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Abstract: Auditory steady-state response (ASSR) is a translational biomarker for several neurological
and psychiatric disorders, such as hearing loss, schizophrenia, bipolar disorder, autism, etc. The ASSR
is sinusoidal electroencephalography (EEG)/magnetoencephalography (MEG) responses induced by
periodically presented auditory stimuli. Traditional frequency analysis assumes ASSR is a stationary
response, which can be analyzed using linear analysis approaches, such as Fourier analysis or Wavelet.
However, recent studies have reported that the human steady-state responses are dynamic and can
be modulated by the subject’s attention, wakefulness state, mental load, and mental fatigue. The
amplitude modulations on the measured oscillatory responses can result in the spectral broadening
or frequency splitting on the Fourier spectrum, owing to the trigonometric product-to-sum formula.
Accordingly, in this study, we analyzed the human ASSR by the combination of canonical correlation
analysis (CCA) and Holo-Hilbert spectral analysis (HHSA). The CCA was used to extract ASSR-
related signal features, and the HHSA was used to decompose the extracted ASSR responses into
amplitude modulation (AM) components and frequency modulation (FM) components, in which the
FM frequency represents the fast-changing intra-mode frequency and the AM frequency represents
the slow-changing inter-mode frequency. In this paper, we aimed to study the AM and FM spectra
of ASSR responses in a 37 Hz steady-state auditory stimulation. Twenty-five healthy subjects were
recruited for this study, and each subject was requested to participate in two auditory stimulation
sessions, including one right-ear and one left-ear monaural steady-state auditory stimulation. With
the HHSA, both the 37 Hz (fundamental frequency) and the 74 Hz (first harmonic frequency) auditory
responses were successfully extracted. Examining the AM spectra, the 37 Hz and the 74 Hz auditory
responses were modulated by distinct AM spectra, each with at least three composite frequencies.
In contrast to the results of traditional Fourier spectra, frequency splitting was seen at 37 Hz, and a
spectral peak was obscured at 74 Hz in Fourier spectra. The proposed method effectively corrects
the frequency splitting problem resulting from time-varying amplitude changes. Our results have
validated the HHSA as a useful tool for steady-state response (SSR) studies so that the misleading
or wrong interpretation caused by amplitude modulation in the traditional Fourier spectrum can
be avoided.

Keywords: auditory steady-state response (ASSR); electroencephalography (EEG); canonical correlation
analysis (CCA); Holo-Hilbert spectral analysis (HHSA)
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1. Introduction

Steady-state response (SSR) elicited by periodic sensory stimuli is a synchronized and
phase-locked type of neural activity in the human brain. The SSR has been extensively used
to investigate the electrophysiological responses underlying different neural networks [1].
Different stimulus parameters, such as stimulus frequency [2], duty cycle [3], intensity
contrast [4], phase synchrony [5], attention modulation [6], etc., have been studied to
characterize their functional capacities and neural mechanisms. Classical physiological
models assume SSR as a stereotypical time-invariant neural response, in which background
fluctuations are linearly added to the elicited SSR. A time-averaging technique is usually
chosen to suppress the signal fluctuations that are uncorrelated to the given periodic
stimulus. However, recent studies indicate SSR contains nonlinear neural responses,
which could be modulated by the subject’s attention [7], wakefulness state [8,9], mental
load [10–13], and mental fatigue [14]. Traditional frequency analysis methods, such as
Fourier transform or wavelet transform, assume the measured time series are the linear
combinations of vectors from a predetermined basis, in which the modulation among
different signal scales is not considered. Nevertheless, it has been demonstrated that
neural adaption can alter the strategy of neural coding and cause modulation in the phase,
latency, or amplitude in evoked potentials [15]. Several studies have shown neural coding
plays an important role in the modulation of oscillatory activities within cortical neuron
populations [16]. The neural coding describes that the information transmitted from
sensory perception to the central nervous system can be encoded by varying the rate and
timing of action potentials (spikes), depending on the properties of the perceived stimulus
and the subject’s physical states [17]. For example, Zhong et al. (2013) investigated
the effects of noise-induced hearing loss on the coding of an envelope structure in the
central auditory system, and they observed increased auditory responses at the applied
modulation frequency in people with cochlear hearing loss [18]. Nasir et al. (2013) tested the
plasticity in sensory systems using somatosensory evoked potentials (SEPs) and observed
that sensorimotor adaption induced alternation in the neural coding of somatosensory
stimuli [19]. Several neural coding hypotheses have been proposed to account for the
processing of neural activity patterns in our brain and nervous systems, such as rate
coding, temporal coding, population coding, correlation coding, independent spike coding,
position coding, sparse coding, etc. [20]. Among the neural coding hypotheses, rate coding
and temporal coding are the two neural coding strategies that were studied the most in
previous literature. The rate coding model, sometimes called the frequency coding model,
hypothesizes that the information of a signal is contained in the firing rate of neural spikes,
while the temporal coding model assumes the information of interneuron transmission
is contained in the precise timing of spikes and inter-spike intervals. Aghababaiyan et al.
(2019) studied the capacity and error probability analysis of neuro-spike communication
using a numerical simulation approach and concluded temporal coding has a higher
efficiency than spike rate coding in terms of achievable data rate [21]. The neural coding
could also be influenced by a subject’s physiological states, such as attention [22] and
emotion states [23], in order to achieve better efficiency of information transmission [24].
Since the exertion of a modulation frequency on a sinusoidal signal will result in a frequency
shifting away from its oscillatory frequency according to the trigonometric product-to-
sum formula, neural modulation, induced by changes in internal statuses or external
environments [25], could result in deviation in the detected oscillatory frequency of human
SSR. The development of a frequency analysis method, which takes both the oscillatory
and modulatory frequencies into account, is necessary to study the subtle dynamics in the
measured SSR.

Auditory steady-state responses (ASSR) elicited by rapid auditory stimuli are a kind
of SSR commonly used in clinics. ASSR is a sinusoidal-like response consisting of evoked
responses from the central auditory pathway and auditory cortex, which allows the mea-
surement of hearing response at a specified frequency. The modulation technique for ASSR
stimulus can be either amplitude modulation [26–28] or frequency modulation [29]. It has
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been demonstrated that ASSR is a useful translational biomarker for several neurological
and psychiatric disorders [30–33]. The ASSR is also an objective tool for estimating hearing
sensitivity in individuals, especially for hearing loss [34,35], hearing assessment [36,37],
and evaluation of aural rehabilitation [38]. Khuwaja et al. (2015) measured the ASSR
responses during different stages. They obtained a 100% classification rate for sleep stage
classification using a neural network classifier [39]. Swanepoel (2011) compared ASSR and
brain stem response (ABR) in infants and concluded ASSR is a more reliable and useful
tool for diagnosing hearing loss in infants [40]. Sugiyama et al. (2021) reviewed the ASSR
processing in psychiatric disorders, including schizophrenia, bipolar disorder, and autism.
The ASSR amplitude is suppressed within the gamma band (~40 Hz), which indicates the
imbalance between GABAergic and N-methyl-D-aspartate (NMDA) receptor-medicated
neurotransmission [41]. Yokota and Naruse (2015) found that the phase coherence of ASSR
can reflect the amount of cognitive workload in an N-back task [42]. Kallenberg et al. (2007)
implemented an ASSR-based brain–computer interface (BCI) by giving two tones with
distinct modulation frequencies. Subjects were requested to pay attention to one out of the
two tones to achieve the auditory BCI control [43].

Most ASSR studies utilized tone bursts modulated at 40 Hz, in which the test frequen-
cies are often chosen at 500, 1000, 2000, and 4000 Hz with a 100% modulation depth [38].
Physicians adjust the intensities of ASSR auditory stimuli from high to low to objectively
determine the subject’s hearing threshold. In most of the aforementioned studies, the
ASSR were detected using ensemble average or Fourier-based spectral analysis. Both the
techniques assume the auditory-induced responses are stationary across the whole measure-
ment data. Temporal modulation in the recorded auditory response is usually neglected,
which could result in the information loss for studying ASSR neural mechanisms.

In order to preserve the dynamic information of ASSR, several signal processing ap-
proaches have been proposed to suppress ASSR-unrelated noise in the EEG recordings. Bies-
mans et al. (2015) filtered the EEG signals within a narrow band and designed a spatial filter
to enhance the neural activities by optimizing the SNR of recorded ASSR [44]. Janani et al.
(2018) utilized independent component analysis (ICA) to suppress ASSR-unrelated noise
by removing artifact-contaminated components. They proposed a correlation-based algo-
rithm for the component selection process [45]. Wang et al. (2015) applied empirical mode
decomposition (EMD) to extract ASSR signals in normal subjects and tinnitus patients [46].
They constructed a spatial map for each intrinsic mode function (IMF), and the ASSR
components were identified by comparing the spatial map distribution with a pre-defined
spatial template. Bin et al. (2009) [47] applied canonical correlation analysis (CCA) to
enhance the steady-state visual evoked potential (SSVEP)-associated frequency informa-
tion, and they used it as the control signal for brain–computer interface (BCI) control. The
aforementioned methods utilized spatial filter or blind source separation (BSS) to achieve
noise removal in EEG signals. However, these methods did not analyze the effect of time
changes in amplitudes, in which the temporal modulation can lead to frequency splitting or
spectrum broadening (trigonometric product-to-sum formula). The frequency shift caused
by amplitude modulation will result in ambiguity in clinical ASSR diagnoses.

One spectral analysis tool, the Holo-spectral analysis (HHSA) proposed by Huang et al.
(2016) [48], was proposed to analyze both the amplitude modulation (AM) and the carrier
frequency (frequency modulation, FM) information in a measured signal. The HHSA was
constructed based on the structure of two-layer empirical mode decompositions (EMD), in
which the EMD is a signal decomposition method used to extract meaningful oscillation
features into intrinsic mode functions (IMF) by means of recursively applying a sifting
process [49]. In HHSA, the first-layer EMD decomposes the input signal into frequency
modulation (FM) components. In the second layer of HHSA, the signal envelopes of the
IMFs obtained from the first-layer EMD are further decomposed into amplitude modulation
(AM) components. The HHSA enables a two-dimensional AM-FM representation of the
input signal, in which the FM frequency represents the fast-changing intra-mode frequency,
and the AM frequency represents the slow-changing inter-mode frequency. In this study,
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we propose a method by combining the CCA and HHSA for the spectral analysis of
ASSR. The CCA was applied as a signal preprocessing approach by selecting ASSR-related
canonical vectors. The ASSR-related canonical vectors were chosen for reconstructing
noise-suppressed channel signals. The source activities at the left auditory cortex (LAC)
and right auditory cortexes (RAC) were estimated, and the HHSA was applied to give
the AM-FM representation of the measured ASSR. In our analysis, we adopted CCA as
preprocessing for noise removal and applied the HHSA for AM-FM analysis. The study
results might shed light on exploring the subtle information processing underlying the
auditory neuronal circuitry.

2. Materials and Methods
2.1. Auditory Stimulation

Our steady-state auditory stimuli utilized a 1 kHz sinusoidal wave modulated at
37 Hz with 100% modulation depth [50]. Monaural auditory stimuli were presented to the
left and right ears of each participant in separate sessions. Each session was three minutes
in duration, and triggers were generated at the beginning of each second for subsequent
signal processing. The intensities of auditory stimuli were set to 70 dB sound pressure
level (SPL), generated by an analog-to-digital conversion card (D/A) conversion card (NI
USB-6259, National Instrument, Austin, TX, USA), which was precisely controlled by the
LabView software (National Instruments, Austin, TX, USA).

2.2. Subjects and Tasks

Twenty-five normal subjects (14 males and 11 females, all right-handed subjects;
mean ages = 31 ± 4.2 years) were recruited to participate in this experiment. Subjects were
requested to sit in a comfortable armchair in a dimly illuminated electromagnetic shielded
room. All participants were requested to participate in two auditory stimulation sessions,
including one right-ear and one left-ear monaural steady-state auditory stimulations (one
for the right ear and one for the left ear) for three minutes. A three-minute empty-room
measurement was also recorded for each participant to monitor the background noise.
All participants gave informed consent, and the study was approved by the Ethics Com-
mittee of the Institutional Review Board (IRB), Tao-Yuan General Hospital, Taiwan. The
measurements were noninvasive, and the subjects were free to withdraw at any time.

2.3. Electroencephalography Recordings

The electroencephalography (EEG) signals were recorded using a 32-channel whole-
head EEG system (band-pass, 0.05 Hz–250 Hz; digitized at 1 kHz; QuickAmp, Brain
Products Co., Munich, Germany). A 46 Hz–65 Hz bandstop filter (3rd-order Butterworth
IIR filter) was also applied to filter out electricity noises, in which the 46 and 65 Hz cut-off
frequencies were chosen by setting 9 Hz frequency margins for the ASSR-related 37 Hz
(fundamental stimulation frequency) and 74 Hz (the first harmonic frequency) frequencies,
respectively. Electrodes were placed in accordance with the international 10–20 channel
placement. The exact position of the head with respect to the EEG electrodes was de-
termined by measuring magnetic signals from four head position indicator (HPI) coils
placed on the scalp. Coil positions were identified with a three-dimensional digitizer
(Fastrack system, Polhemus, Colchester, CT, USA) with respect to three predetermined
landmarks (naison and bilateral preauricular points) on the scalp, and these data were
used to superimpose EEG source signals on individual MRI images, obtained with a 3.0 T
Bruker MedSpec S300 system (Bruker, Kalsrube, Germany). The anatomical image was
acquired using a high-resolution T1-weighted, 3D gradient-echo pulse sequence (MDEFT:
Modified Driven Equilibrium Fourier Transform; TR/TE/TI = 88.1 ms/4.12 ms/650 ms,
128 × 128 × 128 matrix, FOV = 250 mm). The whole-head EEG signals recorded in monau-
ral steady-state auditory stimulations were stored on a hard disk for subsequent off-line
CCA and HHSA processing.
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2.4. Canonical Correlation Analysis and Selection Pertinent

Since the EEG channels in temporal areas are close to the human auditory cortex, the
channels from left or right temporal areas (the F7, FC5, T7, and CP5 in the left auditory area;
the F8, FC6, T8, and CP6 in the right auditory area) were chosen as channels-of-interest
(COI) for ASSR extractions. We considered the ASSR responses generated from the left
auditory area might not be synchronized with the ASSR responses obtained from the right
auditory area. The ASSR responses from the left auditory area and right auditory area
were extracted by setting the COI at left and right auditory areas separately. Given an
M-channel and N time points for EEG measurement XM×N (M = 4, including the F7, FC5,
T7, and CP5 in the left auditory area, or the F8, FC6, T8, and CP6 in the right auditory area)
and a set of reference signals YK×N (K = 4 in this paper, containing the sinusoidal signals
with fundamental ASSR frequency and its first harmonic frequency) with N time points
(N = 180,000), the canonical correlation analysis (CCA) tries to find vectors a (a ∈ <M)
and b (b ∈ <K) to maximize the correlation ρ = corr(aTX, bTY), in which the u = aTX and
v = bTY are defined as one pair of canonical vectors. The CCA seeks to find z (z = min(M,K))
pairs of canonical vectors, and the ith pair of canonical vectors are uncorrelated with the
jth pair of canonical vectors (i.e., ui⊥uj and vi⊥vj, for i 6= j). In this study, we took the
fundamental frequency and the first harmonic frequency of steady-state auditory stimulus
into consideration so that the reference signals Y can be represented as follows:

Y =


sin(2π × f0 × t)
cos(2π × f0 × t)

sin(2π × 2× f0 × t)
cos(2π × 2× f0 × t)

, (1)

where f 0 (f 0 = 37 Hz) is the ASSR stimulus frequency and t is the time index.
The correlation value between the ith pair of canonical vectors is:

ρi =
aT

i ∑XY bi√
aT

i ∑XX ai ·
√

bT
i ∑YY bi

, (2)

where ρi is the correlation value between ui and vi, ui = ai
TX and vi = bi

TY are the ith pair
of canonical vectors, ∑XX and ∑YY are the auto-correlation matrixes of X and Y, ∑XY is the
cross-covariance matrix between X and Y.

The ui (i = 1, . . . , 4) constructs a signal space obtained from the original EEG recordings
around the left and right auditory area so that the canonical vectors are the vector directions
which multichannel EEG samples correlate with most. The vi (i = 1, . . . , 4) are the signal
spaces constructed from the reference signals, which are not used in this study because we
want to reconstruct the ASSR responses based on the signal features extracted from original
recordings, rather than the signal space constructed from the reference signals. Further
arranging of the vectors for creating each pair of canonical vectors into matrix A, the four
canonical vectors can be obtained by the multiplication of X and A, represented as:

U4×N = (A4×4)
T ·
(
X4×N

)
=


U(1)
U(2)
U(3)
U(4)

, (3)

where U contains the four 1× N canonical vectors, A =
[
a1 a2 a3 a4

]
contains the

matrix to create the four 1×N canonical vectors, and U(1), U(2), U(3), U(4) are the canonical
vectors generated from the EEG recordings in the first, second, third, and fourth pairs of
canonical vectors, respectively.

Figure 1 shows the spatial maps and Fourier spectra of the four canonical vectors.
The spatial map was created to represent the topographic distribution (correlation) of
each canonical vector over the whole-head EEG channels. For the 32-channel whole-head
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EEG recording E32×N, the correlation of each canonical vector on all EEG channels can be
calculated by:

M(i)32×1 = ABS
{
(E32×N) ·

(
U(i)1×N/‖U(i)1×N‖

)T
}

, (4)

where E32×N contains the 32-channel EEG recording samples with N time points, the U(i)
is the ith canonical vector obtained by setting COIs surrounding the left or right auditory
area, ‖ ‖ is the function of the L2-norm, ABS{·} is the function of absolute value, and
M(i) contains the absolute values of the correlation coefficients between the ith canonical
vector and E32×N. In CCA, the relation between each canonical vector and the reference
signals is examined by performing a statistical significance analysis. The canonical vectors
with p < 0.01 were identified as ASSR-related canonical vectors and were subjected to
the reconstruction of noise-suppressed ASSR responses. Figure 1 demonstrates the CCA
processing for extracting ASSR responses in subject 5. The left panel (Figure 1A) shows
the channel plot of the recorded EEG signals. The middle-upper panel (Figure 1B) and the
middle-lower panel (Figure 1C) show the spatial maps and the Fourier spectra of canonical
vectors obtained by setting COIs located around left and right temporal areas. In Figure 1B,
the canonical vectors U(1) and U(2), whose p values are smaller than 0.01 (p < 0.01) and
had clear 37 Hz spectral peaks with their spatial maps concentrated on the right temporal
area, were chosen as ASSR-related canonical vectors of the right hemisphere. Similarly,
in Figure 1C, the U(1), U(2) and U(3) (p < 0.01) obtained from left COIs, which presented
clear 37 Hz spectral peaks with spatial maps concentrated on the left temporal area, were
identified as ASSR-related canonical vectors of the left hemisphere. The EEG signals were
then projected to the canonical vectors obtained from left and right ROIs, and the signals
were reconstructed to suppress ASSR-unrelated noises. The data reconstruction procedure
can be represented by the following equation:

Erecon
32×N =


∑

Selected i from
canonical vectors

of left ROI

[(
E32×N

)
·
(

UL (i)1×N /‖UL (i)1×N‖
)T
]
·UL (i)


+


∑

Selected i from
canonical vectors

of right ROI

[(
E32×N

)
·
(

UR (i)1×N /‖UR (i)1×N‖
)T
]
·UR (i)


, (5)

where Erecon is the reconstructed ASSR-related EEG recordings, E is the original EEG
recording, and UL and UR are the canonical vectors obtained by setting COIs close to
the left and right temporal areas. The ASSR-related EEG signals were reconstructed by
examining ASSR-related canonical vectors (p < 0.01) and the original EEG recordings were
projected to these ASSR-related canonical vectors to suppress task-unrelated components.
It can be noticed that the spatial maps generated from ASSR-related canonical vectors
on the left and right hemispheres had the characteristic of unilateral distributions, which
indicated the low inter-hemispheric correlation of ASSR responses. Accordingly, in this
study, we first calculated the ASSR responses in the left and right hemispheres separately
and then summated them together to obtain the whole-head ASSR responses (Figure 1D)
for the following ASSR source estimations.

2.5. Analysis of ASSR Source Activities Using Minimum Norm Estimation

To estimate the source activities in the left and right auditory cortexes (LAC and
RAC), minimum norm estimation (MNE) with a realistic model generated from an in-
dividual’s magnetic resonance image (MRI) (BrainStorm software, University of South
California, Los Angeles, CA, USA; http://neuroimage.usc.edu/brainstorm, accessed on
11 December 2021) was adopted [51]. Only the nodes on the cortical surface with source
amplitudes survived statistical significance (p < 0.01) among the total surface nodes that
were rendered on an individual’s anatomical MRI (see Figure 2). Figure 2A,B shows the
source estimation results obtained from the reconstructed EEG signals shown in Figure 1D.
The auditory-induced source activities were estimated by means of minimum norm esti-
mation (MNE) (BrainStorm software, University of South California, Los Angeles, USA;
http://neuroimage.usc.edu/brainstorm, accessed on 11 December 2021) [51], with a real-

http://neuroimage.usc.edu/brainstorm
http://neuroimage.usc.edu/brainstorm
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istic head model generated from an individual’s magnetic resonance image (MRI) using
brainVISA software (SHFJ, Orsay, France; http://brainvisa.info/, accessed on 11 December
2021) [52]. The estimated neural sources were overlaid on anatomical MRI, and only those
cortical surface nodes with source amplitudes that survived statistical significance (p < 0.05)
among total surface nodes were rendered on MRI. The source activities in RAC and LAC
were plotted in Figure 2C,D, respectively. Figure 2E,F shows the power density spectra
(Welch’s power spectrum [53]; signal window 1000 ms; overlapping 500 ms) obtained from
Figure 2C,D, respectively. The spectral peaks at the fundamental frequency (37 Hz) and the
first harmonic frequency (74 Hz) are marked by dashed lines.
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Fourier spectra of canonical vectors by setting the COI located in the vicinity of the left auditory cortex.
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2.6. Full Informational Spectral Analysis of Source Activities Using Holo-Hilbert Spectral
Analysis (HHSA)

In this study, we adopted the Holo-Hilbert spectral analysis (HHSA) [48] to analyze the
spectral information of the ASSR source activities estimated by MNE. The HHSA utilizes
a two-layer empirical mode decomposition (EMD) architecture to extract the frequency-
modulated (FM) information and the amplitude-modulated (AM) information. In the
HHSA, the first EMD was applied to decompose the oscillatory signal into a set of intra-
wave frequency-modulated IMFs, denoted as IMFFM. The second EMD was applied to the
upper envelope of each IMFFM to obtain amplitude-modulated IMFs, denoted as IMFAM.
The EMD was proposed by Huang et al. (1998) [49]. It attempts to sequentially decompose
a signal into the sum of a finite number of intrinsic mode functions (IMFs) by iteratively
conducting a sifting process, representing coarse-to-fine information of the recordings.
Each IMF is a simple oscillatory signal whose amplitudes and frequencies are allowed to
be varied with time so that it is beneficial to present local characteristics of nonstationary

http://brainvisa.info/
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signals. The IMF is decomposed with the following definitions: (1) the number of local
extrema (including local maxima and local minima) and the number of zero-crossings must
either equal or differ at most by one, and (2) the mean value of the envelope defined by the
local maxima and the envelope defined by the local minima are zeros.
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Figure 2. The source activities of ASSRs estimated by MNE in RAC and LAC: (A) The neural sources
of ASSR in RAC; (B) the neural sources of ASSR in LAC; (C) the source activities in RAC; (D) the
source activities in LAC; (E) the Fourier spectrum of the source activities in RAC; (F) the Fourier
spectrum of the source activities in LAC.

After applying the first EMD, the ASSR source activities x(t) can be represented as the
summation of IMFFMs, represented as:

x(t) =
K

∑
j=1

Fj(t), (6)

where Fj(t) is the jth IMFFM.
Each IMFFM has its characteristic carrier frequency with its own time-varying modula-

tion function and can be expressed as follows:

Fj(t) = Re
{

aj(t) · eiϕj(t)
}

, (7)

where Re{·} is the function for the real-valued signal, aj(t) is the real-valued modulation
function for the jth IMFFM, ϕj(t) =

∫
t ωj(τ)dτ is the accumulated phase from the initial

state to time t, and ωj(τ) is the instantaneous frequency at time τ.
By applying the second EMD to the envelope modulation function aj(t) of jth IMFFM,

the aj(t) can be expressed as the summation of IMFAMs:

aj(t) = Re

{
M

∑
m=1

aj,m(t) · eiψj,m(t)

}
, (8)

where aj,m(t) is the mth IMFAM for jth IMFFM, ψj,m(t) =
∫

t Ωj,m(τ)dτ is the accumulated
phase, and Ωj,m(τ) is the instantaneous frequency at time τ for the mth IMFAM.

The ωj(t) and Ωj,m(t) are the instantaneous frequencies of the jth IMFFM in the first
EMD and the mth IMFAM in the second EMD, respectively. The instantaneous frequen-
cies

(
ωj(t), Ωj,m(t)

)
were incorporated with the magnitude of envelop function

∣∣aj,m(t)
∣∣

across all time points into vectors and organized as a three-dimensional AM-FM matrix(
⇀
ω j,

⇀
Ωj,m,

∣∣∣⇀a j,m

∣∣∣). The AM-FM matrices obtained from all IMFs were integrated together

to achieve the Holo-Hilbert spectrum (HHS).
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The signal processing steps for the HHSA processing are listed as follows:

1. Perform the first EMD to decompose the ASSR source activities into IMFFMs, and
calculate instantaneous frequencies ω.

2. Take the absolute values of the IMFFMs.
3. Generate upper and lower envelopes for the absolute values of the IMFFMs by con-

necting the local extrema using spline interpolation.
4. Perform the second EMD to the upper envelopes of the IMFFMs to obtain IMFAMs

and calculate instantaneous frequencies Ω for IMFAMs.
5. Arrange instantaneous amplitudes

∣∣aj,m(t)
∣∣ and instantaneous frequencies ωj(t) and

Ωj,m(t) into vectors to form a three-dimensional AM-FM matrix.
6. Construct the Holo-Hilbert Spectrum (HHS) by integrating the three-dimensional

AM-FM matrices from all IMFFMs and IMFAMs.

Figure 3A,B demonstrates the HHS plots of the LAC and RAC source activities shown
in Figure 2C,D, respectively. The lower panels and the left panels in Figure 3A,B are the
FM and AM spectra, which were calculated by accumulating the values on HHS across
all AM and FM frequencies, respectively. It can be observed that the FM spectra (lower
panels) have clear spectral peaks at the ASSR fundamental frequency and its first harmonic
frequency (marked by blue and green dashed lines). For the AM spectra (left panels), since
we are interested in the responses at stimulus-related frequencies, the AM spectra at 37 Hz
(the fundamental frequency) and 74 Hz (the first harmonic frequency) are plotted and
marked in blue and green colors, respectively. The AM spectra at 37 Hz have spectral peaks
around 2, 4.6 and 9.2 Hz, in which the 9.2 Hz could be the harmonic frequency of 4.6 Hz.
In contrast, the AM spectra at 74 Hz have spectral peaks around 5.6 and 13 Hz. Since the
temporal changes in amplitudes can result in frequency splitting or spectral broadening on
traditional Fourier spectra, the HHSA interprets the amplitude changes in AM spectrum
on HHS and avoids the frequency splitting problem on its FM spectrum.
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3. Results

In this study, we studied the FM and AM spectra in monaural stimulations using
HHSA. The auditory-induced neural activities on the left and right auditory cortexes
(LAC and RAC) were obtained by means of using the minimum norm estimation (MNE)
technique, and then the HHSA was applied to analyze the FM and AM frequency responses.
Figure 4 shows the cross-subject average of FM spectra over the 25 subjects during left and
right ear stimulations. The 37 Hz amplitudes of left monaural stimulation in LAC and RAC
were 2.19 ± 0.07 µv/Hz vs. 2.25 ± 0.1 µv/Hz, and the 37 Hz amplitudes of right monaural
stimulation in LAC and RAC were 2.58 ± 0.06 µv/Hz vs. 2.49 ± 0.09 µv/Hz. The 37 Hz
auditory responses in right-ear stimulation were all higher than the auditory responses
in left-ear stimulation (p < 0.01; Wilcoxon signed rank test), and the auditory responses
on the contralateral side were higher than the responses on the ipsilateral side (p < 0.05;
Wilcoxon signed rank test). For the amplitudes at 74 Hz (first harmonic frequency), the
amplitudes of left monaural stimulation in LAC and RAC were 1.02 ± 0.10 µv/Hz vs.
0.99 ± 0.13 µv/Hz, and the 74 Hz amplitudes of the right monaural stimulation in LAC
and RAC were 1.19 ± 0.10 µv/Hz vs. 1.14 ± 0.09 µv/Hz. The amplitudes in right-ear
stimulation were higher than the amplitudes in left-ear stimulation (p < 0.01; Wilcoxon
signed rank test). The 74 Hz amplitude of RAC was higher than the amplitude of LAC in
left ear stimulation (p < 0.05; Wilcoxon signed rank test).
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The noteworthy benefit of HHSA is its capability to analyze AM spectrum for a
measured signal. Figures 5 and 6 demonstrate the AM spectra of the auditory responses
at 37 and 74 Hz, respectively. The cross-subject averages of AM spectra at 37 Hz during
left and right monaural stimulations are shown in Figure 5A,B, respectively. Both the
left and right monaural stimulations presented three clear spectral peaks at 2.5, 5 and
9 Hz. The amplitudes of 2.5, 5 and 9 Hz of LAC in left-ear stimulations were 0.115, 0.118
and 0.083 µv/Hz, respectively, and the amplitudes of 2.5, 5 and 9 Hz of LAC in right-
ear stimulations were 0.123, 0.124 and 0.084 µv/Hz, respectively. For the AM spectra of
37 Hz in right-ear stimulations, the amplitudes of 2.5, 5 and 9 Hz in LAC were 0.134, 0.143
and 0.100 µv/Hz, respectively, and the amplitudes of 2.5, 5 and 9 Hz in RAC were 0.132,
0.138 µv/Hz and 0.098 µv/Hz, respectively. The 2.5, 5 and 9 Hz were the three main peaks
at the 37 Hz FM frequency. Since the amplitudes at 2.5 and 5 Hz had similar amplitude
levels and the third peak (9 Hz) was not located at the second harmonic frequency of 2.5 Hz,
the 5 and 9 Hz were not likely the harmonic frequency peaks of the 2.5 Hz component in
each AM spectrum. The three modulation frequencies might be generated from distinct
neural mechanisms. Further studies are needed to check the physiological meanings of
these peaks on the steady-state auditory responses.
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Figure 6. The AM spectra of the 74 Hz FM frequency averaged across the twenty-five subjects in our
study: (A) the cross-subject average of the AM spectrum at 74 Hz in LAC and RAC during left-ear
auditory stimulations; (B) the cross-subject average of the AM spectrum at 74 Hz in LAC and RAC
during right-ear auditory stimulations.

Examining the AM spectra of the 74 Hz auditory responses, three spectral peaks at
3 Hz, 6 Hz and one another spectral peak around 12 Hz were observed in the left-ear and
right-ear stimulations. Similar to the three spectral peaks of AM spectra at 37 Hz (Figure 5),
three spectral peaks at 3, 6 and 12 Hz were observed. The frequencies of the third spectral
peaks in left-ear stimulations were 1 Hz higher than the third spectral peaks in right-ear
stimulations. The amplitudes of the 3, 6 and 13 Hz in left-ear stimulations were 0.047, 0.037
and 0.026 µv/Hz in LAC, and the amplitudes were 0.050, 0.033 and 0.021 µv/Hz in RAC,
respectively. For the AM spectra of 74 Hz in right-ear stimulations, the amplitudes of 3,
6 and 12 Hz were 0.055, 0.043 and 0.03 µv/Hz in LAC, and the amplitudes were 0.053,
0.039 and 0.027 µv/Hz in RAC, respectively. The 6 and 12 Hz could be the first and second
harmonic frequencies of 3 Hz in the AM spectrum of 74 Hz auditory responses.

The HHSA enables scientists to observe the amplitude modulations in the measured
signals. With the AM-FM representation of HHSA, the AM spectrum perfectly explains
the effects of amplitude changes on each FM frequency, and the HHSA arranges the FM
and AM components in a two-dimensional HHS representation (see Figure 3). In Figure 7,
the Fourier spectra (Welch’s power spectrum [53]; signal window 1000 ms; overlapping
500 ms) (marked in blue) of source activities in LAC and RAC were overlapped with the
FM spectra shown in Figure 4 (marked in red). For the 37 Hz fundamental frequency, it
can be observed that the Fourier spectrum in LAC during the left-ear stimulation (the left
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panel in Figure 7A) had two additional spectral side peaks, located at 33.33 and 40.74 Hz,
which were 3.67 and 3.74 Hz away from the 37 Hz stimulation frequency, respectively.
The spectral side peaks were not seen in the FM spectrum obtained from HHSA. For the
spectral analysis of source activities in RAC (the right panel in Figure 7A), the Fourier
spectra had two spectral side peaks at 31.48 and 42.59 Hz in the left-ear stimulation, which
were 5.52 and 5.59 Hz away from the 37 Hz stimulation frequency, respectively. Compared
to the FM spectrum of left-ear stimulation in RAC, the spectral side peaks were also not
seen. It validates the benefit of the AM-FM analysis using HHSA. The HHSA expands the
traditional Fourier spectrum into a two-dimension HHS representation so that the effects
of AM components are not confused with FM components. Accordingly, the frequency
splitting (trigonometric product-to-sum formula) caused by amplitude modulation can be
corrected. A similar observation was found in the right-ear stimulation (Figure 7B). The
Fourier spectrum in LAC had a 40.74 Hz spectral side peak, and the Fourier spectrum
in RAC had 34 and 40.74 Hz spectral side peaks. In contrast to the 74 Hz component on
Fourier spectra, no 74 Hz spectral peak was found. The missing 74 Hz harmonic frequency
could be blurred owing to the frequency splitting or spectral broadening caused by the
effects of amplitude modulation. In addition, an 80.5 spectral side peak was observed in all
FM spectra, which might require further studies to understand its physiological meaning.
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averaged spectra obtained from Fourier analysis and the HHSA during right-ear stimulations.

4. Discussion

In the present study, the ASSR signals in human brain were analyzed using the
combination of CCA and HHSA. The CCA was adopted to extract ASSR-related signal
features, and the selected canonical vectors were used to reconstruct noise-suppressed
auditory responses. The HHSA was applied to analyze the AM-FM spectral information by
calculating the instantaneous frequencies (IF) in local time slots. However, the IF requires
the calculation of the first derivative in signal phases, which is sensitive to noise when the
phase difference between samples is too large. Accordingly, the adoption of CCA in the
preprocessing step helps the signal frequencies to be confined around our interested ASSR
frequencies so that the phase fluctuations can be suppressed. Since ASSR is a sinusoidal-like
wave with frequencies located at the stimulation frequency and its harmonics, the adoption
of CCA can effectively enhance the ASSR-related features by setting the sinusoidal waves
at fundamental and harmonic frequencies. The CCA aims to find a linear transformation
to maximally correlate the extracted EEG features with the preset sinusoidal vectors. The
canonical vectors in U (see Equation (3)) constructed a feature space. The multichannel
EEG samples were projected to these canonical vectors for the extraction of ASSR-related
signals. After calculating the weights of these canonical vectors on each EEG channel, the
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noise-suppressed EEG data can then be reconstructed by the summation of multiplying the
weights of ASSR-related canonical vectors with their time series (see Equation (5)).

In our study, the canonical vectors with a statistical significance level of p < 0.01
were identified as ASSR-related canonical vectors for reconstructing ASSR-related signals.
Compared to other CCA papers [54], the task-related canonical vectors were determined by
defining a fixed threshold level on the correlation values. Since EEG signals are weak and
susceptible to environmental noises, e.g., electromagnetic interference and motion artifacts,
the use of a fixed correlation threshold for component selection might be risky owing to the
contamination of nonstationary noise in varied measurement environments. For example,
the correlation values of the canonical vectors extracted from right auditory ROI were
0.032, 0.031, 0.004, and 0.003 (see Figure 1B), respectively, and the correlation values of the
canonical vectors extracted from left auditory ROI were 0.033, 0.017, 0.010, and 0.003 (see
Figure 1C), respectively. For the canonical vectors in Figure 1C, the correlation values of the
second and third canonical vectors (0.017 and 0.010) had a gap lower than the correlation
value of the first canonical vector (0.033) and a gap higher than the correlation value of the
fourth canonical vector (0.003). This resulted in the difficulty of finding a clear threshold
for selecting the ASSR-related canonical vectors since the correlation values are changed
depending on the noise patterns and noise magnitudes exerted on the ASSR responses.
Determining the correlation threshold based on unsupervised clustering techniques, such as
k-means, fuzzy C-means, Gaussian mixture model, etc. [55], could still be heuristic because
the cluster number and grouping strategy should be defined by users in those unsupervised
cluster classifiers. Setting wrong parameters in the use of clustering methods could include
task-unrelated components and result in feature loss or noise engagement. Therefore, in
order to find pertinent canonical vectors for reconstructing ASSR signals, we created a
spatial map for each canonical vector by projecting the canonical vector on the measured
signal of each EEG channel. We found the canonical vectors with statistical significance
levels had clear spatial distribution concentrated around the left or right auditory ROI,
which demonstrated the source activities of these canonical vectors originated from the
left or right auditory cortexes. The canonical vectors with significant p values were thence
chosen for reconstructing ASSR signals.

Because EEG is more sensitive to the radial component of neuroelectric activity, the
measured EEG amplitude is decreased owing to the projection angle between the dipole
orientation and the radial direction of the electrode surface [56]. Therefore, current sources
with rotating orientations can result in amplitude changes in the electric fields picked up
by the EEG sensor [56]. In this study, the HHSA was applied to the neural activities in the
auditory cortex to avoid the influence of source orientations. The source activities were first
estimated using minimum norm estimation (MNE) [51], and the neural activities at LAC
and RAC were used as input signals for HHSA analysis in order to avoid the influence of
rotating source caused amplitude changes on the sensor level (EEG sensors).

One noteworthy advantage of HHSA is the extending of the traditional spectral analy-
sis from FM to AM-FM representation [57–59]. By unfolding the amplitude modulation and
carrier frequency into AM and FM axes, the two-dimension frequency expression resolves
the frequency splitting problem caused by the trigonometric product-to-sum formula. It
has been reported that different physiological states can affect the modulation of rhyth-
mic source activities. Because the human brain is a dynamic system, neurophysiological
activities can be modulated by attention [6,7,10,60], emotional state [61–63], autonomic
regulation [64–66], brain resting-state network [67–69], etc. In our study, we found the
ASSRs at 37 and 74 Hz were modulated by AM waves with composite frequency compo-
nents. For the 37 Hz auditory responses, the AM spectra had three spectral peaks (see
Figure 5), located around 2.5, 5 and 9 Hz, and a broad frequency modulation range with
−3 dB bandwidth about 20 Hz (±10 Hz around 37 Hz). Similarly, the AM spectrum of
the 74 Hz auditory responses presented three peaks (see Figure 6), located around 3, 6
and 12 Hz, and a broad modulation frequency range with −3 dB bandwidth of about
14 Hz (±7 Hz around 74 Hz). As shown in Figure 7, the spectral side peaks were observed
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around 37 Hz in Fourier spectra, which could be the splitting frequencies caused by the
product-to-sum formula. The amplitude modulation results in spurious spectral peaks
or broadened spectrum, which could result in misleading or wrong interpretation of the
measured signal. In Figure 7, the first harmonic frequency (74 Hz) was missing in all the
Fourier spectra and restored in the FM spectra obtained from HHSA, which demonstrated
the effectiveness of HHSA in avoiding modulation-caused spectral broadening.

5. Conclusions

The present study proposed a CCA and HHSA combination method for ASSR analyses.
With the benefit of HHSA in AM and FM frequency analysis, the information on AM and
FM spectra can be obtained. Because the frequency analysis in HHSA is calculated based
on the IF technique, which is sensitive to noise, we adopted CCA as a preprocessing tool to
avoid fluctuations in the estimated instantaneous frequencies. With the HHSA, we have
demonstrated the existence of modulation frequencies in the measured ASSR responses.
Both the 37 and 74 Hz auditory responses were modulated by AM spectra with at least three
composite frequencies. In contrast to the frequency splitting in traditional Fourier spectra,
the HHSA interprets the time-varying amplitude changes by AM frequencies on HHS.
The proposed method effectively corrects the frequency splitting caused by modulation
effects (product-to-sum formula), which avoids a misleading or wrong interpretation of the
spectral analysis in the measured steady-state responses.
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