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Abstract: Background: In order to overcome the geometrical and physical limitations of conventional
rotating and piezosurgery instruments used to perform bone osteotomies, as well as the difficulties in
translating digital planning to the operating room, a stand-alone robot-guided laser system has been
developed by Advanced Osteotomy Tools, a Swiss start-up company. We present our experiences of
the first-in-man use of the Cold Ablation Robot-guided Laser Osteotome (CARLO®). Methods: The
CARLO® device employs a stand-alone 2.94-µm erbium-doped yttrium aluminum garnet (Er:YAG)
laser mounted on a robotic arm. A 19-year-old patient provided informed consent to undergo
bimaxillary orthognathic surgery. A linear Le Fort I midface osteotomy was digitally planned and
transferred to the CARLO® device. The linear part of the Le Fort I osteotomy was performed
autonomously by the CARLO® device under direct visual control. All pre-, intra-, and postoperative
technical difficulties and safety issues were documented. Accuracy was analyzed by superimposing
pre- and postoperative computed tomography images. Results: The CARLO® device performed
the linear osteotomy without any technical or safety issues. There was a maximum difference of
0.8 mm between the planned and performed osteotomies, with a root-mean-square error of 1.0 mm.
The patient showed normal postoperative healing with no complications. Conclusion: The newly
developed stand-alone CARLO® device could be a useful alternative to conventional burs, drills, and
piezosurgery instruments for performing osteotomies. However, the technical workflow concerning
the positioning and fixation of the target marker and the implementation of active depth control
still need to be improved. Further research to assess safety and accuracy is also necessary, especially
at osteotomy sites where direct visual control is not possible. Finally, cost-effectiveness analysis
comparing the use of the CARLO® device with gold-standard surgery protocols will help to define
the role of the CARLO® device in the surgical landscape.

Keywords: CARLO®; robot-guided laser; osteotomy; midface; orthognathic surgery

1. Introduction

Technological developments in the fields of three-dimensional (3D) printing and vir-
tual surgical planning are producing a shift from conventional surgery to computer-assisted
patient-specific interventions. In the field of craniomaxillofacial surgery, virtual surgical
planning and the 3D printing of 3D models, cutting guides, patient specific implants, and
patient-specific osteosynthesis plates have become part of the daily workflow [1–4]. In
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some centers these digital workflows have become the gold standard, thereby stimulating
and driving the trend of patient-specific solutions. However, accurately translating these
digitally developed preoperative plans in the operating room remains difficult due to the
large number of factors involved, including the quality of the imaging data; the software
used for segmentation, designing, and planning; the experience of the engineer or surgeon
performing the digital planning; the accuracy of the 3D printing or milling process; and,
ultimately, the correct intraoperative use of the developed models, guides, implants, and
osteosynthesis plates. While the planning is done virtually, the osteotomy is still performed
manually and is limited by the physical properties of the osteotome. Multiple studies
have demonstrated the clinical relevance and accuracy of a digital workflow, but like with
conventional planning, errors and inaccuracies can occur in each step [5]. Furthermore, in
virtual planning there are no restrictions on bone movements or theoretical limitations to
designs, whereas it is necessary to understand the biological and physical limitations of
the surgical instruments and the anatomy in the operating area. The accurate transfer of
the preoperatively planned osteotomies to the operating room is reliant on surgical guides
that have to be adjusted to the physical properties of the bone cutting instruments, and
thus suffer from the same limitations as the surgical instrument used for the osteotomy.

The standard surgical equipment for cutting hard tissue comprises mechanical in-
struments such as saws, drills, and burs. Due to the inherent bone contact, friction, and
pressure, these instruments cause thermal damage to the bone and surrounding tissue,
bone fragmentation, and stress in the surrounding tissues [6]. These factors can lead to
slower or disturbed bone regeneration or even bone necrosis [7,8]. Moreover, conventional
tools are limited by their designs to only being suitable for performing linear or slightly
curved osteotomies. Some of these issues have been addressed by the introduction of piezo-
electric bone surgery, which induces less vibration in the surrounding tissue and exerts
less pressure on the bone surface [6]. Piezoelectric devices can induce micromovements at
ultrasonic frequencies, which will simply shake soft tissues while cutting the stiff hard tis-
sues. The advantages of the piezoelectric technique compared with rotary instruments and
oscillating saws include higher precision due to better control of the osteotomy line [9,10],
faster bone healing and bone regeneration due to less damage to the osteocytes [9,11–13],
and the preservation of the adjoining soft tissue [9,12].

Lasers have recently been used for cutting hard tissue [14,15]. They can be used
to perform contact-free osteotomies and have far fewer geometrical limitations, such as
allowing puzzle-like osteotomy designs. However, the accuracy of an osteotomy has
remained dependent on the surgical experience and manual precision. Performing a bone
osteotomy using a laser offers the potential advantages of high precision, low roughness of
cut surfaces, a narrow kerf, and reduced collateral damage to surrounding tissues [7,16,17].

An erbium-doped yttrium aluminum garnet (Er:YAG) laser emits radiation at 2.94 µm,
and so it can be used for thermal bone ablation due to water exhibiting a strong absorption
coefficient at this wavelength. The water molecules selectively absorb the energy, thereby
increasing the internal pressure in the form of steam, which causes the explosive destruction
of inorganic substances [18]. Potential thermal damage to the surrounding tissues can
be practically eliminated by spraying water into the surgical field [6,19]. In contrast to
conventional rotating instruments and piezoelectric surgery, laser-induced thermal bone
ablation does not create a smear layer on the osteotomy edges. This results in a channeled
scaffold that preserves the trabecular ridges, which allows the passage of cells to the
site of injury, therefore potentially benefiting bone healing [20,21]. Several preclinical
and clinical studies have shown that the healing outcome when using an Er:YAG laser
with water cooling is comparable with those for a conventional mechanical osteotomy
and piezoelectric surgery [7,22–25]. A comparison of the healing of a sheep tibia shaft
after performing osteotomy between using an Er:YAG laser and a piezoelectric osteotome
revealed no relevant macroscopical, radiological, or histological differences after 2 and
3 months [26]. A study comparing bone healing after osteotomies performed with a carbide
bur, diamond bur, Er:YAG laser, and pulsed femtosecond laser in mice calvaria also found
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no significant differences in bone analyses performed with micro computed tomography
(micro-CT) after 12 weeks [27].

In order to overcome the geometrical limitations of conventional bone cutting instru-
ments, avoid the reliance on the manual skill of the surgeon, and mitigate the difficulties
of translating the digital preoperative planning to the operating room, a Swiss start-up
company (Advanced Osteotomy Tools [AOT]) has developed a miniaturized robotic laser
system. A laser head was mounted on a robotic arm guided by intraoperative navigation
to produce the Cold Ablation Robot-guided Laser Osteotome (CARLO®). The goal was
to develop a stand-alone robot-guided laser for performing contact- and debris-free os-
teotomies, eliminating the need for cutting guides and manual maneuvers by surgeons.
This device offers the possibility of a total digital workflow that allows the direct transfer
of the virtual planning into the operating room. The potential of the CARLO® device has
been confirmed previously in in vivo animal studies that compared piezoelectric surgery
and the CARLO® device in minipig mandibles and sheep skulls, which the results showing
that the osteotomies had similar durations but higher accuracies and a tendency of faster
bone healing when the CARLO® device was employed [25,28,29]. The applicability of
the CARLO® device for intraoperative use for craniomaxillofacial interventions has been
demonstrated on human cadavers by successfully performing mandible split osteotomies,
fibula osteotomies, and midface osteotomies with various designs [14].

In 2019, the first-in-man clinical study to evaluate the safety and accuracy of linear
midface osteotomies performed with the CARLO® device was started (ClinialTrials.gov
Identifier: NCT03901209). The goal of this study is to assess the safety and accuracy of
the CARLO® device, the results of which will be published in another article. Herein we
explain the workflow and our practical experience when using the CARLO® system, as
exemplified by its application to one of the study patients.

2. Methods and Results
2.1. Ethics

The study was approved by the Swiss Agency for Therapeutic Products (Swissmedic
Ref 10000471) and the ethical committee for Northwest and Central Switzerland (Ethikkom-
mission Nordwest- und Zentralschweiz [EKNZ] 2017-01768). The study was registered
with the European Database on Medical Devices (EUDAMED CIV-19-02-027204). The
patient signed a written informed consent sheet for study participation.

2.2. CARLO® Device

The CARLO® device includes an Er:YAG laser mounted on a robotic arm that is
guided by an integrated navigation system (Figure 1). The laser produces a beam with
a focal diameter of 0.8 mm, a pulse energy of >100 mJ, and a pulse rate of 10 Hz. The
laser is operated in the cold ablation regime, which leaves the ablated bone surface porous
and biologically functional since the temperature of the surrounding tissue never exceeds
45 ◦C. This can be achieved by ensuring that the duration of each laser pulse is sufficiently
short, sweeping the laser head along the osteotomy line, and providing constant cooling
and humidification from the saline solution that is sprayed from a nozzle. A visible green
laser is coaxially aligned with the cutting beam of the Er:YAG laser to allow the surgeon to
monitor and simulate the osteotomy path prior to the cutting. The robotic arm (lightweight
medical grade robot LBR Med, KUKA, Augsburg, Germany) on which the laser head is
mounted provides a lateral repeatability of better than 0.15 mm and an angular repeatability
of better than 7 mrad. The robotic arm was designed to be tactile and to move at safe
speeds and exert forces compatible with human–machine interactions. The arm will move
to a predefined safe position when it detects the possibility of a collision. The robot is
guided by a navigation system based on two tracking cameras that observe two markers:
one integrated in the laser head and the other attached to the patient. A nozzle that sprays
normal saline solution is used to cool, moisturize, and capture most of the ablation debris
around the targeted tissue.
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Figure 1. Cold Ablation Robot-guided Laser Osteotome (CARLO®) developed by Advanced Os-
teotomy Tools (AOT AG, Basel, Switzerland) consisting of a laser head mounted on a robotic arm
and guided by an optical navigation system.

2.3. Digital Workflow

A 19-year-old male patient in good general health but presenting a hypoplastic maxilla
and a history of a soft palatal cleft provided written informed consent to undergo a
linear Le Fort I midface osteotomy performed with the CARLO® device. Virtual planning
was based on preoperative CT (SOMATOM Definition Flash, Siemens Healthcare GmbH,
Erlangen, Germany) with a slice thickness of 1.0 mm performed 5 weeks prior to the surgery.
The midface was segmented using Mimics software (version 21.0, Materialise, Leuven,
Belgium). The dental surfaces and bite registration were obtained with an intraoral scanner
(TRIOS 3 Basic, 3Shape, Copenhagen, Denmark) and aligned with the dental surface of the
segmented midface. Two linear Le Fort I osteotomy lines were designed in Mimics that
took into account the positions of the dental roots (Figure 2). The virtually planned Le Fort
I osteotomy was exported as a Surface Tessellation Language (STL) file and then imported
into the software of the CARLO® device, which includes a graphical user interface. Since
the osteotomy line can be adjusted within the software, intraoperative corrections can be
performed without the need to return to the planning software. The cutting angulation
of the laser head relative to the bone surface was set using the graphical user interface,
and this can also be adjusted intraoperatively. The orthognathic virtual surgery planning
was finalized in IPS CaseDesigner (KLS Martin, Tuttlingen, Germany), which allows the
in-house manufacture of an occlusal splint using a 3D printer (Objet30 Prime, Stratasys
Ltd., Eden Prairie, MN, USA).
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Figure 2. Segmentation of the cranium (green) and maxilla (brown) with preoperatively planned and intraoperatively
adjusted osteotomy lines. (A): Preoperatively planned left and right linear midface osteotomy lines in Mimics. This model is
exported as an STL file and then imported into the software of the CARLO® device. (B): Intraoperatively adjusted osteotomy
line on the right side of the maxilla, marked in blue.

2.4. Surgical Procedure

The intraoperative procedure included the usual sterile draping of the patient and
obtaining surgical access with mucoperiosteal flap elevation in the maxilla. The registration
marker was registered in the software of the CARLO® device using the optical cameras and
navigation software, and subsequently attached to the hard palate using two self-drilling
11.0-mm intermaxillary fixation (IMF) screws (M5248.11, Medartis AG, Basel, Switzerland).
The marker was positioned in direct sight of the optical cameras on the left side of the
patient so as to not interfere with the surgeon, who was positioned on the right side of
the patient (Figure 3). Point-pair matching of at least four landmarks was used to match
the virtual maxilla with the maxilla of the patient (Figure 4). Dental landmarks and the
infraorbital foramina were used for the registration process, which took 5 min and resulted
in a root-mean-square (RMS) error of 1.0 mm.
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Figure 3. Intraoperative position of the CARLO® navigation system on the left side of the patient
with the navigation marker attached to the hard palate using two 11.0-mm self-drilling intermaxillary
fixation (IMF) screws. The white goggles provide ocular protection during laser cutting. The graphical
user interface on the left side of the patient provides real-time visual information about the operating
area obtained by a camera embedded in the laser head and about the bone thickness in the form of a
histogram. Auditory feedback informs the surgeon when the osteotomy is completed.
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Figure 4. Screenshot of the registration points used for point-based registration of the patient’s skull
to the digital model imported into the software of the CARLO® device. The osteotomy line on the
right maxilla can be adjusted intraoperatively directly in the software of the CARLO® device; the
adjustment made is shown in red.

Two black malleable orbital retractors were placed behind the tuber maxillae and
apertura piriformis in order to retract the soft tissues and avoid scattering of the laser
beam (Figure 5). The operating team, nursing staff, and patient were all equipped with
protective laser goggles. The laser head is automatically positioned in the operating area
by the robotic arm and the osteotomy line is visualized by the green noncutting laser
beam mentioned above. This step is approved by the surgical team. In the exemplar case,
the surgical team was not satisfied with the on-site osteotomy line visualization, and so
the osteotomy line as well as the laser head angulation were adjusted intraoperatively
(Figure 2). Once the procedure is agreed, the laser needs to be manually turned on and
controlled by the surgeon by maintaining continuous pressure on a trigger button. The
robot-guided laser then performs the osteotomy autonomously while still under direct
visual control by the surgical team, who are provided with real-time visualization of the
cutting area on a monitor and real-time auditory feedback. The amount of bone removed
during the osteotomy is displayed in a histogram on the graphical user interface, which
allows for depth control. Once the osteotomy of the inner cortex of the bone has been
completed, the sound of the laser cut changes, informing the surgeon that the osteotomy is
complete, as demonstrated in the attached video (Supplementary Video S1).

The osteotomy took approximately 8 min on the right side and 4 min on the left side.
Multiple safety protocols were in place to address any unexpected events, such as laser-stop
buttons on the device held by the surgeon and on the robot itself, and the ability to push
the robotic arm away. The CARLO® device successfully performed the linear midface
osteotomy in the present case on both sides without encountering any technical problems
or safety concerns. After the osteotomy had been performed, the CARLO® device was
removed and the osteotomy of the nasal septum, lateral nasal wall, and pte-rygomaxillary
junction was completed using a chisel and hammer. The surgery was then completed in a
conventional manner.
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Figure 5. Intraoperative photograph obtained during a linear Le Fort I osteotomy of the right maxilla performed with the
CARLO® device. Soft tissue was retracted using two black malleable orbital retractors placed behind the tuber maxillae and
apertura piriformis. The registration marker was attached to the palate using two 11.0-mm self-drilling IMF screws and
positioned in direct sight of the optical camera system on the left side of the patient. The coaxially oriented noncutting
green laser beam indicates the location of the osteotomy line.

2.5. Postoperative Procedure

Postoperative CT with a slice thickness of 1.0 mm was used to compare the performed
and planned osteotomies by superimposing the preoperatively planned and osteotomized
maxillae in Mimics (version 21.0). The virtual model with the intraoperatively adjusted
osteotomy line on the right maxilla was exported as an STL file from the CARLO® software
and imported into Mimics. A maxillofacial surgeon measured the distances from four
predefined dental surfaces to the osteotomy line in both models. In order to ensure that the
measurement positions were correct, the pre- and postoperative models were superimposed
based on the dental surface scan. Laterally, the postoperatively mea-sured distances from
the mesiobuccal cusps of the right and left first upper molars to the lateral osteotomy line
showed differences of 0.03 mm and 0.79 mm, respectively, relative to the preoperative
planned distances. Anteriorly, the postoperatively measured distances from the right and
left first incisors to the medial osteotomy line showed differences of 0.51 mm and 0.45 mm,
respectively (Figure 6). The patient was discharged on the third postoperative day and
showed normal healing at 1-, 2-, and 4-week follow-ups, with no reports of infections,
mucosa dehiscence, or hematoma. There was no reported adverse event related to the use
of the CARLO® device.
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Figure 6. Superimposed preoperative (green) and postoperative (blue) segmented maxillae based on the intraoral dental
surface scan (red). (A): Preoperative maxilla with an intraoperatively adjusted osteotomy line that was imported into
Mimics. The intraoperatively adjusted osteotomy line on the right side of the maxilla is shown in blue, and the aligned
dental surface scan is shown in red. The measured distances from the mesiobuccal cusps of the left and right upper molars
to the lateral osteotomy line and from both incisors to the medial osteotomy line are shown. (B): Postoperative maxilla
segmented in Mimics aligned with the dental surface scan shown in red. (C): Superimposition of the two maxillae based on
the aligned dental surface scan. The measurements for each landmark are presented in pairs, with those on the left and right
representing the planned and performed osteotomies, respectively. The difference was 0.03 mm from the mesiobuccal cusp
of tooth 16 to the right lateral osteotomy line, 0.51 mm from the mesial surface of tooth 11 to the right medial osteotomy line,
0.45 mm from the mesial surface of tooth 21 to the left medial osteotomy line, and 0.79 mm from the mesiobuccal cusp of
tooth 26 to the left lateral osteotomy line.
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3. Discussion

The CARLO® device essentially represents the fusion of three preexisting technologies:
lasers, robotics, and navigation. It includes a miniaturized Er:YAG laser head placed
on a robotic arm that is guided by a point-based optical navigation system. Manually
operated Er:YAG lasers have been used successfully in the past for performing intraoral
bone osteotomies with different indications [7,30,31], and point-based optical navigation
technology is well established for surgical planning [32]. The precision and accuracy of
the CARLO® device has previously been tested preclinically in small cadaver and animal
studies, which showed clinically acceptable accuracy and bone healing compared with
piezoelectric surgery [14,25,28,29]. The CARLO® device has subsequently been tested
for its usability in performing Le Fort I osteotomies in human cadavers. These data are
unpublished, but they have been disclosed to the Swiss Agency for Therapeutic Products.
Based on these cumulative results, the CARLO® device was deemed applicable and safe for
the first-in-man clinical testing performed in the present study under direct visual control.

For the first-in-man use of the CARLO® device, we opted for a linear Le Fort I
osteotomy since this is a highly standardized and preplanned procedure. Osteotomies of
the nasal septum, lateral nasal wall, and pterygomaxillary junction were excluded from
the study protocol for safety reasons, since the accuracy of the device has not yet been
confirmed in a clinical setting and direct visual feedback would not have been available du-
ring these procedures. The eventual goal is to perform all osteotomies using the CARLO®

device without the need for conventional instruments, but this has not been achieved yet.
From a technical perspective, it should be possible to perform any kind of osteotomy in the
human body as long as the laser beam can reach the site of osteotomy when any intervening
soft tissues have been sufficiently retracted. The present anterior maxillary osteo-tomy did
not need any additional assistance from conventional mechanical instruments, whereas
the osteotomies of the lateral nasal wall, nasal septum, and pterygomaxillary junction
were performed using a chisel and hammer in accordance with the study protocol. The
intraoperative safety of the patient, operating team, and nursing staff was gua-ranteed
by equipping them with laser goggles and providing the surgeon with direct access to
multiple emergency laser-stop buttons and a graphical user interface with real-time visual
and auditory feedback from the surgical site. However, if the CARLO® device is intended to
be used in the future at sites where direct visual feedback on its performance is impossible,
such usage will need to be reassessed in a preclinical setting before being applied to patients.

The present patient showed uneventful healing during an 11-month follow-up period,
with radiologically confirmed complete bone healing of the osteotomy line. There were
no intra- or postoperative complications related to the CARLO® device. The absence of
a smear layer, intact trabecular structure, and absence of thermal bone alteration along
the osteotomy line should theoretically lead to improved healing conditions due to the
lack of disturbance to cell migration into the osteotomy gap [21]. Most of the studies
in the literature used animal subjects and histological or radiological parameters to an-
alyze bone healing [6]. Based on the current literature, we can assume that performing
a bone osteotomy with a water-cooled Er:YAG laser results in similar histological and
radiological bone healing compared with using conventional rotating instruments and
piezosurgery [6,25–27,29]. A more-pronounced bone bleeding with a subsequent risk of
hematoma formation could be presumed when using the Er:YAG laser due to the absence
of a mechanical smear layer along the osteotomy bone surface. In the present patient,
both the intraoperative bone bleeding and postoperative swelling were within the normal
clinical ranges, but further clinical research is mandatory to compare the degrees of bone
bleeding and bone healing between mechanical and laser osteotomies.

The accuracy of the CARLO® device is affected by the performance of the navigation
system. In the present case, the point-based registration achieved high accuracy. However,
it is prone to error since the resolution of the CT data set influences the registration
process and the identification of anatomical landmarks on the segmented image and
patient [32]. When using dental landmarks as registration points, it is crucial to align
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the initial segmentation of the midface with dental surfaces derived from an intraoral
surface scan, since dental surfaces derived from CT typically have lower spatial accuracy.
In addition to the dental landmarks, the infraorbital foramina provided reliable landmarks
during the registration process, resulting in high overall registration accuracy. It is also
important to take sufficient time when fixing the target marker and registering the patient’s
skull with the pointer tool in order to achieve an RMS error of ≤1.0 mm, which has been
described as acceptable in the literature [32]. This is an essential step in the successful
utilization of the CARLO® device. The importance of high-quality thin-slice imaging must
also be highlighted in the preoperative planning and postoperative analysis. Cone-beam
computed tomography (CBCT) is prone to interference artifacts from orthodontic metal
appliances, requiring their manual removal during the segmentation process. This labor-
intensive and time-consuming procedure can result in inaccuracies during the subsequent
surgical planning. Therefore, although CT results in higher radiation exposure for the
patient, it is preferred over CBCT to provide optimal preoperative planning and accurate
registration of the navigation system.

Postoperatively, the maxilla with the adjusted osteotomy line was directly exported
from the CARLO® software as an STL file, allowing for pre- and postoperative comparisons
of the osteotomy accuracy. Superimposing the virtually planned maxilla with the adjusted
osteotomy line and the postoperative maxilla segmented from postoperative CT revealed
a clinically acceptable maximum difference of 0.8 mm for the left posterior measurement
point, with an RMS error of 1.0 mm. It should be possible to achieve higher accuracy by
reducing the RMS error, since Augello et al. reported achieving maximum RMS errors of
0.14 mm [14].

Registering the target marker took 5 min in the present study. The linear osteotomy
performed using the CARLO® device took approximately 8 min on the right side and 4 min
on the left side in the present case. While this is clinically acceptable, it is also necessary to
take into account the times needed for fixation of the target marker, for the robot to position
itself, and for the visualization of the osteotomy line. These parameters were not included
in the study protocol, but the times taken can be expected to reduce with experience.

During the present first-in-man use of the CARLO® device, we identified a number
of aspects that should be further improved. For the present patient the target marker
was attached to the hard palate using two 11.0-mm self-drilling IMF screws. Placing a
marker could be difficult in patients with reduced mouth opening and lead to the lower
lip or mandible exerting undesired pressure on the marker during surgery. The use of
an optical navigation system means that the marker needs to be directly viewable by the
tracking cameras. Combined with the proximity of the laser head to the patient’s skull,
this resulted in a crowded operating area that complicated the retraction of soft tissue
during the osteotomy. Therefore, the location of the marker and its means of fixation need
to be optimized. Positioning the marker on the temporal skull using a head band could
ensure direct line-of-sight between the cameras and the marker, allow for an assistant to
stand on the side of the marker, and avoid interference with the laser head as well as the
need to place extra (palatal) screws. Also, when attempting bimaxillary surgery with the
CARLO® device, it is likely that the target marker will need to be repositioned on the
mandible to perform the sagittal split osteotomy, resulting in a second registration process.
An innovative solution therefore needs to be developed to reduce the operating time.

The CARLO® device provides auditory and visual feedback about the laser that
helps the surgeon to control the osteotomy being performed. However, there is no active
depth control, meaning that the laser will keep cutting even after the osteotomy has
been completed. In the current version of the device, it is therefore mandatory to protect
the underlying tissue with a laser-beam absorber, which in our case was achieved by
placing two black malleable orbital retractors behind the tuber maxillae and apertura
piriformis. However, these retractors can only partly protect the deeper tissues from the
laser beam since the posterior wall of the maxillary sinus cannot be reached. An active
feedback system could be implemented to stop the laser cutting once the osteotomy has
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been completed or once only a very small amount of bone tissue remains, which then can
easily be removed manually.

The water-cooling system prevents thermal damage to the bone but creates a spray
that reaches the entire operating field, and hence is likely to also affect the operating team
due to the aforementioned crowded operating area. This could be optimized by adjusting
the nozzle or implementing protecting shields, thereby making the device safer for the
operating team.

The new system should ideally be compared with the established surgical protocols
in order to evaluate its clinical relevance and cost-effectiveness. The CARLO® device
might have specific benefits for use in so-called waferless orthognathic surgery [33]. In this
technique, the final position of the maxilla relies on an exact match between preplanned
osteotomy lines and the personalized prefabricated internal fixation plates. This can reduce
the preoperative planning steps, since the virtual planning can be exported from any
commercially available software and directly imported as an STL file into the software of
the CARLO® device. This means that there is no need to design and manufacture cutting
guides, potentially reducing time and cost. The elimination of the guides additionally
avoids issues that might arise from inaccuracies in the design of the cutting guide, or the
interference of soft tissue preventing a perfect fit. On the other hand, when comparing the
system with virtually planned orthognathic surgery performed using 3D printed wafers
without cutting guides, additional planning time could be expected, especially when using
CBCT, since extra time would be needed to remove scattering over the osteotomy line.

Other potential benefits of the direct transfer of data from virtual planning to the
CARLO® device can be found in head and neck reconstruction surgery, where any delay
from diagnosis to surgical resection can have detrimental effects on the patient [34].

A cost-effectiveness analysis of the present system was not performed, and so its
potential advantages will have to be weighed against expected extra costs arising from the
system itself and extra surgical time for the installation of the robot, marker fixation, and
registration of the navigation system.

A technique for minimally invasive orthognathic surgery has been described, in which
the maxillary bone is exposed by making a small mucosal incision from tooth 12 to tooth
22, osteotomized with an oscillating saw or piezoelectric osteotome, and downfractured
by combining manual manipulation with using a chisel and hammer. This minimally
invasive technique appears to reduce postoperative morbidity and the length of hospital
stay [35–37]. Therefore, the applicability of the CARLO® device as an alternative to con-
ventional osteotomy in this minimally invasive technique should be assessed in a future
cadaver study.

The robot-guided laser osteotome shows clear potential in maxillofacial surgery, where
high precision is necessary to achieve optimal functional and esthetic outcomes. In the
present case, the system accurately transferred from preoperative planning to the operating
room, without the need for a cutting guide. Keeping the RMS error as low as possible
(preferably <1.0 mm) is crucial for successful outcomes. Due to the ability to perform a
contact-free osteotomy, the range of osteotomy designs is limited only by the imagination
of the surgeon and by human anatomy. Combined with its bone healing capacity being
comparable to that of piezoelectric surgery [7,22–25], we believe that the CARLO® device
has the potential to become an important new tool in all bone-cutting disciplines (Table 1).
This device could be employed in a wide range of bone osteotomies over the entire body if
sufficient bone exposure is possible. Its freedom in cutting designs will provide the creative
surgeon with the means to treat every patient individually and will probably also help in
identifying new approaches to existing surgical techniques.
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Table 1. Advantages and limitations of the current CARLO® device.

Advantages Limitations

1. Use of robotics with an integrated
navigation system results in an
autonomously performed hard tissue
osteotomy that eliminates the need for
manual maneuvers by surgeons

1. Need for greater surgical exposure of the
operating area to allow for direct visual
control of the osteotomy

2. Contact-free osteotomy achieved using an
Er:YAG laser avoids geometrical
limitations faced by conventional methods

2. Extra anesthesia time for the installation of
the CARLO® system and fixation and
registration of the marker

3. Translation of the digital preoperative
plan into the operating room eliminates
the need for a cutting guide

3. No active depth control system, with
depth control primarily based on auditory
feedback

4. Intraoperative adjustments of the planned
osteotomy line are possible using the
software of the CARLO® device

4. The accuracy of the osteotomy is highly
dependent on the quality of the
registration performed by the surgical
team

5. Presumed beneficial bone healing due to
the preservation of the trabecular bone
structure and the absence of a smear layer
and thermal damage

5. Unclear risks of bleeding and hematoma
formation due to the absence of a smear
layer and thermal damage

4. Conclusions

The CARLO® device could be a useful alternative to conventional osteotomy instru-
ments and piezoelectric surgery for bone osteotomies. In the present exemplar orthognathic
case, the linear part of the Le Fort I midface osteotomy was safely completed with this
newly developed autonomous system, with no technical problems being encountered. The
CARLO® device offers the advantage of contact-free osteotomies, theoretically unlimited
osteotomy geometries, and the capability to directly transfer from preoperative planning to
the operating room without the need for cutting guides. However, performing osteotomies
where direct visual control is not possible will require the implementation of an active
depth control system and further preclinical studies confirming the safety and accuracy.
Furthermore, the impact on bone healing needs further assessment, particularly compared
with conventional osteotomy instruments. The present results combined with tests of
further specific applications for the CARLO® device in craniomaxillofacial and orthopedic
surgery will clarify and define the role of this novel device in the surgical landscape.

Supplementary Materials: The following are available online at https://www.mdpi.com/2077-038
3/10/3/450/s1. Video S1: Intraoperative use of the CARLO® device. Intraoperative demonstration
of a linear Le Fort I laser osteotomy performed autonomously using the CARLO® device during
orthognathic surgery. The video demonstrates visualization of the osteotomy, direct visual and
auditory feedback, and the presentation of the bone thickness as indirect depth control.
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