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Abstract: Background: In patients with Ischemia and non-obstructive coronary artery stenosis
(INOCA) wall motion is rarely abnormal during stress echocardiography (SE). Our aim was to
determine if patients with INOCA and reduced coronary flow velocity reserve (CVFR) have altered
cardiac mechanics using two-dimensional speckle-tracking echocardiography (2DSTE) during SE.
Methods: In a prospective, multicenter, international study, we recruited 135 patients with INOCA.
Overall, we performed high dose (0.84 mg/kg) dipyridamole SE with combined assessment of CVFR
and 2DSTE. The population was divided in patients with normal CVFR (>2, group 1, n = 95) and
abnormal CVFR (≤2, group 2, n = 35). Clinical and 2DSTE parameters were compared between
groups. Results: Feasibility was high for CFVR (98%) and 2DSTE (97%). A total of 130 patients
(mean age 63 ± 12 years, 67 women) had complete flow and strain data. The two groups showed
similar 2DSTE values at rest. At peak SE, Group 1 patients showed lower global longitudinal
strain (p < 0.007), higher mechanical dispersion (p < 0.0005), lower endocardial (p < 0.001), and
epicardial (p < 0.0002) layer specific strain. Conclusions: In patients with INOCA, vasodilator
SE with simultaneous assessment of CFVR and strain is highly feasible. Coronary microvascular
dysfunction is accompanied by an impairment of global and layer-specific deformation indices
during stress.

Keywords: non-obstructive coronary artery stenosis; two-dimensional speckle-tracking echocardiography;
stress echocardiography; coronary flow velocity reserve

1. Introduction

Patients with angina and non-obstructive coronary artery stenosis (INOCA) are in-
creasingly recognized in clinical practice. These patients are at higher risk of major adverse
cardiovascular events [1–3], and experience recurrent symptoms. Microvascular angina is
the most common mechanism of ischemia in patients with INOCA [4,5].
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Vasodilator stress echocardiography allows to measure non-invasively coronary flow
velocity reserve (CFVR) [6,7] and is recommended by current guidelines in patients with
suspected microvascular angina [8]. Despite important abnormalities in patients with
INOCA, stress echocardiography rarely demonstrates regional wall motion (RWM) ab-
normalities [7]. Two-dimensional speckle-tracking echocardiography (2DSTE) has been
shown to be useful to detect subclinical left ventricular (LV) dysfunction and dyssynchrony
in different diseases. Accordingly, we aimed to determine if microvascular angina, as-
sessed by CFVR, might cause changes in myocardial mechanics during vasodilator stress
echocardiography reflecting subclinical LV dysfunction and dyssynchrony.

2. Materials and Methods
2.1. Study Population

In this prospective study we enrolled patients recruited by three laboratories in three
countries (Mexico, Argentina, and Poland). The inclusion criteria were: (1) age >18 years;
(2) referral for chest pain or dyspnea as the primary symptom and chest pain and absence
of obstructive coronary artery disease (CAD) defined as lesions <49% by either invasive
coronary angiography (ICA) or coronary computed tomography angiography (CCTA);
(3) normal wall motion during high dose (0.84 mg/kg) dipyridamole stress echocardiog-
raphy (SE); (4) no severe valvular heart disease or congenital heart disease; (5) adequate
acoustic window for 2DSTE analysis at rest; (6) adequate images to assess coronary flow
using transthoracic Doppler mid left anterior descending (LAD) artery interrogation at rest;
(7) willingness to give informed consent for allowing scientific use of the observational
data, which are respectful of privacy rights. The study protocol was approved by the
institutional ethics committees as a part of the SE 2020 study (148-Comitato Etico Lazio-1,
16 July 2016; Clinical trials. Gov Identifier NCT 030). Patients studied with Philips machine
in one center Parma, Italy were excluded from the study, due to inter-vendor differences
for strain analysis.

Microvascular angina was defined as the presence of symptoms of ischemia in the
absence of obstructive CAD (lesion <49% on CCTA performed in 64 (49%) patients or ICA
performed in 66 (51%) patients), and evidence of impaired coronary microvascular function
assessed by vasodilator stress echocardiography with a CFVR ≤ 2 [9]. Briefly, CFVR refers
to the ratio of coronary velocity in the left anterior descending artery measured during a
hyperemic stimulus divided by the coronary velocity in the left anterior descending artery
at rest. In the absence of obstructive epicardial disease a reduced CVFR ≤ 2 indicates
abnormal microvascular function.

2.2. Rest and Stress Echocardiography

All subjects underwent a comprehensive two-dimensional (2D) echocardiographic
study. Studies were performed using a Vivid E9 ultrasound machine (GE Vingmed Ultra-
sound AS, Horten, Norway) equipped with an M5S probe. LV volumes used to calculate
ejection fraction (EF) were measured by modified biplane Simpson’s method according to
the American Society of Echocardiography and European Association of Cardiovascular
Imaging [10].

Patients underwent pharmacological SE according to the protocol recommended by
the American Society of Echocardiography and the European Association of Cardiovascular
Imaging [11,12]. We used a dipyridamole dose of 0.84 mg/kg over 6 min. The electro-
cardiogram was monitored continuously and blood pressure intermittently. The general
transthoracic echocardiography (TTE) strain SE protocol is shown in Figure 1. Criteria
for interrupting the test were severe chest pain, diagnostic ST-segment shift, excessive
blood pressure increase (systolic blood pressure ≥240 mmHg, diastolic blood pressure
≥120 mmHg), dyspnea, maximal predicted heart rate, or significant arrhythmias. Echocar-
diographic studies included three apical views (four-chamber, two-chamber, and long-axis)
optimized for global longitudinal strain (GLS) analysis. For each view, 3 consecutive heart
cycles were recorded with a frame rate ranging between 50 and 80 frames/s. Data sets were
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stored digitally and analyzed offline. All physicians and nurses involved were trained in
Basic Life Support and Advanced Cardiac Life Support.
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Figure 1. Transthoracic strain stress echo protocol. Intermittent imaging of LAD flow is performed
at rest and peak stress with the same transducer used for continuous 2DE of wall motion. 2DE:
two-dimensional echocardiography; 2DSTE: Two-dimensional speckle-tracking echocardiography;
BP: blood pressure; CFVR: coronary flow velocity reserve; ECG: electrocardiogram; GLS: global
longitudinal strain; LAD: left anterior descending artery; LUS: lung ultrasound; MD: mechani-
cal dispersion; MA: mid-axillary; AA: anterior-axillary; MC: mid-clavicular; PS: parasternal; SE:
stress echocardiography.

The imaging protocol included step A for RWM analysis; step B for B-lines assess-
ment with lung ultrasound and 4-site simplified scan [13,14]; step C for assessment of LV
contractile reserve (LVCR) with EF and force (systolic blood pressure [SBP]/end-systolic
volume); step D for Doppler based assessment of CFVR; and step E for electrocardiogram
(EKG)-based assessment of heart rate reserve (HRR). In particular, for step D, Coronary
flow in the mid-distal portion of the LAD were imaged from the low parasternal long-axis
under the guidance of color Doppler flow mapping [6]. Flow velocities were measured
at baseline and at peak stress. At each time point, three optimal profiles of peak diastolic
Doppler flow velocities were measured, and the results were averaged. CFVR was defined
as the ratio between hyperemic peak and basal peak diastolic coronary flow velocities [15].
The force-based assessment of LVCR was also calculated as the stress/rest ratio of force
(defined as systolic blood pressure/end-systolic volume) [16]. All readers (one for each
center) underwent a web-based training and quality control as previously described for
RWM [17], B-lines [18], end-systolic volume and CFVR [19]. As a part of the quality control
process of the SE 2020-CFVR subproject, the accredited readers all had ≥90% concordance
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with core laboratory reading on measurement of peak diastolic flow velocity in a set of
20 clips selected from 8 different laboratories. The interobserver variability was <10% and
the intraclass correlation coefficient (ICC) coefficient was >90% for all accredited readers.
The previously assessed intraobserver variability was <5% [15].

Using 2DSTE, GLS was obtained by averaging the measures of each segment peak sys-
tolic longitudinal strain value. Timing of aortic valve closure was selected using automatic
software timing [20]. Inclusion of LV segments for analysis required the operator’s approval.
Position and width adjustment of the automatically drawn region of interest (ROI) were
performed when necessary. In patients with more than two inadequately tracked LV seg-
ments in one view, GLS, layer specific strain (LSS), and mechanical dispersion (MD) were
not computed and were excluded from analysis. MD was defined as the standard deviation
of the time from the peak of the R wave on the electrocardiogram to the peak negative strain
using a 16 segment LV model. LSS calculation was performed paying attention to cover the
entire myocardial wall thickness by the ROI of each segment. Subendocardial longitudinal
strain (LSsubendo) and subepicardial longitudinal strain (LSsubepi) were measured on
the endocardial and epicardial ROI border, respectively. Whereas the mid-myocardial, the
center line of the ROI, represented the average values of the transmural wall thickness.
Longitudinal strain gradient was calculated as the difference between LSsubendo and
Lssubepi. All calculations of MD, LSS, and GLS were done using commercially available
software package (EchoPAC version BT113, GE Vingmed Ultrasound, Horten, Norway).
GLS and LSS are expressed as absolute values.

Strain reserve (SR) was calculated as the ratio of GLS in maximal hyperemia, divided
by the GLS at rest.

2.3. Statistical Analysis

Continuous variables are expressed as mean and standard deviation (SD) or median
and interquartile range (IQR), as appropriate. Differences in continuous variables between
groups (CFVR ≤ 2 vs. CFVR > 2) were tested using t-test or Wilcoxon signed rank accord-
ing to their distribution. For variables with sequential evaluation at rest and stress, the
Student’s paired test was used. Categorical variables are expressed as absolute numbers
with percentages, comparisons between them were made using Pearson’s Chi-squared
or Fisher´s exact test. We considered statistically significance if p < 0.05. All analyses
were made with Stata 14.0 (StataCorp, College Station, TX, USA). The reproducibility
of strain analysis of our group is high and has been previously reported. Reproducibil-
ity analysis was performed in 20 subjects in whom LVCR was measured by a second
investigator. Reproducibility was reported using ICC with a two-way mixed model for
absolute agreement.

3. Results

Of the 500 patients screened for suspected chronic coronary syndrome, 135 patients
(26%) had normal coronary arteries and suspected microvascular angina. Seventy-nine
studies were performed in Mexico, 41 in Argentina, and 10 in Poland. None of the patients
included had a criterion for test interruption.

Feasibility was high for CFVR (133/135, 98%) and 2DSTE (132/135, 97%). Of the
resulting population of 130 patients (mean age 63 ± 12 years, 67 women) with complete
flow and strain data, 35 (27%) showed abnormal (≤2.0, Group 1) and 95 normal (>2.0,
Group 2) CFVR.

The study flowchart is shown in Figure 2. The main clinical characteristic of the
patients is presented in Table 1.

Thirty-five patients (27%) had reduced CVFR compatible with microvascular angina.
Patients with microvascular angina had comparable baseline demographic characteristics
and comorbidities, higher baseline systolic and diastolic blood pressure, and were more
often treated with calcium channel blockers (Tables 1 and 2). Baseline echocardiographic ex-
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amination showed comparable features except for a trend for higher baseline dyssynchrony
by MD in patients with microvascular angina (Table 3).

Figures 3 and 4 show examples of a typical response in patients of group 1 (abnormal
CVFR) and group 2 (normal CVFR) and their corresponding changes in myocardial me-
chanics at rest and hyperemia. During vasodilator SE patients with microvascular angina
had lower GLS (p = 0.007), higher dyssynchrony by MD (p = 0.0005), and lower LSS both
endocardial (p = 0.001) and epicardial (0.0002), whereas LVCR was not different between
groups; however, the strain stress-rest delta (<0.0001) and SR (<0.0001) were reduced in
patients with INOCA and reduced CVFR. Patients with INOCA and reduced CVFR also
had abnormal autonomic function reflected by a reduced HRR (p = 0.044) (Table 4).
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Because synchrony and strain are central to our findings, we performed sensitivity
analysis excluding patients with LBBB for the main strain and synchrony parameters. For
the sensitivity analysis, GLS (p = 0.0013), MD (p = 0.0007), LV synchrony delta (p = 0.045),
and strain stress-rest delta (p = 0.0001) remained significant.

Feasibility and Reproducibility Analysis

On 2DSTE 98% of the segments could be measured. Feasibility in our study group at
rest and during vasodilator stress was 97.7%. Intra- and inter-observer intraclass correla-
tions for GLS and MD by strain echocardiography were 0.96 (95% confidence interval (CI):
0.90 to 0.98) and 0.94 (95% CI: 0.88 to 0.98), respectively, and 0.91 (95% CI: 0.76 to 0.96) and
0.87 (95% CI: 0.69 to 0.95). Our inclusion criteria required an adequate acoustic window
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and images for CFVR, which could explain the high feasibility. Fourteen patients could not
be included due to inadequate acoustic window or images for CFVR (either inadequate
window or irregular rhythm) and therefore the overall feasibility would be 87%.

Table 1. Clinical characteristics of the population.

General Population CFVR ≤ 2.0 CFVR > 2.0

n = 130 n = 35 n = 95 p

Age (years) 63 ± 12 68 ± 11 62 ± 12 0.012

Female (%) 67 (51.4) 18 (51.4) 49 (51.6) 0.988

Height (cm) 161 ± 9 159 ± 10 161 ± 8 0.073

Weight (kg) 72.7 ± 13.8 69.6 ± 14.1 73.5 ± 13 0.505

BMI (kg/m2) 28.1 ± 5.2 27.7 ± 6.4 28.3 ± 4.6 0.251

BSA (m2) 1.79 ± 0.2 1.75 ± 0.21 1.8 ± 0.2 0.122

Indication of stress test (%) 0.298

Dyspnea as the primary
symptom 12 (9.2) 5 (14.3) 7 (7.4)

Atypical chest pain 76 (58.5) 20 (57.1) 56 (59)

Typical chest pain 25 (19.2) 4 (11.4) 21 (22.1)

High clinical risk 15 (11.5) 6 (17.1) 9 (9.5)

Re-stratification 2 (1.5) 0 2 (2.1)

LBBB (%) 8 (6.2) 2 (5.7) 6 (6.3) 0.631

Hypertension (%) 92 (70.7) 28 (80) 64 (86.4) 0.195

Diabetes (%) 41 (31.5) 12 (34.3) 29 (30.5) 0.677

Smoker (%) 0.165

Current 28 (21.5) 4 (11.4) 24 (25.3)

Former 32 (24.6) 8 (22.8) 24 (25.3)

Dyslipidemia (%) 60 (46.1) 13 (37.1) 47 (49.5) 0.211

Dialysis (%) 3 (2.3) 2 (5.7) 1 (1.1) 0.176

COPD (%) 13 (10) 2 (5.7) 11 (11.6) 0.512
CFVR: coronary flow velocity reserve, BMI: body mass index, BSA: body surface area, LBBB: left bundle branch
block, COPD: chronic obstructive pulmonary disease.
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Table 2. Medical treatment of the population and comparison between groups.

General Population CFVR < 2.0 CFVR ≥ 2.0

n = 130 n = 35 n = 95 p

Beta blocker (%) 59 (45.4) 14 (40) 45 (47.4) 0.454

ACE inhibitors (%) 54 (42.5) 15 (42.8) 39 (41.1) 0.853

ARA-2 inhibitors (%) 38 (29.2) 13 (37.2) 25 (26.3) 0.278

ARB´s (%) 5 (3.8) 13 (37.1) 25 (26.3) 0.722

Diuretics (%) 23 (17.7) 6 (17.1) 17 (17.9) 0.921

Digitalis (%) 1 (0.8) 0 1 (1.1) 0.542

Calcium antagonist (%) 31 (23.8) 14 (40) 17 (17.9) 0.009

Nitrate (%) 8 (6.2) 3 (8.6) 5 (5.3) 0.486

Aspirin (%) 79 (60.8) 22 (62.8) 57 (60) 0.841

Antiplatelet agent (%) 20 (15.4) 4 (11.4) 16 (16.8) 0.448

Antidiabetic drugs (%) 27 (20.8) 8 (22.9) 19 (20) 0.722

Insulin (%) 12 (9.2) 3 (8.6) 9 (9.5) 0.875

Anticoagulant (%) 12 (9.2) 2 (5.7) 10 (10.5) 0.512

Statins (%) 69 (53.1) 16 (45.7) 53 (55.8) 0.307
CFVR: coronary flow velocity reserve, ACE: angiotensin converting enzyme, ARA-2: angiotensin 2 receptor
antagonist, ARBs: angiotensin receptor blockers.

Table 3. Clinical and echocardiographic characteristics at rest including LV mechanics.

General Population CFVR < 2.0 CFVR ≥ 2.0

n = 130 n = 35 n = 95 p

HR (bpm) 67 ± 13 68 ± 13 66 ± 12 0.482

SBP (mmHg) 131 ± 22 141 ± 26 127 ± 19 0.002

DBP (mmHg) 71 ± 15 77 ± 19 69 ± 13 0.005

iLVEDV (ml/m2) 55 ± 16 57 ± 22 54 ± 14 0.403

iLVESV (ml/m2) 21.7 ± 9.8 23 ± 13 31 ± 8 0.206

LVEF 3D (%) 61 ± 8 59 ± 9 61 ± 7 0.458

LV force index
(mmHg/mL/m2) 6.7 (5.2–7.9) 6.9 (5.1–9.2) 6.6 (5.1–7.7) 0.332

B lines 0 (0–5) 0 (0–10) 0 (0–5) 0.251

GLS (%) 20.2 ± 3.3 20.1 ± 3.8 20.2 ± 3 0.971

Epicardial LS (%) 17.9 ± 3 17.9 ± 2 17.9 ± 3 0.915

Mesocardial LS (%) 20.3 ± 3.3 20 ± 3.7 20.4 ± 3.2 0.526

Endocardial LS (%) 23.5 ± 3.8 23.5 ± 4.6 23.3 ± 4.6 0.746

Delta endo-epi (%) 5.3 ± 1.6 5.6 ± 2 5.4 ± 1.4 0.557

MD (ms) 49.5 ± 15.5 53.8 ± 18 47.9 ± 14.3 0.056
CFVR: coronary flow velocity reserve. HR: heart rate, BPM: beats per minute, SBP: systolic blood pressure, DBP:
diastolic blood pressure, iLVEDV: indexed left ventricular end-diastolic volume, iLVESV: indexed left ventricular
end-systolic volume, LVEF: left ventricular ejection fraction, LV: left ventricle, GLS: global longitudinal strain, LS:
longitudinal strain, MD: mechanical dispersion. All values are expressed as mean and SD, except B-lines (median
and IQR).
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Figure 3. A typical normal response of a normokinetic and strained (A strain normal), dry (B step 
normal) not shown in the image, strong (C step normal), warm (D step normal) and fast (E step 
normal) heart. Upper panel shows rest findings: Strain (A), LVCR (B), CVFR (C). Lower panel shows 
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Left ventricular contractile reserve. 

Figure 3. A typical normal response of a normokinetic and strained (A strain normal), dry (B step
normal) not shown in the image, strong (C step normal), warm (D step normal) and fast (E step
normal) heart. Upper panel shows rest findings: Strain (A), LVCR (B), CVFR (C). Lower panel shows
stress findings Strain (D), LVCR (E), CVFR (F). GLS: global longitudinal strain, MD: mechanical
dispersion, CVFR: coronary flow velocity reserve, HR: heart rate, HRR: heart rate reserve LVCR: Left
ventricular contractile reserve.
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Figure 4. A typical abnormal response of a normokinetic and de-strained (A strain abnormal),
dry (B step abnormal) not shown in the image, strong (C step normal), cold (D step abnormal) and
slow (E step abnormal) heart. Upper panel shows rest findings: Strain (A), LVCR (B), CVFR (C).
Lower panel shows stress findings Strain (D), LVCR (E), CVFR (F). GLS: global longitudinal strain,
MD: mechanical dispersion, CVFR: coronary flow velocity reserve, HR: heart rate, HRR: heart rate
reserve LVCR: Left ventricular contractile reserve.
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Table 4. Clinical and echocardiographic characteristics at stress including LV mechanics.

General Population CFVR < 2.0 CFVR ≥ 2.0

n = 130 n = 35 n = 95 p

HR (bpm) 85 ± 14 82 ± 13 86 ± 14 0.183

SBP (mmHg) 129 ± 20 137 ± 18 125 ± 20 0.002

DBP (mmHg) 68 ± 14 70 ± 14 67 ± 14 0.397

iLVEDV (ml/m2) 56.1 ± 16 56.9 ± 19 55.8 ± 15 0.735

iLVESV (ml/m2) 17 ± 8.7 18.7 ± 12 16.3 ± 6.7 0.166

LVEF 3D (%) 70 ± 9 68 ± 10 70 ± 8 0.301

LV force index
(mmHg/mL/m2) 8.2 (6.4–10.8) 8.6 (6.2–11.8) 8.2 (6.5–10.3) 0.653

B lines 0 (0–13) 1 (0–13) 0 (0–7) 0.199

GLS (%) 22.9 ± 3.8 21 ± 4.5 23.6 ± 3.3 0.007

MD (ms) 45.2 ± 17.7 53.9 ± 15 41.9 ± 17.6 0.0005

Epicardial LS (%) 20.1 ± 3.5 18.2 ± 4 20.7 ± 3.5 0.0002

Mesocardial LS (%) 23 ± 4.1 20.9 ± 4.9 23.8 ± 3.5 0.0004

Endocardial LS (%) 26.3 ± 4.7 24.1 ± 5.4 27.1 ± 3.6 0.001

Delta endo-epi 6.2 ± 2.2 5.9 ± 2.3 6.4 ± 2.1 0.262

LV contractile reserve 1.33 ± 0.42 1.33 ± 0.4 1.33 ± 0.43 0.844

LV Synchrony Delta 6 (4.7–16) 3 (−8–8.1) 7 (−1–18.8) 0.035

Strain Stress-Rest Delta 2.9 (0.6–4.8) 0.4 (−2–3.4) 3.3 (1–3–5.3) <0.0001

Strain Reserve 1.14 ± 0.16 1.01 (0.91–1.16) 1.17 (1.06–1.28) <0.0001

Endo-Epi Reserve 1.13 (0.94–1.45) 1.0 (0.89–1.32) 1.2 (0.96–1.47) 0.047

HR delta 18 (10–26) 13 (7–23) 19(11–29) 0.041

HRR 1.27 (1.13–1.45) 1.24 (1.11–1.38) 1.29 (1.17–1.47) 0.044
CFVR: coronary flow velocity reserve. HR: heart rate, BPM: beats per minute, SBP systolic blood pressure, DBP:
diastolic blood pressure, iLVEDV: indexed left ventricular end-diastolic volume, iLVESV: indexed left ventricular
end-systolic volume, LVEF: left ventricular ejection fraction, LV: left ventricle, GLS: global longitudinal strain, MD:
mechanical dispersion, LS: longitudinal strain, HRR: heart rate reserve. All values are expressed as mean and SD,
except B-lines (median and IQR).

4. Discussion

The main findings of this study can be summarized as follows: (i) the assessment
of myocardial mechanics during vasodilator stress echocardiography is highly feasible
(ii) patients with INOCA and coronary microvascular dysfunction have reduced global
longitudinal strain and increased dyssynchrony unmasked during stress, despite having
normal wall motion. (iii) LVCR based on EF or load-independent force is not different
in patients with normal or abnormal CFVR, while myocardial mechanics expressed by
global and layer specific deformation indices is reduced in patients with INOCA and
coronary microvascular dysfunction. These more sensitive novel parameters likely reflect
myocardial dysfunction during stress, even in the absence of wall motion abnormalities.
Figure 5 summarizes the main findings of our study.

INOCA patients are a heterogeneous cohort. Our findings show that a comprehensive
SE is useful in order to identify different phenotypes of the disease, including coronary
microvascular dysfunction mirrored by reduced CFVR, abnormal cardiac sympathetic
reserve identified by blunted HRR [21], and true mechanical ischemia with strain alterations.
According to John Ross Jr, “ischemia is a reduction in myocardial blood flow sufficient
to cause a decrease in myocardial contraction” [22]. When ischemia does not reach a
critical myocardial mass in vertical (subendocardial to subepicardial) or horizontal (across
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segments) direction, regional and global indices of LV function are normal, but deformation
indices are impaired during stress in CAD patients [23]. Strain imaging helps to solve
the paradox of a reduced CFVR with normal regional wall thickening and normal global
contractile reserve, since deformation indices are impaired in these patients, and these
strain indices are known to be more sensitive to ischemia than conventional indices of
regional or global LV function. The finding of strain alterations despite normal wall motion
corroborates the true ischemic nature of chest pain, more likely in the subset of INOCA
patients with impaired CFVR and altered cardiac autonomic function.

J. Clin. Med. 2022, 11, x FOR PEER REVIEW 10 of 14 
 

 

 
Figure 5. The top panel shows the clinical presentation of coronary microvascular angina with chest 
pain, the ST segment depression during exercise or pharmacological stress (left panel), normal cor-
onary arteries (middle panel with MDCT), and the usual 2D pattern or SE with regional and global 
hyperkinetic response during SE (right panel). During SE, coronary flow velocity is assessed. This 
same pattern is associated with two distinct responses. Left panel: a positive response with con-
firmed coronary microvascular response: reduced coronary flow velocity reserve with abnormal 
strain and increased mechanical dyssynchrony. Right panel: a negative response with ruled-out cor-
onary microvascular response: normal coronary flow velocity reserve with normal strain and in-
creased mechanical synchrony. GLS: global longitudinal strain, MD: mechanical dispersion, CVFR: 
coronary flow velocity reserve, HR: heart rate; 2D: two-dimensional, SE: stress echocardiography. 

Myocardial deformation has been shown to be impaired in a number of diseases such 
as ischemic heart disease [26,27], and heart failure with reduced [28] and preserved ejec-
tion fraction [5]. However, less compelling evidence exists in patients with INOCA with 
microvascular dysfunction. 

In a sub study of the iPower trial that included 963 women, 26% had coronary micro-
vascular dysfunction defined as CFVR ≤2. Coronary microvascular dysfunction was not 
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hyperemia and GLS reserve measured as the delta between stress and basal GLS [29]. The 
observation of Michelsen et al. in women is confirmed by the present study, which in-
cluded almost 50% of men. Furthermore, it has been shown in untreated hypertensive 
patients that impaired CVFR (<2.5) have a significant association with an abnormal re-
sponse of LV systolic and diastolic function assessed by tissular doppler imaging (TDI)-
derived indices during adenosine stress echocardiography, most likely reflecting an early 
subclinical myocardial dysfunction of the LV in these patients [30]. Our findings support 

Figure 5. The top panel shows the clinical presentation of coronary microvascular angina with
chest pain, the ST segment depression during exercise or pharmacological stress (left panel), normal
coronary arteries (middle panel with MDCT), and the usual 2D pattern or SE with regional and
global hyperkinetic response during SE (right panel). During SE, coronary flow velocity is assessed.
This same pattern is associated with two distinct responses. Left panel: a positive response with
confirmed coronary microvascular response: reduced coronary flow velocity reserve with abnormal
strain and increased mechanical dyssynchrony. Right panel: a negative response with ruled-out
coronary microvascular response: normal coronary flow velocity reserve with normal strain and
increased mechanical synchrony. GLS: global longitudinal strain, MD: mechanical dispersion, CVFR:
coronary flow velocity reserve, HR: heart rate; 2D: two-dimensional, SE: stress echocardiography.

Our study supports the evidence regarding the feasibility of CVFR measurement
during stress echocardiography. Previous studies have shown good feasibility depending
on the stressor, 81% for dobutamine, 80% for exercise, and 95% for vasodilators [6,24–26].
The overall feasibility in our study is comparable. Feasibility might be further increased
by using ultrasound enhancing agents in patients with challenging acoustic windows to
assess CVFR.
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Myocardial deformation has been shown to be impaired in a number of diseases
such as ischemic heart disease [26,27], and heart failure with reduced [28] and preserved
ejection fraction [5]. However, less compelling evidence exists in patients with INOCA
with microvascular dysfunction.

In a sub study of the iPower trial that included 963 women, 26% had coronary mi-
crovascular dysfunction defined as CFVR ≤ 2. Coronary microvascular dysfunction was
not associated with rest LVEF and GLS. However, these patients had reduced GLS at peak
hyperemia and GLS reserve measured as the delta between stress and basal GLS [29]. The
observation of Michelsen et al. in women is confirmed by the present study, which included
almost 50% of men. Furthermore, it has been shown in untreated hypertensive patients
that impaired CVFR (<2.5) have a significant association with an abnormal response of LV
systolic and diastolic function assessed by tissular doppler imaging (TDI)-derived indices
during adenosine stress echocardiography, most likely reflecting an early subclinical my-
ocardial dysfunction of the LV in these patients [30]. Our findings support the notion that
INOCA with microvascular angina may cause subtle myocardial dysfunction that can be
detected using 2DSTE indices only after vasodilator stress echocardiography. In our study,
neither LVEF nor LVCR were different in patients with INOCA and microvascular angina,
even for stress parameters, as LVCR was not different.

Cardiac autonomic function might also be impaired in patients with microvascular
angina and can be assessed during vasodilator stress echocardiography using HRR. In
our study, HRR was lower among patients with coronary microvascular dysfunction,
supporting this notion.

The effect of stress echocardiography on LV synchrony has been sparsely studied.
Previous studies using TDI to calculate strain and strain rate curves, suggested increased
dyssynchrony in patients with LV dysfunction [28,31]. However, to the best of our knowl-
edge, ours is the first study to evaluate LV dyssynchrony with speckle tracking in patients
with microvascular angina. We used MD to assess LV dyssynchrony as it can be easily
obtained in addition to GLS. In our population, MD is higher than the normal values
previously reported [32]. Furthermore, in patients with microvascular angina MD does
not decrease after stress as previously reported in healthy sedentary subjects and healthy
athletes [33]. This explains the higher dyssynchrony and might be a sign of LV dysfunction.

5. Limitations

A single vendor machine was used in the study in the three recruiting centers, and data
obtained with another vendor in a fourth center was excluded from further analysis. This
may limit the generalizability of our findings. However, this was a necessary step in order
to avoid the known source of bias of intervendor variability of strain data [12]. Vendor-
neutral approaches are now being developed to allow across-vendors standardization
of strain acquisition, analysis, and values. In addition, global longitudinal strain can be
analyzed with vendor-independent systems based on artificial intelligence, which are easy
to incorporate in echocardiographic data analysis.

We also used one type of stress modality, i.e., high dose dipyridamole. This choice
has a methodological and clinical reason. This is the recommended modality for non-
invasive assessment of CFVR in INOCA patients, to document coronary microvascular
dysfunction as a specific phenotype according to the latest 2020 European Society of
Cardiology guidelines in chronic coronary syndromes [8]. Furthermore, dipyridamole was
the optimal stress modality to improve the feasibility and robustness of 2DSTE, since strain
values are affected by changing the loading conditions, and most importantly by inadequate
frame rates in the setting of tachycardia associated with stress. Dipyridamole stress is
associated with a minimal increase in heart rate (on average, from 69 to 85 bpm in our
population) and no change in SBP (an index of afterload) and end-diastolic volume (an index
of preload). It allowed simultaneous assessment of function (step A), pulmonary congestion
(step B), cardiac reserve (step C), CFVR (step D), heart rate reserve (step E), and GLS, which
unmasked a functional impairment missed by RWM abnormalities. Whether this finding
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applies also to other more technically challenging stress modalities for assessment of CFVR
and strain, such as exercise or dobutamine, remains to be established.

The higher rest SBP and diastolic blood pressure in the CFVR ≤ 2 group compared
to those with CFRV > 2 indicates that hypertension and associated increased arterial
stiffness may determine impairment CFVR (e.g., through microvascular compression by
increased LV diastolic filling pressure) as previously reported [30,34] even after successful
percutaneous coronary intervention in CAD [35].

Outcome information was not available, but a reduced CFVR identifies a higher risk
subset in patients with INOCA without inducible RWM abnormalities [36]. Future studies
on larger series, currently ongoing in the framework of Stress echo 2030, will establish
whether CFVR, HRR, and strain-based mechanical alterations may have independent and
incremental prognostic value in these patients.

6. Conclusions

In patients with INOCA, vasodilator stress echocardiography is a feasible and clinically
valuable method to detect reduced CVFR. Patients with INOCA and reduced CVFR have
altered cardiac mechanics during peak hyperemia. Reduced GLS and LSS, appear to reflect
LV subclinical ischemic dysfunction during stress. Further studies should look at the value
of these novel indices to assess prognosis in patients with microvascular angina.
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