5b). This peak, which
denotes a mean repeating distance between the sPS sheets of about 10–11 Å, does not change its
position and intensity with the increase of the RH. This observation led to the conclusion that the
hydration does not affect the crystalline structure. Again, the neutron contrast is provided by the
protonated toluene guest molecules, which occupy the cavities between the deuterated s-PS helices to
a larger extent.
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Figure 6. One-dimensional SANS patterns from the high sulfonated s-sPS film containing the
co-crystalline δ-phase with protonated toluene and loaded with C70 fullerenes hydrated at different
RH levels. Experimental data (symbols) averaged over the equatorial (a) or meridian (b) directions
are shown separately, with the lines corresponding to the model interpretation of the scattering
profiles, as discussed in text. The main structural features and their behavior with the variation of RH
are indicated.

The ionomer peak is present in data on both the meridian and equatorial sectors, as it represents
a scattering feature characteristic of the hydration occurring in amorphous regions, and is thus
isotropically distributed on the detection area. The peak position Qion depends on the level of the
film hydration [54,55]; thus, it moves toward lower values of Q with the increasing RH. A detailed
presentation of the high Q scattering range from dry and hydrated films is given in Figure 7. In our
sample, the correlation between the hydrated ionic clusters increases from about ξion = 14.95 Å for dry
film to about ξion = 23.7 Å for hydrated film at RH = 80%. A close inspection of the ionomer peak
profile reveals a shoulder-like feature on the high Q side of the peaks, which becomes clearer with
increasing humidity, due to the shift of the peak position to lower Qs. The Q-position of this shoulder
seems to remain constant, regardless of the RH, and corresponds to the Q-position of the ionomer peak
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that is characteristic of a dry membrane. Apparently, the part of the ionic clusters that gives rise to the
occurrence of the ionomer peak in dry conditions is still not hydrated, even for higher RH values.Membranes 2019, 9, x FOR PEER REVIEW 13 of 22 
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the position of the ionomer peak in increasing the hydration, and the dark red arrow marks the 010
reflection, while the gray arrow points to the ionomer peak position characteristic of the membrane in a
dry state.

In the low Q region, the interlamellar peak characteristic of the oriented lamellar stacks (Figure 1)
can be observed in the meridian scattering patterns. The peak position Qlam moves only slightly to lower
Q values with increasing RH, and denotes an interlamellar correlation of about 170–200 Å. In contrast,
the equatorial scattering patterns exhibit at low Q a kind of plateau and a shoulder-like feature at
around Q = 0.05 Å−1, which resemble characteristics of weakly correlated spherical morphologies.
We propose that they represent loosely correlated large hydrated regions that include the ionic clusters.
The scattering from these water domains should appear isotropically on the detector. However, in the
meridian sectors, the scattering from the lamellar stacks is superimposing over it.

The scattering from these sulfonated s-sPS films is characterized by a high sulfonation degree
and a relatively high crystallinity, which are loaded with C70 fullerenes, and resemble that from the
fullerene free s-sPS films discussed in [28]. We may conclude that the partition of fullerenes between
the amorphous and crystalline regions of these s-sPS films has a negligible effect on the scattering
properties of the samples. As qualitatively concluded before, the C70 fullerenes seem to be located
mostly in the amorphous regions rather than in the co-crystalline phase.

On the other hand, the scattering from fullerenes or fullerene assemblies dissolved in solution
or amorphous polymer environment, similar to the deuterated polystyrene in the present case,
is very weak [56]. Therefore, we can consider it negligible compared to the contribution from
other morphologies that form and evolve in our samples during the sulfonation and hydration
processes. The experimental results in Figure 6 were interpreted via structural models: the data on
equatorial sectors were described by Equations (1)–(3), while the meridian patterns were described by
a superposition of scattering from spherical domains and lamellar stacks (Equations (4)–(6)). The water
domains were characterized by a spherical form factor combined with the hard-sphere structure
factor, which is an approach that is usually employed for the interpretation of scattering data from
spherical polymeric micelles [57,58], but is also applied for the characterization of ionic aggregates in
PEMs [59,60]. Thus, four free parameters are used for describing the scattering from water domains in
the Q range between 0.008 and 0.2 Å−1 according to Equations (1)–(3), namely the “forward scattering”
(I0)sph from the ensemble of the spherical water domains, the radius R of these domains, the hard
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sphere volume fraction ηHS, and the hard-sphere radius RHS. Additionally, we added a Gaussian
term for the description of the ionomer peak at high Q and the constant background (Equation (1)).
The three parameters of the Gaussian function describing the ionomer peak—amplitude, width, and
position—were left free during the fitting procedure, while the background was kept fixed, as given
by the flat behavior of the scattering curves in the high Q range. The ionomer peak description was
included in the model because of its presence in the meridian pattern, too, which will help for an
accurate modeling of these data in a subsequent step. The 010 peak was excluded from the fitting
procedure. Despite the multitude of parameters, we consider that the fitting procedure offers reliable
results, because the two structures that are modeled appear at very different length scales, therefore
without influencing one another to a significant extent. If only the form factor is used for modeling
the water domains, the experimental data cannot be properly described. The weak correlation effects
between the water domains seem to be a consequence of the high sulfonation degree of this sample,
when water clusters are densely formed in the amorphous region. Detailed discussions of the formation,
growth, and percolation of water clusters as a function of the hydration level and functionalization of
PEMs can by found in [9,61].

The “forward scattering” from the ensemble of the spherical water domains and the size of
these domains is of direct interest for the characterization of our system. We should note that a large
polydispersity in size (σR ≈ 20%) of the water domains had to be considered in the fitting procedure in
order to obtain a good fit in the Q region 0.1–0.2 Å−1. Knowing the size and the SLD of the scattering
objects—the water domains, and the SLD of their environment—and the sulfonated segments of s-sPS
(Table 1), we could extract information about the volume fraction φsph occupied by the scattering
objects in the sample (Equation (1)), in a similar way to [62]. The volume fraction occupied by water in
the whole amorphous region, (φwater)amorphous, is reported in Table 2. From the water volume fraction
in the sample volume estimated from the interpretation of the (I0)sph, the reported value for each RH is
obtained by taking into account the crystallinity of the film, which was estimated at 35%, and the fact
that only the amorphous regions are hydrated.

Table 2. The structural and scattering parameters of the hydrated and lamellar morphologies delivered
by the model interpretation of the experimental data according to Equations (1)–(7).

Sample Condition R, Å/RHS,
Å

(φwater)amorphous,
%

ρlam, ×
1010 cm−2

Lb, Å/σD,
Å

ρinter-lam, ×
1010 cm−2 (φwater)inter-lam, %

S = 46.3%,
with C70

RH = 50%
100 H2O/0

D2O
55.0/73.0 4.53 6.012 130.6/107.9 5.989 5.09

-
RH = 70%
100 H2O/0

D2O
58.8/77.0 7.45 6.012 151.6/114.7 5.983 5.17

-
RH = 80%
100 H2O/0

D2O
68.6/85.0 12.63 6.012 172.0/120.5 5.981 5.20

- - - - - - -

S = 19.5%,
with C60

RH = 80%
100 H2O/0

D2O
52/- 18.20 6.003 159.2/99.3 5.989 5.10

-
RH = 80

%68 H2O/32
D2O

52/- 17.85 6.003 155.6/106.7 5.993 7.20

- - - - - - - -

-
RH = 80%
0 H2O/100

D2O
52/- 18.50 6.003 135.4/110.9 5.999 -

The data measured on the meridian sector were modeled for a morphology consisting of oriented
crystalline-amorphous lamellar stacks, which are “embedded” in a bulk amorphous environment
(Figure 1). The scattering was described by combining Equations (1) and (4)–(6), and was superimposed
over the scattering from water domains (including the ionomer peak contribution), which is isotropic
and is known from the model interpretation of the equatorial data. Assuming a very large lateral
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extension of the lamellae, Rl > 1000 Å—thus out of the size domain that is covered by the SANS
window—and a constant thickness of the crystalline lamellae d = 60 Å, which is an average value of
what is reported in the literature for sPS crystals with different degrees of crystallinity and subjected
to different treatments [63], only two free size parameters were used in the fitting procedure. These
were, namely, the thickness of the interlamellar layer, Lb, and the dispersion (smearing) parameter, σD,
of the interlamellar spacing, LD = d + Lb. As discussed in Section 2.3, the SLD of the crystalline and
interlamellar amorphous layers, ρlam and ρinter-lam, were considered free during the fitting procedure,
while that of the bulk region ρbulk was considered that of the amorphous sPS (Table 1). Finally,
the volume fraction of the lamellar stacks in Equation (1) was considered fixed and taken from the
assumed crystalline degree of the material (35%).

All three experimental curves in Figure 6b were modeled simultaneously. Since the crystalline
lamellae are not changing during hydration, the ρlam free parameter was considered the same for all
curves, while the other free parameters were left to vary specifically to each RH condition. The model
lines in Figure 6b describe rather well the experimental data, and the fitting procedure delivered the
main parameters reported in Table 2. As we already noted, the sulfonation of the amorphous regions
in the sPS film induced a swelling of the interlamellar domains in comparison with the non-sulfonated
films, as reported in [28]. Therefore, the slightly larger value for the thickness of the interlamellar
layer, Lb, and resulting interlamellar spacing, LD, was obtained in our case. This quantitative analysis
indicates a certain swelling of the interlamellar regions with increasing hydration, which was deduced
from the slight increase in the thickness of the interlamellar layer Lb. However, we should note that
the model interpretation of the current data also indicates an increase in the smearing σD of the fitted
interlamellar correlation distance between the oriented lamellae LD = d + Lb, which makes the actual
swelling of the amorphous interlamellar layer difficult to assess.

To obtain semi-quantitative information about the volume fraction of water accumulated in the
interlamellar amorphous region, the fitted SLD was further interpreted based on the assumptions made
on the polymer and water volume fractions in these regions (Section 2.3). Thus, at a low hydration level,
the water fraction in the interlamellar space is rather similar to that in the whole amorphous regions
of the film sample. With increasing RH, the water domains grow in size and number, apparently
(Table 2). From the evaluated values for (φwater)amorphous and (φwater)inter-lam, we can conclude that
the formation and growth of the water domains with increasing hydration seem to happen almost
only in the amorphous bulk region, while the water volume fraction in the interlamellar amorphous
layers remains quite constant. This may also explain the aspect of the ionomer peak (Figure 7), due to
ionic clusters that remain dry still at high RH values. In addition, keeping in mind that the hydrated
regions are characterized by a large polydispersity in size, we can assume that smaller water domains
are present in the interlamellar regions compared to the bulk regions. These effects may be caused
by the increased flexibility of the sPS chains in the bulk amorphous domains compared to that of
the amorphous sPS chains between the crystalline lamellae, which favors the formation and growth
of water domains mostly in the bulk amorphous region. For very high hydration levels, RH > 85%,
a growth and percolation of water domains takes place in the bulk region, which ultimately leads to
changes in the orientation and position of lamellar stacks, as reported before [25]. The preservation of
the lamellar stacks arrangements even at a very high hydration level (saturation) is indicative of the
lower water uptake in the interlamellar amorphous regions as in the bulk amorphous ones.

Finally, the fitting procedure delivered the value ρlam = 6.012 × 1010 cm−2 for the SLD of the
crystalline lamellae, a value which is lower than that of crystalline sPS (Table 1). If we consider that
the sPS lamellae are loaded with a protonated toluene guest, from the interpretation of the fitted
value, we obtain a volume fraction of about 8.2% protonated toluene hosted between the sPS helices in
the crystalline region, which is a value that is in very good agreement with what is reported in the
literature [30].
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3.4. SANS on Hydrated Films—Neutron Contrast Variation

The equatorial and meridional scattering patterns from of the s-sPS film with a low degree of
sulfonation (S = 19.3%) and lower crystallinity (22%) loaded with C60 fullerenes are presented in
Figure 8. They were collected at a constant hydration level, RH = 80%, which was achieved using
different H2O/D2O mixtures. Three neutron contrast conditions corresponding to the H2O/D2O ratios
(vol%) of 100/0, 68/32, and 0/100 were investigated. The middle ratio corresponds to the matching SLD
calculated for the sulfonic acid terminal group (SO3H).Membranes 2019, 9, x FOR PEER REVIEW 17 of 22 
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Figure 8. One-dimensional SANS patterns from the low sulfonated s-sPS film containing the
co-crystalline δ-phase with protonated toluene and loaded with C60 fullerenes hydrated at relative
humidity (RH) = 80% with different H2O/D2O ratios, as indicated in the right side of the plots.
Experimental data (symbols) averaged over the equatorial (a) or meridian (b) directions are shown
separately, with the lines corresponding to the model interpretation of the scattering profiles, as discussed
in the text. The main structural features are indicated by arrows, while the solid lines in the panel (a)
indicate the power law behavior of the scattering intensity in different Q ranges.

For the 100/0 H2O/D2O case, the same scattering features as in the case of the sample with a high
degree of sulfonation (Figure 6) can be observed: the 010 crystalline peak that is revealed only in
the equator direction, the isotropic ionomer peak that is visible in both the equatorial and meridian
scattering patterns, and the interlamellar peak that is observed only in the meridian direction, at a
lower Q value than the ionomer peak. The profile of the interlamellar correlation peak is not as strong
as in the case of the sample with a higher sulfonation degree (Figure 6), which may be due to the lower
crystallinity in the present sample. Unlike for the high sulfonation degree sample, in the present case,
the scattering from the water domains (equatorial sectors) does not show a shoulder-like feature at
around Q = 0.05 Å−1. Instead, a strong upturn appears toward the low Q region. A similar feature
was observed in the very low Q region of the scattering patterns from highly sulfonated films [28].
The absence of the shoulder-like feature indicates that there is no correlation effect between the water
domains. This may be due to the lower sulfonation degree in the present sample, which makes the
water domains form and grow in the amorphous regions well separated from each other. On the other
hand, the upturn at low Q, which appears stronger on the equator direction due to the stretching
of a sample on the vertical axis, arises from the large-scale fractal-like character of the membranes.
This feature is not visible toward low Q values in the patterns reported in Figure 6. This may be
a consequence of the stronger correlation effects between the lamellae in the stack in that case: the
strong structure factor peak induces an intensity drop toward low Q, and consequently, the intensity
upturn is becoming observable at lower Q values. The intensity upturn at low Q values can be
described by a power law [28,38], which should be added to the model equations that are used for
fitting the experimental data, but is less important for the data interpretation in this work. The 70/30
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H2O/D2O data show basically the same scattering features that are shown by the 100/0 H2O/D2O
patterns, only the global intensity is lower, due to the lower contrast achieved between the hydrated
and non-hydrated components of the film morphology. No matching of any scattering feature is visible.
The data measured under the 0/100 H2O/D2O contrast show a different behavior from the other two
contrast conditions. The first striking effect is the vanishing of the ionomer peak. We assume that
the matching of the scattering properties of ionic clusters and surrounding water is achieved, which
renders the correlation between the ionic clusters no longer visible. From this observation, a very
important conclusion may be drawn: the ionic clusters that are promoting the water uptake by the
membrane consist of an association of larger sections of neighboring s-sPS chains in the region of the
benzene ring and the sulfonic acid terminal group, which are correlated over the distance 2π/Qion.
With increasing hydration, the water domain grows, and the correlation distance between these groups
increases. The correlation effects are vanishing in the scattering patterns when the hydration medium
has a similar SLD to that of the sulfonated sPS segment, which is roughly the D2O case.

Another peculiarity of the scattering data in this contrast condition is the low Q behavior, where a
Q−1 power law behavior of the scattered intensity may be roughly identified in the equatorial profile,
rather than the spherical form factor profile combined with a low-Q steeper power law feature as for
the other contrast conditions, or the case of the highly sulfonated sample [28]. The Q−1 power law
behavior is indicative of the one-dimensional structures present in the sample. If we consider that the
water accumulates along groups of elongated s-sPS chains in the amorphous region, this will highlight
the hydrated regions as one-dimensional arrangements in contrast to the surrounding crystalline or
non-sulfonated sPS environment, which is in agreement with the observed scattering behavior.

The interpretation of the experimental data was done in a similar way as for the sPS film with
a higher sulfonation degree (Figure 6). The equatorial data were described by the combination of a
spherical form factor of the water clusters (Equation (2)) and a Gaussian feature of the ionomer peak.
An additional Q−3 power-law term was added to describe the low-Q data behavior. The meridian
data were fitted by a superposition of the scattering features from the water clusters and the correlated
lamellar stacks (Equations (4)–(6)). The modeling of the experimental data was quite successful, and has
delivered the parameters reported in Table 2. For the description of the equatorial data, only a spherical
form factor was considered, as no tracks of correlation between the water clusters were observed.
The experimental data were separately fitted on the equatorial sectors first, to obtain the water domains
parameters, and then on the meridian direction, simultaneously for all contrast conditions. The fitting
procedure was carried out as discussed in Section 3.3. The Lb parameter was fitted, but kept the same
for all contrast condition, since they were measured at the same RH. The low-Q power law behavior
was considered only for the equatorial data interpretation, where it is more prominent due to the
uniaxial sample deformation in the vertical direction.

The volume fraction that is occupied by water in the whole sample is roughly the same for all
contrast conditions, about 18%, which is to be expected since all measurements were carried out at the
same RH.

From the fitted SLD of the interlamellar layers, semi-quantitative information about the volume
fraction occupied by water in these regions could be obtained. Thus, the water occupies between 5%
and 7%, as delivered by the fit of the 100/0 and 70/30 contrast conditions. The fitted results for the 0/100
contrast condition could not be further interpreted in a reliable way. A value with no physical meaning
was obtained; therefore, we believe that in this case, a more specific model should be used for the
interpretation of the experimental data. Nevertheless, all the values obtained for the lamellar stacks in
the other two contrast conditions are consistent with each other. Therefore, the model interpretation of
this data is considered realistic. Finally, the value ρlam = 6.003 × 1010 cm−2 for the SLD of the crystalline
lamellae delivered a volume fraction of about 8.5% protonated toluene hosted between the sPS helices
in the crystalline region, which again is a value that is in very good agreement with what is reported in
the literature [30].
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4. Conclusions

SANS with contrast variation was used to resolve the complex morphology of the sulfonated
semi-crystalline syndiotactic polystyrene membranes at different hydration levels. Samples with
different crystallinities were studied for different sulfonation degrees achieved by using the solid-state
sulfonation procedure, which only affects the amorphous regions and leaves the crystallinity unchanged.

Fullerenes, which may improve the resistance to oxidation decomposition in PEMFC conditions,
were incorporated in the membranes. Since no changes appear in the peak positions observed in the
WAXD patterns, the fullerenes seem to be chiefly located in the amorphous regions of the samples.
Apparently, the fullerenes do not influence the formation and evolution of the morphologies in the
polymer films, as no significant differences were observed in the SANS patterns compared to the
fullerenes free s-sPS membranes, which were investigated in a previous study. On the other hand,
the scattering from fullerenes or fullerene assemblies dissolved in solution or an amorphous polymer
environment is very weak [56], and provides a contribution to the measured scattering patterns that
can be considered negligible compared to that from the dry or hydrated polymer morphologies in our
samples. A separate study should be devoted to the behavior of fullerenes in these films, as long as
the UV-Vis results also have not clearly revealed the absorption peaks specific to the fullerenes units,
although the presence of fullerenes in the samples could be confirmed.

The formation of the crystalline regions in the membranes is a consequence of the initial exposure
of the film samples to toluene in solution. Crystalline lamellae characterized by the co-crystalline
δ-form of sPS with toluene molecules were formed. The exchange between deuterated and protonated
toluene in the cavities between the sPS helices allowed for the variation of the neutron SLD of crystalline
lamellae. The hydration of samples under controlled relative humidity affected only the sulfonated
amorphous regions. The variation of the scattering properties of the hydrated domains was achieved
using different H2O/D2O mixtures.

The use of uniaxially deformed films allowed the separation on different detection sectors of the
scattering from structures of similar size but different orientation and functionality, which compose the
dry and hydrated membrane morphologies. The SANS investigation carried out over a wide Q-range
allowed the observation and characterization with models of structures that appear and evolve with
increasing humidity at different length scales.

According to our qualitative and quantitative analysis, the hydration water is distributed to
the same extent in the interlamellar and bulk amorphous regions at low hydrations, whereas with
increasing the hydration level, the water accumulates predominantly in the bulk amorphous region.
The contrast variation measurements revealed that the ionic clusters promoting the hydration and
conductivity of the membranes consist not only of sulfonic groups, but also of segments of sPS
that are affected by the sulfonation process. At very high hydration levels (saturation), the water
domains evolve into water channels, which induce a displacement and change in orientation of lamellar
stacks [28]. Nevertheless, the crystallinity, and hence the robustness of membrane, is preserved.

A global picture of the multiple structural level character of the membrane morphology, as deduced
from the SANS analysis, is reported in Figure 9. Knowing now in detail the morphology of the s-sPS
polymer films in dry and hydrated states, the investigation of the influence of the temperature on
the microstructure in such membranes under controlled humidity conditions will be the subject of a
forthcoming study.
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