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Abstract: Background and aims: The adhesion molecule P-selectin is expressed by endothelial cells
and platelets. It is involved in platelet activation and leukocyte adhesion, both important processes
in the pathogenesis of atherosclerosis. Our study was designed to assess the predictive value of
soluble P-selectin (sP-selectin) on the progression of peripheral atherosclerosis. Methods: This is an
observational, single-center, cohort study that included 443 patients with established cardiovascular
disease (CVD) or at least one cardiovascular risk factor. Over a period of 4 years, each patient
underwent three-dimensional (3D) ultrasound to assess the plaque volume of the carotid and femoral
arteries once per year. In addition, plasma sP-selectin levels were measured at each visit. The
association between changes in sP-selectin and peripheral atherosclerotic plaque progression was
assessed using growth curve models. Results: 338 patients were available for statistical analysis. Each
standard deviation increase in sP-selectin was significantly (p < 0.001) associated with a 46.09 mm3

higher plaque volume. In ROC-analysis, changes in sP-selectin over time showed an optimal cut-
off value around ∆ 0.0 µg/mL sP-selectin and significantly improved the predictive value of the
ESC-SCORE (AUC for the combination of both parameters was 0.75 (95% CI 0.68–0.81, p < 0.001).
Patients with increasing sP-selectin showed a significantly higher plaque progression compared to
patients with decreasing or stable sP-selectin levels (202 mm3 vs. 110 mm3, p < 0.001). Conclusions:
Increasing sP-selectin levels can predict higher atherosclerotic plaque progression as measured by 3D
ultrasound. We suggest serial measurements of sP-selectin as an easily measurable biomarker for
peripheral atherosclerotic plaque progression.

Keywords: atherosclerosis; 3D ultrasonography; P-selectin; plaque progression

1. Introduction

In developed nations, cardiovascular diseases continue to be the leading cause of
death [1]. The vast majority of cardiovascular events, such as myocardial infarction, stroke,
or heart failure, occur on the basis of atherosclerosis. Atherosclerosis is a chronic disease
driven by multiple pathophysiologic factors such as inflammation, lipid accumulation,
oxidative stress, insulin resistance, and others [2]. In particular, inflammation is involved in
virtually every step of pathogenesis [3]. Oxidized low-density lipoprotein (LDL) is believed
to damage healthy endothelial cells and induce the expression of adhesion molecules on
their surface [4]. These molecules induce the adhesion of leukocytes to the intima layer of
the blood vessels [5]. One important group of adhesion molecules on the surface of intima
cells are the endothelial cell-expressed selectins (E-selectin, P-selectin). These molecules
mediate leukocyte rolling along the vessel wall until intercellular adhesion, molecule-1, and
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vascular cell adhesion molecule-1, induce firm adhesion followed by the transmigration of
leukocytes across the endothelial layer [6].

Over the past few decades, many inflammatory biomarkers have been proposed
as potential indicators of the progression of atherosclerotic plaques, aligning with the
concept of atherosclerosis as an inflammatory disease [7–9]. High-sensitivity C-reactive
protein (hsCRP) is the most extensively investigated inflammatory biomarker, and its
use was recommended in the 2016 guidelines of the European Society of Cardiology
(ESC) [10]. In the 2021 ESC guidelines on cardiovascular disease prevention, however, it
is stated that hsCRP appears to have limited additional value in terms of reclassification
potential [11]. Nevertheless, the ESC highlights cardiac biomarkers as a promising approach
and recommends further research on this subject [11].

Several studies suggest that soluble P-selectin (sP-selectin) may be an even better
biomarker than hsCRP since it is produced by platelets and endothelial cells, two cell
types primarily involved in the pathogenesis of atherosclerosis [6]. Besides its role in
the pathogenesis of atherosclerosis, P-selectin has also been proposed as a biomarker for
arterial as well as venous thrombosis [12]. In particular, sP-selectin has been identified as a
biomarker for cancer-associated thrombosis [13]. In patients with COVID-19, sP-selectin
levels are elevated, and it is suggested that the upregulation of sP-selectin in COVID-19
patients might contribute to COVID-19 coagulopathy [14]. In a previously published study
on CAD patients, we showed that the statin-induced reduction in sP-selectin correlated
inversely with the progression of CAD [6]. In the literature, a large body of evidence
highlights the role of P-selectin in the pathogenesis of atherosclerosis [15–19]. A secreted
form of the molecule, sP-selectin, is circulating in plasma and has been measured in
different pathophysiological conditions [20]. In a study by Carnevale et al., sP-selectin
levels were higher in patients after myocardial infarction than in patients with stable
angina pectoris [20]. Likewise, coronary thrombi showed higher P-selectin levels than the
intracoronary blood of patients with stable angina pectoris [20].

For the evaluation of sP-selectin and its predictive value, we used a new ultrasound
technology as a marker of subclinical atherosclerosis. Ultrasound has several advantages
compared to other imaging techniques, including broad availability, relatively low cost,
and a lack of radiation or contrast medium. The best studied sonographic parameter of
subclinical atherosclerosis is the intima media thickness (IMT), which is considered to be a
surrogate parameter for future cardiovascular events [21–23]. In a meta-analysis including
119 studies and over 100,000 patients, it was shown that lower progression of carotid intima-
media thickness (cIMT) is associated with lower cardiovascular risk [24]. Compared to IMT,
atherosclerotic plaques may be an even better predictor for future cardiovascular events [25].
Three-dimensional (3D) ultrasound to determine plaque volume was introduced by Sillesen
and colleagues in the high-risk plaque BioImage study. In this study, performed on more
than 6000 asymptomatic patients, carotid plaque burden was found to correlate stronger
with coronary calcium score than other non-invasive parameters like the IMT [26]. Recently,
automated software capable of precisely quantifying plaques has been developed, which
makes the exact quantification of plaque volume within a relatively short time possible.
Previous publications show that 3D plaque volumetry is a useful tool for the evaluation
of cardiovascular biomarkers [27,28]. Here we report the association between sP-selectin
and peripheral atherosclerotic plaque progression, which had been designed as a pre-
specified endpoint of our study. Moreover, we investigated whether sP-selectin may be an
efficient predictor for subclinical atherosclerotic plaque progression and whether it might
significantly improve the predictive value of current risk scores, e.g., the SCORE of the ESC.

2. Materials and Methods
2.1. Study Design

The study “Correlation of atherosclerotic Plaque Volume and Intima Media Thick-
ness with soluble P-selectin” (ClinicalTrials.gov identifier: NCT01895725) is a prospective
observational single-center cohort study designed and powered to evaluate the effect of sP-
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selectin on subclinical atherosclerosis. The study population’s baseline characteristics and
the criteria for inclusion/exclusion have been published previously [29]. Briefly, individu-
als of both genders aged between 30 and 85 who had at least one traditional cardiovascular
risk factor (CVRF) or a history of established cardiovascular diseases such as coronary
artery disease (CAD), cerebrovascular disease (CBVD), or peripheral artery disease (PAD)
were eligible for inclusion. Traditional CVRF was defined as arterial hypertension, dys-
lipidemia, current smoking status, positive family history, and pre-existing diabetes. The
patient screening occurred at the outpatient clinic of the Department of Internal Medicine
III (cardiology and angiology) at the Medical University of Innsbruck from 2013 to 2018. At
baseline, each patient was subjected to ultrasound measurements, a physical examination,
and routine laboratory tests. At the same time, the medical background on cardiovas-
cular diseases, risk factors, concurrent medical conditions, ongoing medication, and the
individual’s smoking status were recorded. Follow-up visits with re-examinations were
carried out once per year over a period of four years. A total of 443 patients were included
in this study. Of these, 354 patients completed at least the 2nd follow-up (354 patients
2nd follow-up, 280 patients 3rd follow-up, 190 patients 4th follow-up). Due to missing data
and withdrawn consent, 338 patients were available for statistical analysis (Figure 1).
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2.2. Ultrasound Imaging, Routine Laboratory, and Additional Examination

Ultrasound imaging included measurements of the intima-media-thickness and the
plaque volume in the carotid arteries as well as in the femoral arteries on both sides. The
IMT measurements were conducted using a Philip iU22 system, which was equipped
with a linear L9-3 probe and integrated software for automatically calculating the mean
IMT. In accordance with the Mannheim consensus, IMT measurements were taken at a
location situated at least 1 cm proximal to the flow divider, within a plaque-free segment
spanning 10 mm [30]. Plaques were defined as local formations that extended a minimum of
0.5 mm into the arterial lumen, occupied 50% of the adjacent IMT, or exhibited a thickness
exceeding 1.5 mm from the media-adventitia boundary to the intima-lumen interface [30].
Plaque volume measurement was conducted using the same ultrasound system, which was
equipped with a VL13-5 3D probe and specialized software for quantifying plaque volume
in the bifurcation area and the visible sections of the internal and common carotid arteries.
Identical measurements were performed in the femoral bifurcation and the adjacent sections
of the common and superficial femoral arteries. The method’s reliability was assessed
by computing the inter-observer variability among three different observers. The results
revealed very good agreement among the raters, as indicated by an intra-class correlation
coefficient of 0.95 (95% CI, 0.82–0.99).



J. Clin. Med. 2023, 12, 6430 4 of 12

The routine laboratory included measurements of total cholesterol, triglycerides, low-
density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, hs-CRP,
fasting glucose, HbA1C, and creatinine levels. The estimated glomerular filtration rate
(eGFR) was calculated using the Chronic Kidney Disease Epidemiology Collaboration
(CKD-EPI) formula. Furthermore, an additional EDTA whole blood sample underwent
centrifugation to separate the cellular components from the EDTA plasma. In the obtained
EDTA plasma, sP-selectin levels were measured by means of a commercially available
ELISA (Human P-Selectin/CD62P Quantikine ELISA Kit, R&D Systems, Minneapolis,
MN, USA).

At baseline and during each follow-up examination, measurements of blood pressure,
ankle brachial index (ABI), and pulse wave velocity (PWV) were performed. To measure
ABI and pulse wave velocity, we used an automated system (AngE Pro4, SOT Medical
Systems, Maria Rain, Austria). Furthermore, the ESC-SCORE (low risk chart) was calculated
for each patient, and the patients were assigned to the corresponding risk categories
(low/intermediate/high) following the recommendations of the ESC [10,31].

2.3. Statistical Analysis

The normal distribution was assessed using the Kolmogorov–Smirnov test. Continu-
ous variables are presented as either mean ± standard deviation (SD) for parameters that
exhibit a normal distribution or as median with the corresponding interquartile range (IQR)
for parameters that do not conform to a normal distribution. Categorical variables are
presented as absolute numbers and percentages. Total plaque volume (TPV) was defined
as the combined plaque volume in the femoral and carotid arteries on both sides. For
the sample size calculation, the linear correlation between biomarkers and atherosclerotic
plaque progression was estimated. In a previous study, a reduction in soluble P-selectin was
found to negatively correlate with the progression of coronary artery disease as measured
by electron beam computed tomography (r2 = 0.393). Assuming comparable progression in
the present study using ultrasound measurements, a possible correlation between P-selectin
and atherosclerosis progression was calculated between r2 = 0.25 and 0.5. Therefore, for the
lower margin of r (r = 0.25) with an alpha error of 0.05 and a power of 0.80, a minimum
of 250 subjects would have been required. To account for possible problems with image
quality, missing data, and patient dropout, a total of 600 subjects were originally planned
for inclusion in this study. To assess differences in baseline parameters, we employed
either a two-tailed, independent sample t-test or the Mann–Whitney U test for continuous
variables and the χ2 test for categorical variables. To determine the effect of the number
of cardiovascular diseases (none, 1, 2, 3) on the P-selectin levels, a mixed ANOVA with
repeated measures was performed using the Greenhouse–Geisser correction. To exam-
ine the association between P-selectin and TPV over time, growth curve modeling was
performed. The multilevel analysis contained two levels, with repeated observations of
TPV on level 1 and individual subjects on level 2. After establishing the growth curve
model, sP-selectin was added as a covariate. The model was expanded by stagewise adding
demographics, CVRFs, and laboratory parameters as additional covariates. For the analysis
of covariate variance, the maximum-likelihood estimation was used. Since at least two
time points of plaque progression are necessary for the calculation of the regression curves,
only patients who completed at least the 2nd follow-up visit were included in our analysis.
Similar calculations were performed for hsCRP. For further statistical examination, the
study cohort was split into a high total plaque progression (High-TPP) group and a low
plaque progression group (Low-TPP), with the division set at the 75th percentile of the TPP
distribution. For ROC analysis and for the comparison of the high and low TPP groups,
TPP was determined by calculating the difference between TPV at the last follow-up visit
and TPV at the baseline assessment. Likewise, the change in sP-selectin was defined as
the difference between plasma P-selectin levels at the last follow-up and at baseline. Miss-
ing values were computed according to the last observation carried over principle. The
predictive value of sP-selectin or hsCRP over time in terms of plaque progression was
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investigated by performing a receiver operating characteristic (ROC) analysis and deter-
mining the area under the curve (AUC) compared to the ESC-SCORE. To take the serial
measurements of the biomarkers into account, the change in P-selectin was considered a
predictor variable. Belonging to the high-TPP group was used as a classification variable.
The effect of a combination of ESC-SCORE and sP-selectin progression on the prediction of
plaque progression was evaluated by calculating a multiple logistic regression model with
ESC-SCORE and changes in sP-selectin as newly added predictor variables. The fit of the
model was assessed using the Hosmer–Lemeshow test. The calculated β-coefficients of the
predictor variables were included according to the formula:

ln
(

p̂
1 − p̂

)
= β0 + β1x1 + β2x2 + . . . + βkxk

The predictive performance was assessed by drawing a ROC-curve of the new predic-
tion model and comparing the AUCs. We compared the AUCs by using the non-parametric
DeJong test. After determining the optimal threshold for sP-selectin progression, we di-
vided the study cohort into two groups: those with increasing sP-selectin levels and those
with stable or decreasing sP-selectin levels. These two groups were then compared in
terms of mean plaque progression over the course of the follow-up visits. In all statistical
assessments, a two-tailed p-value of less than 0.05 was considered indicative of statistical
significance. Statistical analyses were performed using SPSS Statistics Version 27.0 (IBM
Corp, Armonk, NY, USA).

2.4. Ethical Issues

This study is an observational, non-interventional, single-center cohort study. The
Ethics Committee of the University of Innsbruck (Project identification code—UN5048) ap-
proved the study protocol, and this study was conducted in accordance with the declaration
of Helsinki. Each patient gave written and informed consent. Patient data were recorded
and stored according to the General Data Protection Regulation of the European Union.

3. Results

Details of the baseline characteristics are shown in Table 1. The high-TPP group, with
a mean age of 66 years, was significantly older. The majority of the study participants were
male; however, in the low-TPP group, significantly more women were included.

Table 1. Study population baseline data. Data are presented with median values (interquartile range,
IQR) or mean values (±standard deviation) for continuous variables and for categorical variables
with absolute numbers and corresponding percentages.

Study Population
(n = 338)

Low-TPP
(n = 256)

High-TPP
(n = 82) p-Value

Age, years 63.1 (±10.1) 62.0 (±10.4) 66.6 (±8.1) <0.001

Female, n (%) 144 (42.6) 122 (47.7) 22 (26.8) <0.001

Body mass index, kg/m2 25.3 (4.7) 25.2 (4.4) 26.2 (4.3) n.s.

Hypertension, n (%) 218 (64.5) 154 (60.2) 64 (78.0) 0.003

Family history for CVD, n (%) 78 (23.1) 61 (23.8) 17 (20.7) n.s.

Smoking, pack years 12.3 (±19.6) 11.4 (±19.06) 15.2 (±21.8) n.s.

Hyperlipidemia, n (%) 295 (87.3) 224 (87.5) 71 (86.6) n.s.

Diabetes mellitus, n (%) 47 (13.9) 36 (14.1) 11 (13.4) n.s.

hsCRP, mg/dL 0.17 (0.29) 0.17 (0.32) 0.17 (0.27) n.s.

sP-selectin, µg/mL 40.0 (24) 41.0 (25.1) 36.3 (20) n.s.
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Table 1. Cont.

Study Population
(n = 338)

Low-TPP
(n = 256)

High-TPP
(n = 82) p-Value

Total cholesterol, mg/dL 196.5 (±46.4) 198 (±48.8) 189 (±37.5) n.s.

LDL-cholesterol, mg/dL 115.0 (55.75) 119 (59.0) 106 (46.0) n.s.

HDL-cholesterol, mg/dL 58.0 (26.75) 58.0 (28.0) 58.0 (26.0) n.s.

Triglyceride mg/dL 128.0 (85.0) 132 (88) 118 (76) n.s.

eGFR, mL/min/1.73 m2 76.6 (±15.5) 77.59 (±15.9) 73.53 (±13.9) n.s.

Antiplatelet therapy, n (%) 157 (46.4) 118 (46.1) 39 (47.6) n.s.

Lipid lowering therapy 192 (56.8) 144 (56.3) 48 (58.5) n.s.

Antihypertensive therapy 195 (57.7) 139 (54.3) 56 (68.3) 0.02

ESC SCORE 3.0 (3.0) 2.0 (3.0) 4.0 (2.5) <0.001

CAD, n (%) 106 (31.4) 82 (32.0) 24 (29.3) n.s.

CRVD, n (%) 34 (10.1) 25 (9.8) 9 (11.0) n.s.

PAD, n (%) 28 (8.3) 20 (7.8) 8 (9.8) n.s.

TPP—total plaque progression; CVD—cardiovascular disease; CAD—coronary artery disease; hsCRP—high-
sensitivity C-reactive protein; LDL—low-density lipoprotein; sP-selectin—soluble P-selectin; HDL—high-
density lipoprotein; eGFR—estimated glomerular filtration rate, ESC—European society of cardiology, CRVD—
cerebrovascular disease, PAD—peripheral arterial disease, n.s.—not significant.

In the high-TPP group, significantly more patients were hypertensive and received
antihypertensive therapy. As expected, the high-TPP group showed significantly higher
expected 10-year cardiovascular mortality as measured via the ESC-SCORE (4.0 in high-TPP
vs. 2.0 in low-TPP, p < 0.001). All other parameters, including baseline sP-selectin and
hsCRP levels, did not show statistically significant differences between the high and low
TPP groups. The baseline parameters for plaque volume, IMT, ABI, and PWV are shown in
Table 2.

Table 2. Distribution of baseline values for carotid intima-media thickness, total plaque volume,
ankle brachial index, and pulse wave velocity is depicted using medians and their corresponding
interquartile ranges (IQR).

Study Population
(n = 338)

Low-TPP
(n = 256)

High-TPP
(n = 82) p-Value

TPV, mm3 296.5 (462.25) 248 (446.5) 457.0 (443.5) <0.001

Carotid plaque volume, mm3 86.0 (230.25) 72.0 (199.75) 125 (235) 0.006

Femoral plaque volume, mm3 174.0 (282.0) 135.5 (262) 218.5 (278) <0.001

Carotid IMT, mm 0.72 (0.19) 0.72 (0.19) 0.76 (0.23) 0.003

ABI 0.91 (0.15) 0.91 (0.16) 0.91 (0.15) n.s.

PWV, m/s 5.9 (2.4) 5.72 (2.18) 6.4 (2.5) 0.004
ABI—ankle brachial index, PWV—pulse wave velocity, TPP—total plaque progression, TPV—total plaque volume,
IMT—intima-media-thickness, n.s.—not significant.

Patients with high TPP had significantly higher total plaque volume (TPV), carotid
plaque volume, and femoral plaque volume at baseline. Likewise, carotid IMT and PWV
were significantly higher in the high-TPP group. In contrast, no difference was found for
the ABI between the high and low TTP groups. With a median ESC-SCORE of around 3,
the majority of the study participants belonged to the low- and intermediate-risk categories
according to the ESC. After a mean follow-up of 3.4 years, the high-TPP group showed a
significantly higher sP-selectin increase than the low-TPP group (∆8.78 µg/mL in high-TPP
vs. ∆−0.93 µg/mL in low-TPP, p < 0.001). The median increase in sP-selectin over all study
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visits was 4.98 µg/mL. Of our study population, 6 patients suffered from atherosclerotic
disease in all three vascular beds, whereas 27 patients had two vascular beds and 96 patients
had one vascular bed involved. Patients with a higher number of affected vascular beds had
higher sP-selectin levels at baseline (no CVD: 42.4 µg/mL, one vascular bed: 45.2 µg/mL,
two vascular beds: 49.1 µg/mL, three vascular beds: 52.6 µg/mL; p < 0.001). However,
there was no statistically significant interaction between the number of CVDs and P-
selectin levels over time, indicating that the initial significant difference between the
groups remained stable. Each standard deviation increase in sP-selectin was significantly
(p < 0.001) associated with a 46.09 mm3 higher total plaque volume. This effect remained
on a significant level after adjustment for personal data (sex, age), classical cardiovascular
risk factors (hypertension, dyslipidemia, diabetes, positive family history), and laboratory
parameters (total cholesterol, HDL-cholesterol, LDL-cholesterol, and creatinine; see Table 3).

Table 3. Association of sP-selectin and plaque progression.

Plaque Progression in mm3 (95% CI) p

sP-selectin 46.09 (24.75–67.43) <0.001

+personal data 38.64 (19.12–58.17) <0.001

+CVRF 30.19 (12.27–48.11) <0.001

+laboratory parameters 24.15 (7.64–44.48) 0.005
Plaque progression per standard deviation P-selectin (standard deviation sP-selectin 20.13 µg/mL) after stagewise
inclusion of additional covariates. Personal data = sex, age; CVRF = smoking status, hypertension, diabetes, hyper-
lipidemia, family history; laboratory parameters = total cholesterol, HDL-cholesterol, LDL-cholesterol, creatinine.

Conversely, the growth curve models of hsCRP did not show a significant association
between changes in hsCRP and TPP (p > 0.05). Likewise, models that used the ABI as
a dependent variable did not show a significant association with changes in sP-selectin
(p > 0.05). In addition, we calculated the growth curve models using carotid plaque volume
and femoral plaque volume as dependent variables. In both cases, the established model
was statistically significant (p < 0.05). In the case of carotid plaque volume, each standard
deviation increase in sP-selectin was associated with an increase of 22.04 mm3 (CI 95%:
18.67–26.03, p < 0.001). In the case of the femoral plaque volume, each standard deviation
increase in sP-selectin was associated with an increase of 31.86 mm3 (CI 95% 26.97–37.62,
p < 0.001). To establish the most suitable threshold for changes in P-selectin, we conducted
a ROC analysis, yielding an area under the curve (AUC) of 0.65 (95% CI 0.58–0.72, p < 0.001).
The optimal cut-off value, approximately ∆−0.0 µg/mL, was associated with a sensitivity
of 74.7% and a specificity of 52.0%. With an AUC of 0.51 (95% CI 0.43–0.59; p > 0.05), hsCRP
progression showed no significant predictive value. The ESC-SCORE had an AUC of 0.69
(95% CI 0.62–0.77, p < 0.001). Details are shown in Figure 2.

The multiple logistic regression model of the combined β-coefficients of ESC-SCORE
and sP-selectin progression showed the highest predictive performance with an AUC of
0.75 (95% CI 0.68–0.81, p < 0.001). In the non-parametric DeLong test, the combination
ESC-SCORE and sP-selectin change showed a significantly higher AUC than the ESC-
SCORE alone (p = 0.005). For further statistical analysis, patients were divided into a group
with increasing sP-selectin levels and a group with stable or decreasing sP-selectin values
(Figure 3). The patient group with increasing sP-selectin levels showed a significantly
higher mean plaque progression (202 mm3) over all study visits compared to patients with
decreasing or stable sP-selectin levels (110 mm3, p < 0.001).
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4. Discussion

In this study, we found that patients with increasing sP-selectin levels over a mean
follow-up of 3.4 years showed a significantly higher TPP compared to patients with stable
or decreasing sP-selectin levels. Our study population comprised patients with at least one
CVRF or established CVD, most of them belonging to the low or intermediate risk category
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according to the ESC-SCORE [9]. In a study on 733 patients conducted by Tscharre et al., it
was shown that elevated levels of sP-selectin were connected with an elevated risk of major
adverse cardiac events (MACEs) in the long term after undergoing percutaneous coronary
intervention (PCI) [32]. These results were recently supported by the research of Berg et al.
in the DAPT trial, which showed that high sP-selectin levels had an increased risk of MACE
after coronary intervention [33]. Aside from its role in acute coronary syndromes, Shen et al.
found that sP-selectin levels were significantly higher in patients with established CAD
compared to healthy people [34]. The role of P-selectin in the development of atherosclerosis
is supported by the research of Johnson-Tidey et al., who observed that P-selectin is
preferentially expressed in the endothelium overlying atherosclerotic plaques [17,18]. In
addition, it was shown that P-selectin-deficient mice develop reduced fatty streaks, the first
visible lesions in the pathogenesis of atherosclerosis [15]. In a recent study by Wang et al.,
the inhibition of P-selectin led to the stabilization of atherosclerotic plaques [19]. The use
of a monoclonal antibody targeting P-selectin was shown to reduce myocardial damage
in percutaneous coronary intervention following non-ST-segment elevation myocardial
infarction [16].

These reported pro-atherosclerotic effects are consistent with the results of our growth
curve models, where we could show that increasing sP-selectin levels are associated with
increased atherosclerotic plaque volume. In the MESA study, Wassel et al. used the change
in ABI as a surrogate parameter for atherosclerotic progression [35]. Using linear growth
curve modeling, they found that increased baseline sP-selectin levels were associated with
lower ABI values and a higher incidence of peripheral artery disease. However, unlike
our study, these authors did not use serial measurements of sP-selectin. Furthermore, it
was shown by Sillesen et al. that 3D plaque volumetry correlated stronger with coronary
artery calcium score than the ABI, suggesting that plaque volume may be a better surrogate
parameter for subclinical atherosclerosis than the ABI [26].

In addition to its pathophysiological role in the development of atherosclerosis, P-
selectin has also been evaluated in terms of its prognostic value to improve risk stratification.
In a recently published case-control study, the strongest association with MACE was ob-
served for a composite parameter of sP-selectin, platelet count, and neutrophil extracellular
trap markers [36]. Previously, we have shown that baseline levels of the acute phase protein
neutrophil gelatinase-associated lipocalin (NGAL), but not hsCRP, correlate directly with
TPV as measured by 3D ultrasound [27]. Baseline levels of fetuin-A, a serum protein
involved in calcium homeostasis and inflammation, but not hsCRP, correlated inversely
with TPP [28]. Using a pre-specified endpoint, we show that measurements of sP-selectin
levels over time predict the progression of peripheral atherosclerosis and improve the
predictive value of the ESC-SCORE in a multiple logistic model. Moreover, the well-studied
biomarker hsCRP, although predictive in many other studies [33,37], was not strongly
correlated to any of the parameters studied. In contrast to our results, Lee et al. reported
serial measurements of hsCRP as a predictor of major cardiac and cerebrovascular events
in patients after myocardial infarction [38]. We do not have an explanation for these dis-
crepancies, but different biomarkers may reflect different steps in the pathogenesis and
progression of atherosclerosis, depending on the characteristics of the patients studied. We
conclude that serial measurements of sP-selectin appear to be predictive for atherosclerotic
plaque progression in the peripheral arteries. In our study, changes in sP-selectin showed a
strong association with TPP, carotid plaque progression, and femoral plaque progression.
Similar to the results of the PESA study, our data highlight the role of the femoral territory
in cardiovascular risk stratification [39].

Together with other studies, these observations suggest that 3D plaque volumetry
may be a more precise surrogate parameter for subclinical atherosclerosis than IMT [25].
Since 3D ultrasound is not yet widely available, serial measurement of sP-selectin has the
potential to become a useful biomarker for the progression of atherosclerotic disease.

The main strength of our study is the fact that it was specifically designed to test
an association between sP-selectin and the progression of atherosclerosis, as assessed by
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measurements of plaque volume and IMT in the carotid and femoral arteries. In addition,
this study has a prospective design with a relatively long follow-up (mean 3.4 years) for
each patient. The major limitation is the relatively small sample size, although similar to
comparable trials, and the conduction of the trial in only one center. Since most of our
patients belonged to the low- or intermediate-risk category of the ESC-SCORE, it may not
be possible to extrapolate the results to patients at higher risk.

5. Conclusions

In conclusion, we found that patients with increasing sP-selectin levels showed signifi-
cantly higher plaque progression compared to patients with decreasing or stable sP-selectin
levels. Serial measurements of sP-selectin levels appear to be useful in the cardiovascular
risk assessment of patients with CVRF or confirmed CVD. Plasma biomarkers like sP-
selectin that can be easily measured in blood samples have the potential to further improve
risk stratification through prediction scores like the ESC-SCORE.
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