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Abstract: This study aims to evaluate the utility of texture analysis in predicting the outcome of
stereotactic radiosurgery (SRS) for brain metastases from lung cancer. From 83 patients with lung
cancer who underwent SRS for brain metastasis, a total of 118 metastatic lesions were included.
Two neuroradiologists independently performed magnetic resonance imaging (MRI)-based texture
analysis using the Imaging Biomarker Explorer software. Inter-reader reliability as well as uni-
variable and multivariable analyses were performed for texture features and clinical parameters
to determine independent predictors for local progression-free survival (PFS) and overall survival
(OS). Furthermore, Harrell’s concordance index (C-index) was used to assess the performance of the
independent texture features. The primary tumor histology of small cell lung cancer (SCLC) was the
only clinical parameter significantly associated with local PFS in multivariable analysis. Run-length
non-uniformity (RLN) and short-run emphasis were the independent texture features associated with
local PFS. In the non-SCLC (NSCLC) subgroup analysis, RLN and local range mean were associated
with local PFS. The C-index of independent texture features was 0.79 for the all-patients group and
0.73 for the NSCLC subgroup. In conclusion, texture analysis on pre-treatment MRI of lung cancer
patients with brain metastases may have a role in predicting SRS response.

Keywords: stereotactic radiosurgery; brain metastasis; magnetic resonance imaging; texture analysis

1. Introduction

Lung cancer is the most common cancer that metastasizes to the brain [1]. Lung can-
cer incidence is on the rise; however, survival rates are also increasing because of early
diagnosis and the development of effective therapies [2]. As long-term survival outcomes
in lung cancer patients continue to improve, the burden of brain metastases will inevitably
grow, necessitating the need for optimal therapeutic options with low toxicity to manage
brain metastases [3]. Stereotactic radiosurgery (SRS) is a focal treatment technique for
brain metastases performed with a linear accelerator and involves delivering high-dose
radiation to well-defined targets [4]. Increasing evidence suggests that there is no difference
in the overall survival rates of affected patients receiving SRS coupled with whole-brain
radiotherapy (WBRT) and those receiving SRS alone. Additionally, patients receiving SRS
with WBRT had a higher risk of decline in learning and memory function [5,6]. Moreover,
SRS has been reportedly useful in treating large metastatic lesions [7] as well as metastatic
lesions around important brain structures [8]. As a result, its applications are becoming
increasingly popular for avoiding the potential neurocognitive sequelae of WBRT. Magnetic
resonance imaging (MRI) is important for both the early diagnosis of, as well as guiding
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optimal treatment strategies for brain metastasis. Therefore, utilizing information obtained
from brain MRIs is essential for the successful treatment of patients with brain metastasis.

Many functional and microstructural MRI techniques using perfusion MRI and
diffusion-weighted MRI (DWI) have been applied to brain metastases [9]. Dynamic suscep-
tibility contrast (DSC)-MRI has shown its capability to differentiate radiation necrosis and
tumor recurrence by measuring the relative cerebral blood volume (rCBV) and relative cere-
bral blood flow (rCBF) in patients with cerebral metastases treated with SRS [10]. Dynamic
contrast enhanced (DCE)-MRI has shown its potential value in predicting the response of
brain metastases to antineoplastic therapy in patients with lung cancer [11]. Furthermore,
the apparent diffusion coefficient (ADC) value calculated from DWI has also proved to
be useful in predicting SRS response [12]. However, these techniques need further valida-
tion to be used in clinical decision-making and the biological heterogeneity of metastases
require more individualized image biomarker to accurately predict treatment response.

Radiomics is expected to serve as a bridge between medical imaging and personalized
medicine [13] and specifically, is expected to be utilized increasingly in the field of oncology
by applying the radiomics approach of texture analysis. Texture analysis is a technique that
can effectively provide quantitative information regarding spatial variation of gray-level
distribution and inter-relationship of voxels in a clinical image [14], which cannot be per-
ceived by the naked eye. In studies associated with the diagnosis, prognosis, and treatment
response of cancer, texture analysis metrics have reportedly been used to assess intratu-
moral heterogeneity [15,16]. This analysis has also been employed in the classification of
brain metastases by their primary site of origin [17], differentiating brain metastases among
various pathological types of lung cancer [18], and in predicting the treatment response to
non-small cell lung cancer (NSCLC) [19–21].

By using non-invasive imaging techniques, texture analysis can be applied to gain
information regarding tumor microenvironment and radiosensitivity, eventually aiding in
the safe management of brain metastatic lesions. No previous study has combined texture
analysis, clinical parameters, and morphological MRI features to develop a regression
model that predicts clinical outcomes of SRS in brain metastasis. Therefore, we aimed to
investigate the potential role of MRI-based texture analysis in a multivariable predictive
model of survival for patients with lung cancer brain metastasis.

2. Materials and Methods
2.1. Patients

This retrospective study was approved by the Institutions Review Board and the re-
quirement for informed consent was waived. Between May 2010 and October 2015, a total
of 279 patients with brain metastases were treated with radiosurgery at our institution.
Among them, those who met the following criteria were included in this study: (a) ini-
tial diagnosis of primary lung cancer by histopathology and (b) available pre-treatment
brain MRI, including 1 mm thickness T1-weighted image (T1WI, pre- and post-contrast
administration) and T2-weighted image (T2WI). Patients with the following criteria were
excluded: (a) incomplete follow-up images within 6 months, (b) previous WBRT treatment,
(c) diagnosis of double primary cancer, (d) small metastatic lesions with a maximum tumor
diameter less than 1 cm, (e) purely cystic brain metastases, and (f) inadequate MRI quality.
This was a lesion-based study and multiple metastatic lesions with more than 1 cm in
diameter in a single patient were all included. This size criterion was chosen to satisfy the
minimum reported number of pixels required for successful texture analysis. Purely cystic
brain metastases were excluded because only metabolically active regions of the tumor
were of interest for texture analysis [22]. The summary of inclusion and exclusion processes
are shown in Figure 1. Clinical data were collected via an electronic medical record and the
following factors were evaluated: age, gender, primary lung cancer histology, recursive
partitioning analysis class [23], presence of extracranial metastasis, use of target therapy
(tyrosine kinase inhibitors, such as erlotinib, gefitinib, afatinib, and osimertinib), local fail-
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ure within the brain, SRS dose, and overall survival (OS) after SRS. No patient had surgery
for brain metastasis before or after the SRS.
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Figure 1. Patient and lesion selection flowchart (SRS, streotactic radiosurgery; WBRT, whole-brain
radiotherapy; MRI, magnetic resonance imaging).

2.2. MR Imaging Protocol

All pre-treatment MR images were acquired with a 1.5 T instrument (Gyroscan Intera;
Philips Healthcare, Best, The Netherlands). The imaging parameters for 3-dimensional
(3D) T1WI were: repetition time/echo time (TR/TE), 20/4.6 ms; flip angle, 30◦; acquisition
matrix, 256 × 256; slice thickness, 1 mm; field-of-view, 256 × 256 mm2; voxel size, 1 ×
1 × 1 mm3; and no slice gap. The post-contrast T1WI was acquired after intravenous
administration of a single-dose of Gadobutrol (0.1 mmol/kg, Gadovist, BAYER; Leverkusen,
Germany) with a 6-min delay. The axial T2WI was obtained with the following parameters:
TR/TE, 11,788.49/120 ms; flip angle, 90◦; acquisition matrix, 256 × 256; slice thickness,
1 mm; field-of-view, 256 × 256 mm2; voxel size, 1 × 1 × 1 mm3; and no slice gap.

2.3. Image Analysis
2.3.1. Tumor Identification, Characterization, and Region-of-Interest (ROI) Allocation

Two board-certified neuroradiologists (J.H.P and B.S.C. with 5 and 20 years of expe-
rience, respectively) independently reviewed all MR images. They identified the tumors
on T2WI and contrast-enhanced (CE) T1WI, and free-hand polygonal ROIs were allocated
on a single section of both sequences. The readers drew ROIs in an independent fashion,
attempting to include the largest cross-sectional area of the solid tumor portion. Cystic,
hemorrhagic, or necrotic areas were excluded as only metabolically active regions of the
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tumor were of interest for the analysis [22]. Representative examples of tumor segmenta-
tion are shown in Figure 2. The readers also classified the tumors as solid, predominantly
solid (cystic portion < 50%), and predominantly cystic (cystic portion ≥ 50%) based on the
morphology. For more complex cases, a consensus was always reached.
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Figure 2. Examples of tumor segmentation on solid (a,d), predominantly solid (b,e), and predominantly cystic (c,f)
metastases. The regions-of-interests are drawn on contrast-enhanced T1-weighted (a–c) and T2-weighted (d–f) images for
each lesion.

2.3.2. Evaluation of the Treatment Response and Study Endpoints

The treatment response after SRS was assessed on MR images according to the Re-
sponse Assessment in Neuro-Oncology Brain Metastases criteria [24] by the two neu-
roradiologists. Disagreements about tumor size changes were ultimately resolved by a
consensus. Target lesions were classified as progressive or non-progressive disease (in-
cluding stable disease, partial response, and complete response). The study endpoints
were local progression-free survival (PFS), defined as the time from the beginning of the
SRS to the time of progression of each target lesion, and OS. Patient follow-up and evalua-
tion of treatment outcomes were performed retrospectively by reviewing medical records
and MRIs.

2.4. Texture Analysis

Texture analysis was performed using the Imaging Biomarker Explorer (IBEX) soft-
ware [25]. T2WI and CE T1WI of all subjects were exported to IBEX. Two readers seg-
mented the tumor borders on both sequences, as mentioned previously. Normalization
of the gray levels was performed within the software by rescaling all image signal in-
tensities to fit between µ ± 3σ (µ: gray-level mean, σ: gray-level standard deviation).
Additional normalization to account for the number of voxels was performed for the five
volume-dependent features (busyness, coarseness, gray-level non-uniformity, run-length
non-uniformity (RLN), and energy) [26].

For each ROI, 156 texture features from four categories were computed (Supplemen-
tary Table S1). First-order texture features were intensity direct/histograms (74 features)
and second-order features were derived from gray-level co-occurrence matrices (66 fea-
tures), gray-level run-length matrices (11 features), and neighborhood gray-tone difference
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matrices (5 features). Gray-level co-occurrence matrix-based features were computed and
analyzed separately using distances of 1 (d1), 4 (d4), and 7 (d7) pixels. The neighboring
properties of pixels in the four directions (0◦, 45◦, 90◦, and 135◦) of the 2-dimensional (2D)
space were averaged equally.

2.5. Radiosurgery

A treatment plan was generated using the Leksell GammaPlan (Elekta Instrument)
system based on the findings from the thin-sliced MRI. Radiosurgery was performed using
the Leksell Gamma Knife PERFEXION (Elekta Instrument AB, Stockholm, Sweden). The
radiosurgery isodose and marginal dose prescribed were initially determined using the
Radiation Therapy Oncology Group (RTOG) 90-05 dosing guidelines [27] and calculated
during dose planning using the best-fit isodose method. The marginal dose was then
optimized by reducing approximately 10–20% of the recommended doses, according to
the individual patient history of previous radiotherapy and/or tumor size, to reduce the
radiation-related side effects. The treatments were usually designed to deliver 50% of
the maximum dose to the target margins in a single fraction. The final prescribed dose,
expressed as a marginal dose and the associated treatment parameters, are summarized in
Table 1.

Table 1. Patient demographics and tumor characteristics.

Value

Age 61 ± 11 (Range: 25–84)

Sex

Male 47 (56.6%)
Female 36 (43.4%)

Histology

Adenocarcinoma 70 (84.3%)
Squamous cell carcinoma 8 (9.7%)

Small cell lung cancer 5 (6%)

RTOG RPA class

I 16 (19.3%)
II 67 (80.7%)
III 0

Extracranial metastasis

Yes 35 (42.2%)
No 48 (57.8%)

Targeted therapy use

Yes 32 (38.6)
No 51 (61.4)

Morphologic tumor characteristic

Solid 51 (43.2%)
Predominantly solid 47 (39.8%)
Predominantly cystic 20 (17%)

Maximal tumor diameter (mm) 17.7 ± 8.2 (Range: 10–45)

Marginal dose prescribed (Gy) 18.8 ± 2.1 (Range: 12–24)

Maximum dose (Gy) 37.5 ± 4.7 (Range: 22.7–50.1)
RTOG, radiation therapy oncology group; RPA, recursive partitioning analysis. Data are mean ± standard deviation.

2.6. Statistical Analysis

All statistical analyses were performed using R v.3.5.2. (R Foundation for Statistical
Computing, Vienna, Austria) and SAS statistical package (9.4) (Cary, NC, USA). Interclass
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correlation coefficient (ICC) values were calculated for each texture feature. Features with
an ICC value ≥ 0.8 were considered reproducible and selected. All the clinical parameters
and reproducible texture features were tested using a univariable Cox proportional-hazards
model to identify the predictors of PFS and OS. Clinical parameters with a p-value lower
than 0.05 were used for further analyses. A stepwise selection method and the least absolute
shrinkage and selection operator (LASSO) method was used to select core texture features.
Multivariable Cox proportional-hazards analyses were performed for significant clinical
parameters and core texture features to identify independent predictors of PFS and OS.
Harrell’s concordance index (C-index) was used to assess the discriminative power of
the identified independent texture features [28]. Internal validation was carried out with
1000 bootstrap replications. All Cox proportional-hazards models considered marginal
models regarding multiple lesions within the same patient [29]. In all statistical tests, a
p-value < 0.05 was considered statistically significant.

3. Results
3.1. Patient Clinical Characteristics and Survival

From a total of 83 patients, 118 metastatic tumors (primary tumor histology: 103 ade-
nocarcinoma, 9 squamous cell carcinoma, 6 small cell lung cancer (SCLC)) were identified
to be suitable for study and were included in the analysis. The main characteristics of the
patient and tumors are summarized in Table 1. Of the 118 tumors, 34 (28.8%) showed local
progression during the follow-up period and the mean local PFS was 18 months (range:
3–120 months). Twenty-seven patients (32.5%) died before the follow-up, and the mean OS
was 26.8 months (range: 6–121 months).

3.2. Univariable Cox Proportional-Hazards Regression Model for Clinical and Texture Parameters

The univariable Cox regression model was applied to each clinical parameter and
is described in Table 2. The variables with p-values < 0.05 included tumor characteristic
(solid, predominantly solid, predominantly cystic), primary tumor histology, target therapy
use, maximal tumor diameter, and SRS prescription dose.

Table 2. Univariable Cox proportional hazards regression analysis of clinical parameters.

Local Progression-Free
Survival Overall Survival

HR (95% CI) p Value HR (95% CI) p Value

Age 1.02 (0.99–1.05) 0.095 0.97 (0.95–1.01) 0.107
Sex 0.47 (0.22–1.04) 0.062 0.92 (0.39–2.14) 0.837

Tumor characteristic – * 0.035 – * 0.422
Targeted therapy 2.17 (1.01–4.66) 0.046 0.55 (0.24–1.26) 0.157

Histology – * <0.001 – * <0.001
Extracranial metastasis 0.95 (0.42–2.14) 0.905 0.81 (0.34–1.91) 0.628

RTOG RPA class 1.12 (0.47–2.66) 0.804 0.712 (0.21–2.37) 0.579
Maximal tumor diameter 1.04 (1.01–1.08) 0.013 0.984 (0.95–1.02) 0.386
Marginal dose prescribed 0.85 (0.74–0.99) 0.031 1.06 (0.92–1.22) 0.417

HR, hazard ratio; CI, confidence interval; RTOG, radiation therapy oncology group; RPA, recursive partitioning
analysis. * No global hazard ratio for variables with more than 2 modalities.

An ICC value was calculated independently by the two readers for each of the 156 tex-
ture features on T2WI and CE T1WI sequences. The mean ICC value was 0.72 (range,
0.34–0.91) on CE T1WI and 0.71 (range, 0.19–0.9) on T2WI. In total, 137 features assessed
in CE T1WI and 138 features assessed in T2WI had good inter-reader agreement with an
ICC value of 0.6 or above. Features with an ICC value ≥ 0.8 were considered robust and
selected for the univariable analysis. Results of the univariable analysis of texture features
for the prediction of local PFS and OS are presented in Supplementary Table S2.
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3.3. Multivariable Cox Proportional-Hazards Regression Model for Clinical and Texture
Parameters

The multivariable analysis was performed to identify independent predictors of local
PFS and OS. All the significant clinical parameters from the univariable analysis and core
texture features selected from the stepwise selection and LASSO methods were included in
the multivariable analysis (Table 3).

Table 3. Multivariable Cox proportional hazards regression analysis of factors affecting local
progression-free survival in all patients.

HR (95% CI) p Value

Histology

Adenocarcinoma 1.0 (Reference)
Squamous cell carcinoma 1.82 (0.42–7.92) 0.423
Small cell lung cancer 4.15 (1.08–15.98) 0.038

Target therapy use

Yes 1.0 (Reference)
No 1.48 (0.52–4.17) 0.464

Morphologic tumor characteristic

Solid 1.0 (Reference)
Predominantly solid 0.39 (0.13–1.12) 0.081
Predominantly cystic 1.34 (0.43–4.19) 0.62

Maximal tumor diameter 1.01 (0.94–1.09) 0.764
Marginal dose (Gy) 0.90 (0.66–1.21) 0.472
Texture features (CE T1W1)

Dissimilarity (d7) 1.0 (0.99–1.02) * 0.659
Inverse Difference Norm (d7) 1.42 (0.32–6.38) * 0.649
Run-Length Non-uniformity 1.16 (1.07–1.25) * <0.001
Short-Run Emphasis 0.92 (0.84–0.99) * 0.048

HR, hazard ratio; CI, confidence interval; CE T1WI, contrast-enhanced T1-weighted image. * Hazard ratio per
10,000-unit increase.

Among the clinical parameters and texture features included in the multivariable
analysis for local PFS prediction, SCLC histology, RLN, and short-run emphasis (SRE) were
significantly associated with PFS (hazard ratio (HR) = 4.15, p = 0.038; HR = 1.16, p < 0.001;
HR = 0.92, p = 0.047, respectively). For OS prediction, only SCLC histology proved to be
the independent clinical parameter (HR = 0, p < 0.001); however, this result is not reliable,
as all SCLC patient data were censored. None of the texture features were predictive of OS
(Supplementary Table S3).

A subgroup analysis on the NSCLC group, including adenocarcinoma and squamous
cell carcinoma patients, revealed RLN (HR = 1.15, p = 0.014) and local range mean (HR = 1.15,
p = 0.019) to be significant texture features associated with PFS (Table 4). SRE showed marginal
statistical significance (HR = 0.99, p = 0.05). None of the clinical and texture parameters were
predictive of OS (Supplementary Table S3).

A multivariable image biomarkers model was developed based on the two significant
independent texture features in the all-patients group (RLN and SRE) and the NSCLC
subgroup (RLN and local range mean). Each image biomarkers model resulted in a C-index
of 0.79 (95% CI: 0.72–0.86) and 0.73 (95% CI: 0.63–0.83) in the all-patients and NSCLC groups,
respectively, in the original dataset. The internally validated C-index of 1000 bootstrap
samples for each model was 0.78 (95% CI: 0.71–0.87) in the all-patients group and 0.74 (95%
CI: 0.63–0.84) in the NSCLC group.
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Table 4. Multivariable Cox proportional hazards regression analysis of factors affecting local
progression-free survival in the NSCLC subgroup.

HR (95% CI) p Value

Histology

Adenocarcinoma 1.0 (Reference)
Squamous cell carcinoma 1.11 (0.21–5.87) 0.906

Target therapy use

Yes 1.0 (Reference)
No 1.84 (0.69–4.85) 0.464

Morphologic tumor characteristic

Solid 1.0 (Reference)
Predominantly solid 0.48 (0.17–1.4) 0.181
Predominantly cystic 1.16 (0.31–4.37) 0.828

Maximal tumor diameter 1.03 (0.96–1.22) 0.548
Marginal dose (Gy) 0.92 (0.69–1.22) 0.548
Texture features (CE T1WI)

Dissimilarity (d7) 1.0 (0.98–1.02) * 0.659
Inverse Difference Norm (d7) 1.09 (0.14–8.92) * 0.649
Run-Length Non-uniformity 1.15 (1.03–1.29) * 0.014
Short-Run Emphasis 0.99 (0.99–1) * 0.05
Local Range Mean 1.15 (1.02–1.29) 0.019

HR, hazard ratio; CI, confidence interval; CE T1WI, contrast-enhanced T1-weighted image. * Hazard ratio per
10,000-unit increase.

4. Discussion

In this study, we demonstrated that texture features extracted from pre-treatment MRI
have the potential to predict local control of brain metastasis in lung cancer patients after
SRS treatment. A multivariable predictive model developed based on these texture features
performed reasonably well in the all-patients group and the NSCLC subgroup, respectively.
Our study results are meaningful because we only included patients treated with SRS with
no previous WBRT record. Most previously published reports of survival prediction after
SRS for brain metastases included patients who were treated with other modalities, such as
WBRT, surgery, or a combination of SRS and WBRT [30]. Therefore, our findings provide
more useful information for understanding local tumor control after treatment with SRS
alone. Moreover, this study was the first to consider clinical parameters and morphological
MRI features by using a regression model to evaluate the usefulness of texture analysis in
predicting the clinical outcome of SRS.

Higher RLN values were predictive of poor local tumor control when clinical factors
(target therapy use, primary tumor histology, maximal tumor diameter, and marginal dose)
and morphological MRI features (tumor characteristic) were considered in the regression
model. This result is in concordance with a previous study by Zhai et al. that showed
higher RLN values were associated with poor survival in the nasopharyngeal and head and
neck cancer datasets [31]. Additionally, higher SRE values were associated with a lower
risk of local tumor progression. RLN and SRE are both second-order statistics derived from
run-length matrices, which characterize large areas within the tumor (groups of voxels)
to provide information about regional heterogeneity [32,33]. A run is defined as a length
of consecutive pixels presenting with the same gray-level intensity in a specific direction,
and the relationships between the run lengths make up the texture [34]. RLN measures the
similarity among run lengths; high RLN values indicate dissimilar run lengths within the
ROI. SRE measures the distribution of short runs in the image; high SRE values are related
to fine texture, which includes many short runs of similar gray-level intensities, whereas
low SRE is related to coarse texture [34]. Thus, dissimilar run lengths and a low number
of short runs in the texture analysis may reflect intratumoral heterogeneity. In general,
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tumor heterogeneity at the microscopic level is one of the major causes of treatment failure
in cancer; this holds especially true for glioblastoma multiforme [35,36]. We speculated
that RLN and SRE values extracted from the pre-treatment MRI scans may provide valu-
able information regarding the underlying tumor heterogeneity, radiosensitivity, and/or
vascularization, which could, in turn, be related to SRS treatment response.

In the NSCLC subgroup, the RLN value and the local range mean were significant
texture features associated with a higher risk of local tumor progression. Local range
mean is a first-order statistic that is the computed mean of the range value in each voxel’s
neighborhood region [37]. Thus, a higher local range mean value is related to a wide range
of gray-scale values within the ROI, which, in turn, may also be related to intratumoral
heterogeneity. However, SRE showed only marginal statistical significance in predicting
local tumor control in the subgroup analysis. It is unclear why the predictive value of SRE
was not valid in the NSCLC subgroup. This may be partly due to the small sample size.
The difference in the composition of histopathological tumor types may also have played a
role, as texture features convey information about the underlying tumor pathology [18].

Another important finding in our study was that texture features extracted from CE
T1WI were more valuable than those extracted from T2WI. This result is consistent with a
previous study that differentiated between radiation necrosis and tumor progression using
MRI-based radiomic features [38]. In our study, more features with an ICC value ≥ 0.8
were reliable when measured in CE T1WI, but not in T2WI. Moreover, most of the core
texture features selected from the stepwise selection and LASSO methods were features
calculated from the CE T1WI. Texture features extracted from the CE T1WI may convey
information regarding the underlying tumor vascularity and may better reflect intratumoral
heterogeneity with various gray-scale values than those extracted from the T2WI [18],
thereby providing more valuable information in predicting SRS treatment response.

In our multivariable analysis, the SCLC primary tumor histology was the only clinical
parameter significantly associated with local PFS. This result is consistent with that of
a previous report by Kuremsky et al. [39] They reported a slightly higher HR of 6.46
compared to ours. The pathophysiology underlying poor SRS outcomes in SCLC is not
fully understood, but a population of radioresistant clonogenic cells, increased invasion into
brain parenchyma by diffuse infiltrative growth patterns, and large infiltration depth [40,41]
have been proposed as the underlying mechanisms. Treatment failure in SCLC after
chemoradiotherapy is also known to be substantial, suggesting that SCLC cells can develop
radioresistance after an initially good response [42].

Treatment of brain metastases with chemotherapeutic drugs is known to be limited
by the blood brain barrier, with its response rate reported to be 15–30% [43]. However,
an increasing number of molecular-targeted drug therapies have been used to treat brain
metastases in lung cancer patients and showed increased intracranial response rates,
depending on the molecular profile and drug generations. It has been reported that
lung cancer patients with brain metastasis who received erlotinib or gefitinib combined
with radiotherapy or chemotherapy showed significantly increased intracranial response
rates compared with those who received either drug alone [44,45]. Another previous
study showed that patients who received SRS with target therapy showed improved
overall survival and intracranial outcomes [46]. In our study, the effect of molecular target
therapy on SRS response was evaluated in the univariable and multivariable analyses.
Target therapy use was associated with improved local PFS in the univariable analysis but
was not an independent predictor in the multivariable analysis. This result could be partly
due to small sample size and further investigation is warranted. Prospective data regarding
SRS combined with targeted therapy in patients with brain metastases are currently limited
in the literature and may be an excellent topic for future trials.

The morphological MRI characteristics of the cystic composition of the tumor were
investigated in the multivariable analysis in combination with other clinical and texture
parameters. The results revealed that cystic composition was negatively associated with
local PFS in the univariable analysis, but statistical significance was not reached in the
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multivariable analysis. Cystic brain metastasis was generally considered an unfavorable
factor in achieving local tumor control after SRS. However, a study by Ebinu et al. proposed
that cystic composition of a metastatic lesion does not predict the response to SRS [47].
They included cystic metastases that did not require cyst aspiration and concluded that
no percentage of cystic volume predicted SRS response rates. We excluded purely cystic
lesions in our study and achieved similar results, suggesting that the extent of cystic
composition in metastatic lesions does not significantly impact their response to SRS.

Our study had several limitations. First, this was a retrospective study with a potential
risk of selection bias. However, all patients who met the inclusion criteria were included
in the study to minimize selection bias. Second, a small sample size that only included
primary lung cancer data limits our ability to generalize our results to brain metastatic
lesions originating from other primary tumors. Moreover, only a small number of SCLC
patients were included, after excluding patients who had received prior WBRT treatment.
Thus, our results on the primary tumor histology of SCLC should be interpreted with
caution. Third, this was a single-center study using identical protocols with the same
MRI scanner. Fourth, external validation of the image biomarkers model presented in this
study was not performed. Further research including external data sets with different
MRI scanners and protocols in a larger population are warranted before our results can be
applied to routine clinical practice. Lastly, texture features were extracted from a single
time-point using a 2D segmentation method, chosen for its convenience in investigation
and ease of application. Future studies with delta-radiomics features extracted from
3D volume datasets could broaden our understanding of tumor heterogeneity and post-
treatment changes.

5. Conclusions

In conclusion, we developed a prediction model using texture features extracted from
MRI to predict local tumor control of SRS in patients with lung cancer brain metastases.
We found that MRI texture analysis on pre-treatment CE T1WI may have a role in predicting
local tumor control after SRS and this finding may aid decision-making regarding treatment
planning and prognosis evaluation for patients treated with SRS for brain metastases.
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