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Abstract: Polymer blending and mixed-matrix membranes are well-known modification techniques
for tuning the gas separation properties of polymer membranes. Here, we studied the gas separation
performance of mixed-matrix membranes (MMMs) based on the polyurethane/poly(vinyl alcohol)
(PU/PVA) blend containing silica nanoparticles. Pure (CO2, CH4, N2, O2) and mixed-gas (CO2/N2

and CO2/CH4) permeability experiments were carried out at 10 bar and 35 ◦C. Poly(vinyl alcohol)
(PVA) with a molecular weight of 200 kDa (PVA200) was blended with polyurethane (PU) to increase
the CO2 solubility, while the addition of silica particles to the PU/PVA blend membranes augmented
the CO2 separation performance. The SEM images of the membranes showed that the miscibility of
the blend improved by increasing the PVA contents. The membrane containing 10 wt % of PVA200
(PU/PVA200–10) exhibited the highest CO2/N2~32.6 and CO2/CH4~9.5 selectivities among other
blend compositions, which increased to 45.1 and 15.2 by incorporating 20 wt % nano-silica particles.

Keywords: blend membranes; mixed-matrix membranes; polyurethanes; poly(vinyl alcohol);
gas permeability

1. Introduction

Membrane technology plays an important role in reducing the manufacturing cost and energy
consumption in industrial processes [1–4]. For many practical applications, such as CO2 removal from
natural gas or CO2/N2 separation, seeking new materials with high gas permeability and selectivity
is great importance [5,6]. Polymer blending and mixed-matrix membranes (MMMs) are attractive
techniques for the development of membranes with high separation performance. In particular,
polymer blending is a simple approach to combine the advantages of a highly permeable and a highly
selective polymer pair to improve the properties of polymer membranes [7–10]. Besides, it has been
shown that the incorporation of inorganic particles (e.g., silica, MOFs, zeolites) to a polymer matrix can
improve the separation performance, mechanical properties, and control the aging and plasticization
of the membranes [11–14].

The gas permeability of polymer blends mostly depends on the phase behavior. In general,
the polymer blend morphology can be categorized into two types: (i) miscible and (ii) immiscible or
partially miscible. In the miscible blend, the polymer pairs are entirely dissolved into each other and
make a homogenous single-phase mixture. By contrast, the polymer pairs in immiscible blends are not
dissolved into each other and make a separated phase by a weak polymer–polymer interface, which
leads to inferior mechanical–thermal properties [15–19]. In recent years, partially miscible blends have
been extensively used for gas separation applications, and their performance is dependent on the
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morphology, composition, and testing conditions (i.e., temperature, pressure) [20]. In mixed-matrix
membranes, the selection of the filler and polymer matrix is important for the separation performance.
The poor adhesion between the inorganic fillers and glassy polymers is a large challenge, which leads
to non-selective voids and deteriorates the performance of the membrane [21]. Therefore, the blending
of glassy and rubbery polymers has been proposed to overcome this problem. The high chain mobility
of rubbery polymers provides strong interaction with inorganic fillers, which is a requirement for the
fabrication of defect-free gas separation membranes [20,22].

Rubbery polymers are well-known materials for the development of membranes with high
CO2/light gas selectivity. Moreover, increasing the CO2 solubility is highly demanding for the
improvement of the separation performance, especially for CO2/N2 industries, where the molecular
sieving does not play a significant role. Among rubbery polymers, PUs have been studied for CO2/N2

separation in recent years because of their structural versatility and good filmability. Besides, the
ethereal groups in PUs are suitable sites for CO2 sorption. PUs are block copolymers consisting of
hard and soft segments of urethane and polyether or polyester, respectively, which are usually phase
separated. The soft segment is responsible for the elasticity properties of PUs, while the physical and
mechanical features are controlled by the urethane and urea linkages [23,24]. Although they have high
permeability and a good filmability, the selectivity of the PU membrane is not so attractive.

There have been many efforts to improve the selectivity of PUs by adding inorganic particles
or blending with highly selective polymers [25–27]. Typically, the selectivity of the membranes is
enhanced by blending PUs with highly selective glassy polymers such as poly(methyl methacrylate)
(PMMA), polyetherimide (PEI), and poly(amide-imide) (PAI) [8,27]; however, the gas permeability
decreases as expected due to the lower free volume of the glassy polymers. In another study, the small
addition a third component (polyethylene oxide-polypropylene oxide-polyethylene oxide triblock
copolymer) to the PU/polyvinyl acetate solution leads to better compatibility of the blend and a higher
gas selectivity [28]. The performance of PU MMMs is strongly dependent on the surface chemistry and
the size of the particles. The tendency of the inorganic filler to interact with the hard or soft segments of
PU can alter the separation properties. For example, higher phase separation and gas permeability was
reported by the incorporation of cyanuric chloride and ZnO particles into the PU membranes [29,30].
However, in the PU/silica system, the particles are more likely to interact with the soft domains of
the PU, decreasing the phase separation and the gas permeability, although the CO2/N2 selectivity is
greatly improved by more than 80% [31].

Poly(vinyl alcohol) (PVA) is a promising hydrophilic material for CO2 capture and contains many
hydroxyl groups. The good filmability, excellent mechanical properties, and good oxidation resistance
are other advantages of the polymer, which make it a good candidate for gas separation application [32].
However, its crystallinity and high swelling tendency may limit further usage [33]. On the other hand,
PU membranes have high permeability and moderate selectivity, therefore, PU/PVA blending was
considered to improve the separation properties. In our recent publication, the effect of composition
and molecular weight of PVA on the properties of PU/PVA was studied [32]. The gas permeability
of the blend membranes decreased by the molecular weight and PVA content while the selectivity
increased. The CO2/CH4 and CO2/N2 selectivity of the membranes was enhanced by more than 35%
and 27%, respectively.

In the present study, a series of PU/PVA blends at different compositions was synthesized.
The effect of nano-silica particles on the physical and gas separation properties of the blend membranes
was explored. The enhanced selectivity of PU/silica MMMs in our recent publications inspired this
research. It is supposed that the synergetic effect of silica particles and PVA can result in more
enhancement in the separation properties of the PU membranes.
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2. Materials and Methods

2.1. Materials

Poly(tetramethylene glycol) (PTMG, Mw: 2000 g/mol) was kindly provided by Arak Petrochemical
Company (Arak, Iran) and dried under vacuum at 80 ◦C for 24 h before use. Isophorone
diisocyanate (IPDI), dibutyltin dilaurate (DBTDL) as the catalyst, and butanediamine (BDA) and
N,N-Dimethylacetamid (DMAc) as the solvents were obtained from Sigma–Aldrich ( Darmstadt,
Germany). The chain extender (BDA) was dried over 4 Å molecular sieve before use. Poly(vinyl
alcohol) with an average molecular weight of 200 kg/mol (PVA200) and a hydrolysis degree of 99
percent was purchased from Sigma–Aldrich. Tetraethyl orthosilicate (TEOS) and 3-Glycidylozxypropyl
trimethoxysilane (GOTMS) were provided by Sigma–Aldrich.

2.2. Polymer Synthesis

The PU was synthesized by a two-step bulk polymerization method, described elsewhere [23].
First, an excess amount of IPDI (3.3 g, 15 mmol) was added dropwise to 10 g PTMG (5 mmol) at 70 ◦C
under N2 atmosphere, followed by the addition of three drops (approximately 0.15 mL) of DBTDL as
the catalyst. After mechanical stirring for 2 h, the exact amount of BDA (0.88 g, 10 mmol) was added to
the reaction to carry out the chain extension. Scheme 1 shows the PU synthesis steps. The synthesized
PU was precipitated and washed with an EtOH/water mixture (50/50 vol %) to remove the residual
monomers, and dried under vacuum at 80 ◦C for further use. The average molecular weight (Mw)
and polydispersity index of the PU was determined at around 65.1 KDa and 1.4, respectively, by gel
permeation chromatography (GPC, Shimadzu, 800 series, Kyoto, Japan).
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Scheme 1. Schematic illustration of polyurethane synthesis.

2.3. Silica Synthesis

Silica nanoparticles were synthesized via the sol-gel method by hydrolysis of TEOS in ethanol
with hydrochloric acid as the catalyst. In this method, 25 g of TEOS and 4 g of GOTMS were mixed in
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30 mL of dried methanol at 70 ◦C for 1 h. Then, the mixture of 30 mL methanol, 7.5 g water, and 0.83 g
hydrochloric acid was gradually added to the solution. Finally, TEOS was hydrolyzed by mixing at
80 ◦C for 1 h.

2.4. Membrane Fabrication

The PU/PVA200 blend membranes were prepared at different PVA loadings as described in
our previous work. To fabricate MMMs, 10 wt % PU and 1 wt % PVA solutions were prepared in
DMAc. Then, the exact amount of silica sol-gel solution was mixed with the PVA solution. Finally,
the PVA/silica solution was added to the PU, and the mixture was stirred–sonicated several times.
The solution was cast into Teflon Petri dishes and the film formed by slow evaporation of the solvent
at 60 ◦C overnight and vacuum dried at 80 ◦C for 24 h.

2.5. Characterization

Fourier transform infrared spectroscopy (Jasco FTIR 680 Plus, Tokyo, Japan) was performed
in the wavenumber range of 4000–400 cm−1 at room temperature. Wide angle X-ray diffraction
(WAXD, Rigaku RINT XRD, Tokyo, Japan) of the samples was carried out by monitoring the diffraction
pattern at 2θ = 5–40◦ and a scanning rate of 5◦/min. The thermal transition and crystallinity of the
samples were determined by differential scanning calorimetry (DSC, Bruker DSC 3100SA, Karlsruhe,
Germany) between −100 to 200 ◦C at a heating rate of 10◦/min. The morphology of the membranes
was monitored by scanning electron microscopy (SEM, Philips XL30, Eindhoven, The Netherlands).
The SEM samples were prepared by freeze-fracturing in liquid nitrogen, followed by gold/palladium
coating to prevent charging.

2.6. Gas Permeation Analysis

The pure and mixed-gas permeability of N2, O2, CH4, and CO2 through PU/PVA200 blend
membranes and PU/PVA200/silica MMMs were assessed using the constant pressure method at
10 bar and 35 ◦C. The gas permeability coefficient of the membranes was calculated using the
following equation:

P =
ql

A
(
pf − pp

) (1)

where is permeability in Barrer (1 Barrer = 10−10 cm3 (STP) cm cm−2
·s−1
·cmHg−1), is the flow rate of

the penetrants (cm3 (STP)·s−1) through the membranes, l is the membrane thickness (cm), pf and pp

are the respective absolute pressures (cmHg) at feed and permeate sides. In addition, A represents the
effective membrane area (cm2). The ideal selectivity, αA/B, of membranes is calculated from the pure
gas permeation coefficients as follows:

αA/B =
PA

PB
(2)

The mixed gas permeability of the membranes was measured at 10 bar and 35 ◦C under the gas
mixture of CO2/N2 and CO2/CH4 (50/50 vol %). The composition of the permeance flow was detected
by the gas chromatography machine (GC-2014, Shimadzu). The separation factor was determined by
Equation (3):

αi/j =
yi/yj

xi/xj
(3)

where y and x are the mole fraction of each component in the permeate and feed flow, respectively.
The mixed gas permeability was calculated as follow:

P = Ji
l

∆p
= 1010 273.15

76
Vl
AT

(
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)
yi

xi∆p
(4)
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3. Results and Discussion

3.1. Chemical and Physical Characterization

The FTIR spectra of the PU/PVA200 blends are shown in Figure 1. The completion of the PU
reaction can be monitored by the disappearance of the NCO peak at 2250 cm−1. The peak at 1110
cm−1 corresponded to the anti-symmetric stretching vibrations of C–O–C. The carbonyl bonds can be
observed at 1600–1800 cm−1, and the NH stretching vibrations appearred at 3300 cm−1 [32]. The study
of the two carbonyl peaks was helpful to understand the interactions and hydrogen bonding in the PU.
The NH groups of the urethane linkage can be hydrogen bonded with proton accepting oxygen in the
urethane C=O groups in the hard segments and C–O–C bonds in the soft segments. The type and
strength of each hydrogen bonding can be identified by the magnitude and the shift of carbonyl bands.
The first peak appearred at a lower frequency, ~1640 cm−1, corresponded to the bonded carbonyl
groups, and the peak at around 1720 cm−1 related to the free carbonyl groups [34,35].
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Figure 1. FTIR spectra of polyurethane (PU), poly(vinyl alcohol) (PVA)200, and PU/PVA200 blends.

The FTIR spectra of PVA200 showed –CH2 bending at 1443 cm−1. The acetate groups of the
non-hydrolyzed part of the PVA were observed between 1715 and 1750 cm−1. The vibration region
from 2908 to 2940 cm−1 was related to C–H stretching of alkyl groups. The wide peak at 3200–3500
cm−1 was attributed to the stretching O–H group, resulting from the intramolecular and intermolecular
hydrogen bonds. As illustrated in Figure 1, the intensity of the bonded carbonyl peak decreased by
the addition of PVA200 to the PU blend, while the free carbonyl peak became stronger. Furthermore,
the intensity of the hydroxyl peak of the PVA200 significantly decreased, and the absorption peak of
the NH group in the PU broadened. This observation indicates the more phase-mixed PU structure
with the addition of PVA200. It seems that the tendency of PVA to interact with the carbonyl groups
disrupted the intermolecular hydrogen bonding in the PU structure.

The FTIR spectra of the MMMs are shown in Figure 2. The peaks at 797 and 3400 cm−1 were
related to the symmetric Si–O–Si stretching and the hydroxyl groups of the silica particles, respectively.
The intensity of the bonded carbonyl group of the PU decreased while the free carbonyl increased with
the addition of silica particles, indicating a more phase-mixed structure of the PU. It is supposed that
the silica particles mostly disperse in the soft segments and interact with the ethereal linkage of the
polyol. This result was observed in other PU/silica MMMs, elsewhere [31,36].

X-ray profiles of the prepared membranes are shown in Figure 3. The diffraction patterns of the PU
and blends exhibited an amorphous halo peak at 20◦, related to the amorphous structure or diffractions
from the small crystals [35]. A sharp crystalline peak was observed at 20◦ for the PVA sample,
which also appearred in the PU/PVA200–30 and PU/PVA200–40 samples. However, the intensity of the
peak in the MMMs decreased with the silica loadings (Figure 3b). It seems that the presence of the
silica in the soft segments disrupted the chain packing and crystallinity. This observation was reported
elsewhere [31].
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The SEM images of the PU/PVA blends are shown in Figure 4. The miscibility of the blend
membranes improved by increasing the PVA200 concentration. The dispersion of the particles is shown
in Figure 5. It is clear that the tendency of particles to agglomerate is severe at higher filler loadings
(PU/PVA200–40), but they dispersed well at the lower concentration (5 wt %).

3.2. Gas Separation Properties

Table 1 presents the influence of PVA200 content on the separation properties of PU/PVA200
blend membranes. The permeability of pure gases through the PU and the PU/PVA200 membranes
decreased as follows: P(CO2) >> P(CH4) > P(O2) > P(N2). Higher permeability of CO2 compared to
other gases was attributed to its lower kinetic diameter and higher condensability compared to other
gases; therefore, it can make strong interactions with polar groups of C–O–C in the soft segments of
PU and OH groups in PVA [37]. Furthermore, higher permeability of CH4 compared to the smaller
molecules of N2 and O2 indicates that the solution mechanism plays a dominant role in the gas
separation properties of PU/PVA200 blends. This is a typical trend in rubbery polymers [29,38,39].
However, the decrease in CH4 permeability by increasing PVA content is larger than the decline in
the O2 permeability. This behavior is attributed to the more glassy state of the blends where the gas
permeability is mostly controlled by the molecular sieving mechanism.
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Table 1. Separation properties of CO2, O2, N2, and CH4 through PU/PVA200 blends.

Membrane
Permeability (Barrer) Selectivity

CO2 O2 N2 CH4 CO2/N2 CO2/CH4 O2/N2

PU 142.0 ± 7.0 15.3 ± 0.8 5.5 ± 0.3 20.1 ± 1 25.8 ± 1.3 7.1 ± 0.4 2.8 ± 0.1

PU/PVA200–2.5 126.0 ± 6.2 12.5 ± 0.6 4.5 ± 0.2 16.5 ± 0.9 28.0 ± 1.4 7.6 ± 0.3 2.8 ± 0.1

PU/PVA200–5 102.0 ± 5.1 10.1 ± 0.5 3.5 ± 01 12.7 ± 0.6 29.1 ± 1.5 8.0 ± 0.4 2.9 ± 0.1

PU/PVA200–10 93.2 ± 4.5 8.3 ± 0.4 2.9 ± 0.1 9.8 ± 0.5 32.6 ± 1.7 9.5 ± 0.5 2.9 ± 0.1

PU/PVA200–20 68.7 ± 3.5 7.8 ± 0.3 2.1 ± 0.1 6.2 ± 0.3 33.4 ± 1.6 11.1 ± 0.6 3.8 ± 0.2

PU/PVA200–30 21.6 ± 1.0 2.3 ± 0.1 0.6 ± 0.0 1.9 ± 0.1 35.4 ± 1.8 11.2 ± 0.6 3.8 ± 0.2

PU/PVA200–40 40.5 ± 2.0 4.3 ± 0.2 1.3 ± 0.0 7.4 ± 0.3 31.4 ± 1.5 8.8 ± 0.5 3.0 ± 0.1
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The glassy nature and low intrinsic gas permeability of PVA resulted in a lower gas permeation
for the blend membranes. The transport property of the penetrants with larger kinetic diameter was
more restricted by increasing the amount of PVA200 into PU/PVA200 blends. However, the CO2 gas
permeability was less influenced due to its smaller size and the strong interactions with the polar
OH group of PVA. So, the selectivity of CO2/N2 and CO2/CH4 improved more than non-condensable
gases such as O2/N2 selectivity. Moreover, the higher permeability of PU/PVA200–40 than that of
PU/PVA200–30 can be attributed to the surpassing of phase separation (Figure 2) from the glassy nature
of PVA.

The CO2/N2 separation performance of the PU/PVA200 blends was compared to the Robeson’s
upper bound (Figure 6a). Based on the Robeson’s upper bound, membranes with both high permeability
and selectivity are preferred for a specific separation [40,41]. Hence, the transport properties of the
blend membrane of PU/PVA200–10 is more preferred to those of the other blends. The presence of the
silica particles in the soft segments (as shown in FTIR and XRD) resulted in a lower gas permeability for
the MMMs [42]. The non-porous silica acts as the barrier and increases the tortuosity of the gas diffusion
path. As shown in Table 2, the order of gas permeability reduction through the PU/PVA200/silica
MMMs was as follows: CH4 > N2 > O2 > CO2. The rate of CO2 permeability reduction was lower
than the other penetrants, which was attributed to its lower kinetic diameter and higher CO2 solubility
due to the presence of polar OH groups. Furthermore, the higher permeation properties of the
PU/PVA200–10/silica MMMs than that of PU/PVA200–40/silica MMMs were attributed to the lower
polymer chain mobility of PU/PVA200–40/silica.
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Table 2. Separation properties of CO2, O2, N2, and CH4 through PU/PVA200/silica MMMs.

Membrane Silica
wt %

Permeability (Barrer) Selectivity

CO2 O2 N2 CH4 CO2/N2 CO2/CH4 O2/N2

PU/PVA200–10 0 93.2 ± 4.5 8.3 ± 0.4 2.9 ± 0.1 9.8 ± 0.5 32.6 ± 1.5 9.5 ± 0.5 2.9 ± 0.1

PU/PVA200–10-S2.5 2.5 79.9 ± 4.0 6.8 ± 0.3 2.3 ± 0.1 6.9 ± 0.3 34.7 ± 1.6 11.6 ± 0.6 2.9 ± 0.1

PU/PVA200–10-S5 5 69.1 ± 3.5 5.8 ± 0.3 1.8 ± 0.1 5.4 ± 0.2 37.8 ± 1.7 12.8 ± 0.6 3.2 ± 0.1

PU/PVA200–10-S10 10 58.8 ± 3.0 4.9 ± 0.2 1.4 ± 0.0 4.2 ± 0.2 42.9 ± 2 14.1 ± 0.7 3.6 ± 0.2

PU/PVA200–10-S20 20 38.3 ± 1.9 3.4 ± 0.1 0.85 ± 0.0 2.5 ± 0.1 45.1 ± 2.1 15.2 ± 0.7 4.0 ± 0.2

PU/PVA200–40 0 40.5 ± 2.0 3.9 ± 0.2 1.3 ± 0.0 4.7 ± 0.2 31.4 ± 1.6 8.6 ± 0.4 3.0 ± 0.1

PU/PVA200–40-S2.5 2.5 37.8 ± 1.9 3.5 ± 0.1 1.1 ± 0.0 3.7 ± 0.1 33.8 ± 1.7 10.3 ± 0.5 3.1 ± 0.1

PU/PVA200–40-S5 5 29.1 ± 1.5 2.4 ± 0.1 0.7 ± 0.0 2.7 ± 0.1 33.8 ± 1.7 11.0 ± 0.6 3.2 ± 0.1

PU/PVA200–40-S10 10 24.1 ± 1.3 1.9 ± 0.1 0.6 ± 0.0 2.1 ± 0.1 42.9 ± 2.1 11.5 ± 0.6 3.3 ± 0.1

PU/PVA200–40-S20 20 15.9 ± 0.8 1.3 ± 0.0 0.4 ± 0.0 1.1 ± 0.0 45.4 ± 2.2 14.0 ± 0.7 3.7 ± 0.2

Figure 6b compares the separation performance of PU/PVA200/silica MMMs with the Robeson’s
upper bound line. As indicated, the CO2/N2 separation performance of the prepared MMMs was
above the Robeson’s upper bound limit in 1991. Nevertheless, PU/PVA200–10 MMM containing 10 wt
% silica nanoparticles was predominant to those of the other MMMs.

Table 3 represents the CO2/N2 (50/50 vol %) and CO2/CH4 (50/50 vol %) mixed gas separation
properties of the pure PU and PU/PVA200–10-S20 membranes at 10 bar and 35 ◦C. The CO2 permeability
and the selectivity under the mixed gas condition were lower than the values for the pure gas
measurement. The competition of penetrants to pass through the membrane caused the differences in
the separation properties of the membranes under the pure and mixed-gas feeds. The decrease in CO2

permeability was larger for the CO2/CH4 gas mixture compared to the CO2/N2. It seems that the CO2

permeation was more influenced by the competition with CH4. The CO2/N2 and CO2/CH4 mixed gas
selectivity were also lower than the pure gas data.
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Table 3. Mixed gas separation properties of the membranes at 4 bar and 25 ◦C.

Sample

CO2/N2 (50/50 vol %) CO2/CH4 (50/50 vol %)

Permeability (Barrer) CO2/N2
Selectivity

Permeability CO2/CH4
SelectivityCO2 N2 CO2 CH4

PU 105.0 5.4 19.5 92.6 18.2 5.1

PU/PVA200–10-S20 30.1 0.8 38.0 24.8 2.2 11.3

4. Conclusions

In this study, a series of PU/PVA blend membranes at different PVA loadings was prepared,
and the pure gas permeability of CO2, O2, N2, and CH4 was tested at 4 bar and 35 ◦C. The FTIR results
revealed more phase mixing of the PU with increasing amounts of PVA200 into the PU/PVA200 blends.
The pure gas permeability of the PU/PVA200 blend membranes decreased with increasing amounts
of PVA200 up to 30 wt %. The low gas permeability of glassy PVA was the reason for this reduction.
However, the OH groups of the PVA allowed the higher CO2/N2 and CO2/CH4 selectivity compared to
O2/N2. The incorporation of silica particles into the PU/PVA200 blends increased the CO2/N2 selectivity
by approximately 40%. Based on the Robeson’s plots, the PU/PVA200–10 membrane showed the best
gas separation results among the other samples.
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