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Abstract: Platinum drugs combined with other agents have been the first-line treatment for non-small
cell lung cancer (NSCLC) in the past decades. To better evaluate the efficacy of platinum–based
chemotherapy in NSCLC, we establish a platinum chemotherapy response prediction model. Here,
a total of 217 samples from Xiangya Hospital of Central South University were selected as the
discovery cohort for a genome-wide association analysis (GWAS) to select SNPs. Another 216 samples
were genotyped as a validation cohort. In the discovery cohort, using linkage disequilibrium (LD)
pruning, we extract a subset that does not contain correlated SNPs. The SNPs with p < 10−3 and
p < 10−4 are selected for modeling. Subsequently, we validate our model in the validation cohort.
Finally, clinical factors are incorporated into the model. The final model includes four SNPs (rs7463048,
rs17176196, rs527646, and rs11134542) as well as two clinical factors that contributed to the efficacy of
platinum chemotherapy in NSCLC, with an area under the receiver operating characteristic (ROC)
curve (AUC) of 0.726.

Keywords: platinum; NSCLC; efficacy; model; SNP

1. Introduction

Platinum is one of the most promising and widely used drugs for the treatment of
various cancers. Cisplatin and other platinum–derivative drugs exert anticancer activ-
ity mainly by binding to DNA and forming adducts that affect DNA transcription and
replication [1]. However, in many cases, tumor cells exposed to platinum can activate
a multi-mechanism adaptive response that leads to drug resistance, which limits the clinical
use of platinum drugs. Resistance to cisplatin depends on multiple factors such as reduced
drug accumulation, inactivation of the drug by binding to non-target proteins, increasing
DNA repair, and altering of signals to apoptosis [2–5].

Non-small cell lung cancer (NSCLC) accounts for approximately 85% of all lung
cancers and is the major subtype of lung cancer [6]. Platinum drugs are used as first-line
agents in the clinical practice guidelines for NSCLC. Unfortunately, patients differ greatly
in their responses to platinum drugs [7]. Therefore, it is helpful for clinical treatment to
study the efficacy of platinum in NSCLC. We hope to find pharmacogenomic markers that
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influence the efficacy of platinum chemotherapy, and to further develop models to predict
the efficacy of platinum chemotherapy.

In one of our previous studies, a predictive model was established for platinum–based
chemotherapy response, with a sensitivity of 0.90, specificity of 0.47, and area under the
receiver operating characteristic (ROC) curve (AU-ROC) of 0.80 [8]. By applying this model
to clinical practice, we found that its accuracy needs to be further improved, and the
number of detected SNPs needs to be further optimized and reduced.

This study intends to improve on previous studies by adopting GWAS to find more
genetic factors affecting the efficacy of NSCLC platinum chemotherapy. BayesNet, NaiveBayes,
Random Forest (RF), Logistic, support vector machine (SVM), Bagging, Decision Tree (DT),
K-Nearest-Neighbors (KNN), Random Tree (RT), AdaBoost, and Polygenic risk score (PRS),
will be used to establish the new model. After that, the previous model will be validated in
another cohort, and finally, clinical factors will be incorporated to optimize the model.

2. Materials and Methods
2.1. Study Population and Clinical Data Collection

The patients in this study were recruited from Xiangya Hospital of Central South
University and Hunan Cancer Hospital (Changsha, China), from 2012 to 2019, and were
diagnosed with NSCLC by histopathological examination. The patients received platinum–
based chemotherapy regimens for at least 2 cycles: one course of treatment lasts for
three weeks. The platinum–based drugs used were cisplatin (75 mg/m2) or carboplatin
(AUC 5) on day 1, in combination with pemetrexed (500 mg/m2) on day 1, gemcitabine
(1250 mg/m2) on days 1 and 8, paclitaxel (175 mg/m2) on day 1, or docetaxel (75 mg/m2)
on day 1. No other antitumor treatments, such as surgery, targeted drugs, or radiotherapy
were received before the chemotherapy.

Relevant clinical data were collected from patients’ medical records, including disease
stage, gender, age, smoking history, tumor pathological examination results, treatment
regimen, number of chemotherapy cycles, and dose. The efficacy of the chemotherapy was
evaluated according to the response evaluation criteria in solid tumors (RECIST) version
1.1 [9], and patients were divided into two groups, with partial response (PR) classified
as platinum–sensitive, and stable disease (SD) and progressive disease (PD) classified as
platinum–resistant.

As shown in Figure 1A, this was a two cohort study. In the discovery cohort, 217 pa-
tients were enrolled; and excluded patients without an efficacy assessment (n = 15), failed
DNA quality control (n = 9), and failed call rate < 90% (n = 1). In the validation cohort,
216 patients were enrolled; and excluded patients without an efficacy assessment (n = 14),
failed DNA quality control (n = 7), and failed call rate < 90% (n = 3).
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Figure 1B, so all 217 samples were included in the analysis. We used the impute2 software 
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2.2. DNA Extraction, Genotyping, and Quality Control

Whole blood samples were collected from patients, and blood samples were preserved
with EDTA disodium salt (EDTA-2NA). Genomic DNA was extracted from peripheral
blood using the Wizard® Genomic DNA Purification Kit (Promega, Madison, WI, USA)
according to the instructions.

DNA samples (n = 227) from the discovery cohort were genotyped using Illumina
BeadChip Array Global Screening Array-24+ V1.0 (Illumina Inc., San Diego, CA, USA).
Quality control was performed on the original genotyping data by PLINK (v1.90b6.24)
to filter unqualified samples and SNPs [10]. The data quality control was divided into
SNP quality control and sample quality control. SNP quality control included (1) SNP
call rate ≥ 90%; (2) the Hardy–Weinberg equilibrium test (HWE) ≥ 1 × 10−5; (3) minor
allele frequency (MAF) ≥ 0.01; (4) mapped on autosomal chromosomes. Sample quality
control included (1) sample call rates ≥ 90%; (2) heterozygosity check; (3) sex check;
(4) sample relatedness check; (5) PCA analysis. Principal component analysis (PCA) was
performed using the PLINK package. PLINK calculated the PC values from the SNP
information of the samples, determined the location of the samples based on the PC1
and PC2 of each sample, and presented these in a scatter plot (Figure 1B). There are no
stray samples in Figure 1B, so all 217 samples were included in the analysis. We used
the impute2 software for imputation (INFO = 0.4). After imputation, another quality
control was performed on the data before association analysis: (1) SNP call rate ≥ 90%;
(2) MAF ≥ 0.01; (3) HWE ≥ 1 × 10−5; (4) sample call rate ≥ 90%; (5) sample relatedness
check; (6) heterozygosity checks; (7) sex check. After quality control, there were 217 samples
in our discovery cohort; a total of 104 in the sensitive group and 113 in the resistant group.
The Hardy–Weinberg equilibrium test was failed by 2035 SNPs, and 151,215 SNPs were
filtered out due to minor allele frequencies < 1%; a total of 629,4406 SNPs were included in
the analysis.

In the validation cohort, SNP genotyping was performed using the Sequenom MassAR-
RAY system (Sequenom, San Diego, CA, USA) according to the manufacturer’s instructions.
The quality control criteria included (1) sample call rates ≥ 90%; (2) SNP call rate ≥ 90%;
(3) MAF ≥ 0.01; (4) HWE ≥ 0.05; (5) sample relatedness check; (6) heterozygosity check;
(7) sex check. The overall methodological flow is shown in Figure 2.
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2.3. Genome–Wide Association Analysis and Linkage Disequilibrium (LD) Pruning

Multivariate logistic regression analysis was used, adjusting for pathology type, dis-
ease stage, age, smoking history, chemotherapy regimen, and sex as covariates, and per-
formed genome–wide association analysis under an additive model. LD pruning was
carried out for all SNPs, with a window size of 500 KB, a step size of 50ct, and the r2
threshold for determining association set to 0.2.

2.4. Model Construction

SNPs with specific p-value intercepts were selected after association analysis using
multivariate logistic regression in PLINK. In choosing these SNPs, the PLINK package
was used to calculate all the odds ratio (OR) values of the SNPs. Models were built using
different algorithms: PRS, BN, NB, RF, LR, SVM, Bagging, KNN, and RT. The PRS score was
calculated by the PRSice software (PRSice, V2.3.5) [11]. After obtaining the PRS score of each
sample, logistic regression was used to build the model with the SPSS 25.0 software (SPSS
Inc, Chicago, IL, USA). For other algorithms, SNPs were assigned to 0, 1, and 2 according
to the genotyping results of each SNP in the patient. Using BayesNet, NaiveBayes, RF,
Logistic, SVM, Bagging, KNN, and Random Tree (RT) to build the models was realized by
the Knowledge Analysis (WEKA) software (V3.8.5) [12]. AU-ROC, specificity, sensitivity
(recall rate), and accuracy were used to evaluate and compare the overall performance of
the models.

Then, the SNPs selected from the discovery cohort were genotyped in the validation
cohort to verify the model. Finally, clinical factors were integrated into the model to observe
whether we can have a better prediction effect.

3. Results
3.1. Characteristics of the Study Population

The study was divided into two cohorts: the discovery cohort and the validation
cohort. The discovery cohort was used to select SNPs to build the model, and the validation
cohort was used to verify the contribution of the selected SNPs to the phenotype in another
independent cohort. The sample numbers of the case group and the control group were
roughly the same. There were 217 patients in the discovery cohort, 104 (47.93%) were evalu-
ated as sensitive and 113 (52.07%) as resistant to platinum chemotherapy; and 216 patients
in the validation cohort, 102 (47.22%) were evaluated as sensitive, and 114 (52.78%) as
resistant. The pathology type, disease stage, age, smoking history, chemotherapy regimen,
and gender of the patients were collected. Table 1 lists the clinical and pathological charac-
teristics of the patients in both groups. It can be seen that clinical factors had no statistically
significant influence on phenotypes (p ≥ 0.05). In addition, the proportion of each clinical
phenotype subtype is consistent between the discovery and validation cohorts.

Table 1. Characteristics of NSCLC patients for the two cohorts.

Characteristics

Discovery Stage Validation Stage

Responders
(%) (n = 104)

Non-Responders
(%) (n = 113) p Value Responders

(%) (n = 102)
Non-Responders

(%) (n = 114) p Value

Histology
Adenocarcinoma 51 (49.04) 56 (49.56)

0.74
43 (42.16) 67 (58.77)

0.05Squamous 51 (49.04) 54 (47.79) 56 (54.90) 45 (39.47)
Other 2 (1.92) 3 (2.65) 3 (2.94) 2 (1.76)
Stage

I NA 2 (1.77)

0.72

1 (0.98) NA

0.40
II 1 (0.96) 1 (0.88) 3 (2.94) 1 (0.88)
III 32 (30.77) 33 (29.20) 36 (35.29) 36 (31.58)
IV 71 (68.27) 77 (68.15) 62 (60.79) 77 (67.54)
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Table 1. Cont.

Characteristics

Discovery Stage Validation Stage

Responders
(%) (n = 104)

Non-Responders
(%) (n = 113) p Value Responders

(%) (n = 102)
Non-Responders

(%) (n = 114) p Value

age
≤55 44 (42.31) 50 (44.25)

0.22
43 (42.16) 52 (45.61)

0.16>55 60 (57.69) 63 (55.75) 59 (57.84) 62 (54.39)
Smoking status

Nonsmoker 38 (36.54) 36 (31.86)
0.66

27 (26.47) 40 (35.09)
0.17Smoker 66 (63.46) 77 (68.14) 75 (73.53) 74 (64.91)

Sex
Male 76 (73.08) 94 (83.19)

0.41
84 (82.35) 89 (78.07)

0.43Female 28 (26.92) 19 (16.81) 18 (17.65) 25 (21.93)
Chemotherapeutic regimens

platinum/pemetrexed 42 (40.39) 50 (44.25)

0.84

38 (37.25) 61 (53.51)

0.11
platinum/gemcitabine 40 (38.46) 44 (38.94) 38 (37.25) 34 (29.82)

platinum/paclitaxel 15 (14.42) 12 (10.62) 18 (17.65) 14 (12.28)
platinum/docetaxel 7 (6.73) 7 (6.19) 8 (7.85) 5 (4.39)

3.2. GWAS to Identify SNPs Associated with Platinum–Based Chemotherapy Response

To find SNPs that have an impact on the platinum chemotherapy effect, GWAS was
adopted to select the SNPs in the discovery cohort. To correct the covariates, logistic
regression was used for an association analysis. Through a series of SNP and sample
quality controls, 217 individuals (113 cases and 104 controls) were included in the analysis,
a total of 6,294,406 SNPs were included in the analysis, and 6,278,311 SNPs obtained the
determined p-value after association analysis. The Manhattan plot (Figure 3) shows the
results of the genome–wide association analysis.
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The SNPs with significant phenotypic contributions were selected to establish the
prediction models. At first, the SNPs with p values < 10−3 were analyzed. LD exists when
alleles from two adjacent genetic variants co-occur in a non-random, linkage manner. To
eliminate the false positives caused by the inclusion of SNPs with LD, we conducted linkage
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imbalance pruning for SNPs after a logistic multiple Correction Association analysis. Table 2
showed the P and OR values of all SNPs with p < 10−3 after the logistic multiple correction
association analysis and LD pruning, as well as the genes and mutation types of SNPs.
There were 57 SNPs with p < 10−3, of which 59.65% of the SNPs were located on genes and
40.35% on gene deserts, and most of the SNPs on genes were introns. Considering that there
were still many SNPs, the SNPs with p < 10−4 were selected. There were four SNPs with
p < 10−4: rs7463048 (p = 4.60 × 10−5, OR = 2.452), rs17176196 (p = 6.16 × 10−5, OR = 0.3409),
rs527646 (p = 6.96 × 10−5, OR = 0.3438), and rs11134542 (p = 9.89 × 10−5, OR = 2.441); all
four of these SNPs are located on genes. rs7463048 is an intron of LOC105375676, rs17176196
is an intron of the read–through gene ANKRD34C antisense RNA 1 (ANKRD34C-AS1),
rs527646 is an intron of opioid binding protein/cell adhesion molecule like (OPCML),
and rs11134542 is an intron of slit guidance ligand 3 (SLIT3) or a non-coding mutation
of LOC105377713.

Table 2. The SNPs with p < 10−3 associated with platinum–based chemotherapy response in the
discovery cohort.

SNP CHR OR p Gene Mutation Type

rs7463048 8 2.45 4.60 × 10−5 LOC105375676 Intron
rs17176196 15 0.34 6.16 × 10−5 ANKRD34C-AS1 Intron

rs527646 11 0.34 6.96 × 10−5 OPCML Intron
rs11134542 5 2.44 9.89 × 10−5 SLIT3, LOC105377713 Intron, Non-Coding Transcription
rs10078147 5 2.15 1.32 × 10−4 SLC1A3 Intron
rs9378820 6 2.32 1.39 × 10−4 NA NA
rs7113019 11 2.40 1.52 × 10−4 JHY Intron
rs7005628 8 0.31 1.76 × 10−4 NA NA

rs11617804 13 3.68 1.77 × 10−4 FAM155A Intron
rs7005216 8 0.32 1.79 × 10−4 NA NA
rs944927 20 0.42 1.83 × 10−4 LOC105372656 Intron

rs11808688 1 0.44 1.91 × 10−4 ATP2B4 Intron
rs17121520 14 0.12 2.02 × 10−4 NA NA
rs1620779 11 2.23 2.33 × 10−4 LINC02698 Intron

rs60976228 6 0.24 2.37 × 10−4 FANCE Intron
rs9496862 6 0.32 2.67 × 10−4 LOC105378036 2 KB Upstream
rs7225086 17 2.21 2.89 × 10−4 RTN4RL1 Intron

rs10859720 12 2.63 3.97 × 10−4 LOC102724960 Intron
rs949561 3 2.37 3.99 × 10−4 LOC107986169 Intron

rs12545542 8 0.47 4.78 × 10−4 LOC100128993 Intron
rs150131032 1 0.45 4.88 × 10−4 LINC01344 Intron
rs4146476 4 0.49 5.31 × 10−4 NA NA
rs76581411 14 0.22 5.69 × 10−4 NA NA
rs7313678 12 2.12 5.79 × 10−4 NA NA
rs2060515 4 2.26 6.31 × 10−4 NA NA
rs7134969 12 2.16 6.31 × 10−4 LOC105370003 Intron
rs1601345 14 0.48 6.54 × 10−4 NA NA
rs3762678 3 0.22 6.56 × 10−4 ACAD11, NPHP3-ACAD11 Intron
rs6873965 5 2.15 6.76 × 10−4 NA NA
rs9832471 3 0.27 6.78 × 10−4 NA NA
rs1080178 2 0.47 6.94 × 10−4 UPP2 Intron
rs4244459 8 1.92 7.06 × 10−4 LOC105379311 Intron
rs77176301 3 0.48 7.07 × 10−4 NA NA
rs12962513 18 2.35 7.18 × 10−4 NA NA

exm2267842 15 0.46 7.46 × 10−4 ANP32A, ANP32A-IT1 Intron, 2KB Upstream
rs4520608 11 2.14 7.51 × 10−4 OPCML Intron
rs77859697 12 0.30 8.01 × 10−4 LINC02388, LOC100506869 Intron
rs1523483 3 0.49 8.02 × 10−4 NA NA

rs145303018 9 0.35 8.10 × 10−4 NA NA
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Table 2. Cont.

SNP CHR OR p Gene Mutation Type

rs149864625 10 0.21 8.12 × 10−4 LRMDA Intron
rs1425351 4 2.91 8.21 × 10−4 COL25A1 Intron

rs74531987 22 2.51 8.26 × 10−4 NA NA
rs201395 12 0.47 8.45 × 10−4 NA NA
rs4518067 3 0.46 8.47 × 10−4 NA NA
rs1472094 4 0.18 8.56 × 10−4 LOC105374528 Intron

rs56845228 7 0.27 8.70 × 10−4 LOC105375523 Intron
rs11957972 5 0.15 8.99 × 10−4 NA NA
rs7019568 9 0.31 9.07 × 10−4 NA NA
rs7864626 9 0.48 9.08 × 10−4 GNA14, GNA14-AS1 Intron
rs244046 4 2.15 9.15 × 10−4 NA NA

rs139740488 5 2.08 9.18 × 10−4 NA NA
rs76443044 20 0.22 9.37 × 10−4 CDH4 Intron
rs2050346 10 0.35 9.48 × 10−4 LOC105376391 Intron
rs1860139 14 0.40 9.48 × 10−4 LINC02274 Non-Coding Transcription
rs2324596 13 0.49 9.71 × 10−4 NA NA
rs9285510 6 3.03 9.93 × 10−4 STXBP5-AS1 Intron Variant

rs28517685 19 3.01 9.97 × 10−4 LOC105372349, LOC100420587 Non-Coding Transcription, Intron

At the same time, to compare our new model with the previous model, 20 SNPs from
the previous model were analyzed. Of these, two SNPs were not among the SNPs we
analyzed, and five SNPs failed to pass the quality control. Thirteen SNPs remained after
LD pruning.

In general, different numbers of SNPs were selected to build the models. The SNPs
used for modeling were divided into three groups: (1) SNPs with p < 10−3; (2) SNPs with
p < 10−4; (3) SNPs that were selected by the candidate gene method in the previous model.

3.3. Construction of the Genetic Prediction Models in the Discovery Cohort

After selecting these three groups of SNPs, the SNPs were used to build the prediction
models. The models established by these SNPs were named as, (1) medium correlation
model (SNPs with p < 10−3); (2) high correlation model (SNPs with p < 10−4); (3) the prior
model (SNPs selected by the candidate gene method in the previous model). To obtain
the best prediction model, multiple algorithms were used to build the models. Eleven
algorithms including PRS, BayesNet, NaiveBayes, RF, LR, SVM, Bagging, KNN, RT, DT,
and AdaBoost were used. The sensitivity, specificity, accuracy, and the AU-ROC of each
model were analyzed, as shown in Figure 4A–C and Table 3. Because accuracy integrates
both specificity and sensitivity information, therefore, with these three indicators we are
mainly referring to accuracy.

Among the models built with the 11 algorithms, the models built using PRS, BayesNet,
NaiveBayes, LR, RF, and SVM have higher values of each indicator, and the prediction
model built using PRS has the highest accuracy. In the medium correlation models, the
model built with PRS has the best prediction effect (sensitivity 0.973; specificity 0.971;
accuracy 0.972). In the high correlation models, PRS is also the best method (sensitivity
0.726; specificity 0.731; accuracy 0.728). In the prior models, the effect of PRS is much better
than other algorithms. Only the model built using PRS obtained an accuracy above 0.6
(sensitivity 0.743; specificity 0.538; accuracy 0.645).

The results show that the medium correlation models with the PRS algorithm have
the best performance. Among all of the model indicators, AU-ROC is one of the most
commonly used indicators in evaluating binary classifiers, and shows the true positive
rate relative to the false positive rate. Therefore, finally, AU-ROC was used to evaluate
the performances of the models. Figure 4D shows the ROC curves of the best prediction
models for the three groups of SNPs in the discovery cohort. The medium correlation
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model has the highest AUC (0.995), followed by the high correlation model (0.795), and the
prior model has the lowest AUC (0.593).
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Table 3. (A) The sensitivity, specificity, accuracy, and the AU-ROC of each model established by the
SNPs with p < 10−3 in the discovery cohort. (B) The sensitivity, specificity, accuracy, and the AU-ROC
of each model established by the SNPs with p < 10−4 in the discovery cohort. (C) The sensitivity,
specificity, accuracy, and the AU-ROC of each model established by the SNPs selected using the
candidate gene method in the discovery cohort.

(A)

Methods Sensitivity Specificity Accuracy AUC

PRS 0.97 0.97 0.97 0.995
BayesNet 0.95 0.93 0.94 0.988

NaiveBayes 0.96 0.92 0.94 0.988
RF 0.93 0.82 0.88 0.956

Logistic 0.88 0.87 0.87 0.946
SVM 0.93 0.86 0.89 0.893

KNN (IBK) 0.91 0.55 0.74 0.750
Bagging 0.82 0.71 0.77 0.859

Random Tree 0.66 0.60 0.63 0.612
DT 0.80 0.32 0.57 0.551

AdaBoost 0.71 0.46 0.59 0.673
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Table 3. Cont.

(B)

Methods Sensitivity Specificity Accuracy AUC

PRS 0.73 0.73 0.73 0.795
BayesNet 0.76 0.62 0.69 0.773

NaiveBayes 0.79 0.61 0.70 0.776
RF 0.66 0.67 0.69 0.712

Logistic 0.72 0.66 0.69 0.761
SVM 0.75 0.65 0.71 0.702

KNN (IBK) 0.68 0.65 0.67 0.715
Bagging 0.68 0.65 0.67 0.724

Random Tree 0.65 0.67 0.66 0.682
DT 0.73 0.39 0.57 0.525
AB 0.72 0.63 0.67 0.756

(C)

Methods Sensitivity Specificity Accuracy AUC

PRS 0.74 0.54 0.64 0.593
BayesNet 0.52 0.34 0.43 0.406

NaiveBayes 0.52 0.32 0.42 0.402
RF 0.50 0.45 0.48 0.490

Logistic 0.54 0.30 0.42 0.397
SVM 0.45 0.29 0.37 0.370

KNN (IBK) 0.45 0.50 0.47 0.485
Bagging 0.52 0.42 0.47 0.472

Random Tree 0.46 0.46 0.46 0.492
DT 0.70 0.13 0.43 0.380
AB 0.65 0.20 0.44 0.419

3.4. Validation of the Genetic Prediction Models

Because in the discovery cohort, the medium correlation models and the high correla-
tion models have a higher AUC than the prior models, therefore, only the groups of SNPs
selected using GWAS were verified in another independent cohort. Again, since the models
built using PRS have the highest accuracy among all the models, only PRS was used for
modeling in the validation cohort. After quality control, 216 samples were included in our
validation cohort. Figure 5A shows the ROC curves of the models. The results show that
the high correlation model has the highest AUC in the validation cohort (AUC = 0.642),
followed by the medium correlation model (AUC = 0.582).

Therefore, our model considered including four SNPs with p < 10−4 and adopted the
PRS algorithm. By calculating the ORs and genotypes of the SNPs included in the analysis,
PRS gives each sample a score; based on the scores, the samples were divided into three
groups: low, medium, and high. Figure 5B shows the efficacy of chemotherapy in these
three groups. In the low risk group, there were more platinum chemotherapy–sensitive
patients; in the high risk group, there were more resistant patients.



J. Clin. Med. 2023, 12, 1318 10 of 15

J. Clin. Med. 2023, 12, x FOR PEER REVIEW 10 of 16 
 

 

3.4. Validation of the Genetic Prediction Models 
Because in the discovery cohort, the medium correlation models and the high corre-

lation models have a higher AUC than the prior models, therefore, only the groups of 
SNPs selected using GWAS were verified in another independent cohort. Again, since the 
models built using PRS have the highest accuracy among all the models, only PRS was 
used for modeling in the validation cohort. After quality control, 216 samples were in-
cluded in our validation cohort. Figure 5A shows the ROC curves of the models. The re-
sults show that the high correlation model has the highest AUC in the validation cohort 
(AUC = 0.642), followed by the medium correlation model (AUC = 0.582). 

Therefore, our model considered including four SNPs with p < 10−4 and adopted the 
PRS algorithm. By calculating the ORs and genotypes of the SNPs included in the analysis, 
PRS gives each sample a score; based on the scores, the samples were divided into three 
groups: low, medium, and high. Figure 5B shows the efficacy of chemotherapy in these 
three groups. In the low risk group, there were more platinum chemotherapy–sensitive 
patients; in the high risk group, there were more resistant patients. 

 
Figure 5. The performance of the platinum–based chemotherapy response genetic model in the val-
idation cohort. (A) AUCs of ROC curve of models established by PRS; (B) Using PRS to group the 
validation cohort. Based on the scores, the samples are divided into three groups: low, medium, and 
high. The number of sensitive (red) and resistant (blue) patients in each group is shown. 

3.5. Integrating Genetic and Clinical Factors to Further Improve the Performance of the Model 
To further improve the model performance, clinical factors were included in the 

model [13–15]. The disease stage, pathology, age, gender, smoking history, and adjuvant 
chemotherapy regimens were included in the modeling, and the results are shown in Ta-
ble 4 and Figure 6A. Among them, the AUC of the model can reach more than 0.67 by 
considering the genetic factor plus pathology (AUC = 0.67), or the genetic factor plus 
chemotherapy regimens (AUC = 0.673). Except for the pathology and chemotherapy reg-
imens, inclusion of the other clinical factors did not significantly enhance model perfor-
mance. Since the addition of pathology or chemotherapy regimens separately can improve 
the AUC of the model, both pathology and chemotherapy regimens were included in the 
model and the model’s performance was compared with the model that included all six 
clinical factors. The model performance was not significantly different for these two mod-
els (0.675 vs. 0.679). Therefore, the pathology and chemotherapy regimens were added to 
the model. In addition, we performed subgroup analyses to analyze the performance of 
genetic and clinical factors in the adenocarcinoma samples (110 samples) and the squa-
mous carcinoma samples (101 samples) (Table 4). As Figure 6B,C shows, the performance 
of the model was slightly higher in adenocarcinoma than in squamous carcinoma, without 
significant differences. 

Figure 5. The performance of the platinum–based chemotherapy response genetic model in the
validation cohort. (A) AUCs of ROC curve of models established by PRS; (B) Using PRS to group the
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3.5. Integrating Genetic and Clinical Factors to Further Improve the Performance of the Model

To further improve the model performance, clinical factors were included in the
model [13–15]. The disease stage, pathology, age, gender, smoking history, and adjuvant
chemotherapy regimens were included in the modeling, and the results are shown in Table 4
and Figure 6A. Among them, the AUC of the model can reach more than 0.67 by considering
the genetic factor plus pathology (AUC = 0.67), or the genetic factor plus chemotherapy
regimens (AUC = 0.673). Except for the pathology and chemotherapy regimens, inclusion
of the other clinical factors did not significantly enhance model performance. Since the
addition of pathology or chemotherapy regimens separately can improve the AUC of
the model, both pathology and chemotherapy regimens were included in the model and
the model’s performance was compared with the model that included all six clinical
factors. The model performance was not significantly different for these two models
(0.675 vs. 0.679). Therefore, the pathology and chemotherapy regimens were added to
the model. In addition, we performed subgroup analyses to analyze the performance of
genetic and clinical factors in the adenocarcinoma samples (110 samples) and the squamous
carcinoma samples (101 samples) (Table 4). As Figure 6B,C shows, the performance of
the model was slightly higher in adenocarcinoma than in squamous carcinoma, without
significant differences.

Table 4. (A) The AUCs of models established by SNPs combined with different clinical factors in
the discovery cohort. (B) The AUCs of models established by SNPs combined with different clinical
factors in the discovery cohort of adenocarcinoma samples. (C) The AUCs of models established by
SNPs combined with different clinical factors in the discovery cohort of squamous carcinoma samples.

(A)

Model AUC 95% CI

SNP 0.627 0.553–0.701
SNP + Regimen 0.673 0.602–0.745

SNP + Pathology 0.670 0.597–0.742
SNP + TMN 0.635 0.562–0.709
SNP + Age 0.637 0.563–0.710

SNP + Smoke 0.633 0.559–0.706
SNP + Gender 0.633 0.559–0.707

SNP + Pathology + Regimen 0.675 0.603–0.746
SNP + Regimen + Pathology + TMN + Age + Smoke + Gender 0.679 0.608–0.750
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Table 4. Cont.

(B)

Model AUC 95% CI

SNP 0.638 0.531–0.746
SNP + Regimen 0.661 0.558–0.764

SNP + TMN 0.659 0.557–0.761
SNP + Age 0.634 0.526–0.741

SNP + Smoke 0.64 0.532–0.747
SNP + Gender 0.635 0.527–0.742

SNP + Regimen + TMN + Age + Smoke + Gender 0.685 0.585–0.784

(C)

Model AUC 95% CI

SNP 0.612 0.499–0.724
SNP + Regimen 0.632 0.521–0.743

SNP + TMN 0.646 0.537–0.754
SNP + Age 0.648 0.538–0.757

SNP + Smoke 0.614 0.501–0.727
SNP + Gender 0.617 0.505–0.729

SNP + Regimen + TMN + Age + Smoke + Gender 0.681 0.577–0.785
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Figure 6. (A) The performance of the platinum–based chemotherapy response models established
by SNPs combined with different clinical factors in the validation cohort. (B) The performance of
the platinum–based chemotherapy response models established by SNPs combined with different
clinical factors in the validation cohort of adenocarcinoma samples. (C) The performance of the
platinum–based chemotherapy response models established by SNPs combined with different clinical
factors in the validation cohort of squamous carcinoma samples.
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After selecting SNPs to build the model and verify it, our model finally adopted PRS
and included the four SNPs with p < 10−4 as well as the two clinical factors, pathology and
chemotherapy regimen. By combining the discovery and validation cohorts to build this
prediction model, the model had a sensitivity of 0.705, a specificity of 0.670, and an accuracy
of 0.689, with an AUC of 0.726. Figure 7 shows the ROC of the model.
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4. Discussion

In our study, four SNPs were identified that influence the response to platinum–based
chemotherapy in NSCLC: rs7463048, rs17176196, rs527646, and rs11134542. rs527646 is
an intron mutation of Opioid-binding Protein/Cell-adhesion Molecule-Like (OPCML), and
rs11134542 is an intron mutation of SLIT3. The four SNPs were included in the model along
with two clinical factors, pathology and chemotherapy regimen, modeled with PRS, and
the AUC of the NSCLC platinum drugs response prediction model was 0.726.

OPCML is a potent tumor suppressor exposed on the cell surface, to which it is
anchored by a glycosylphosphatidylinositol (GPI) group. OPCML functions as a tumor
suppressor and is silenced in over 80% of ovarian cancers by loss of heterozygosity and by
epigenetic mechanisms. In addition to ovarian cancer, OPCML is also hypermethylated
in other solid tumors such as cervical cancer, lung, brain, live, bladder, prostate cancer,
colorectal and gastric cancer, and lymphoma. OPCML exerts its tumor suppressor effect
by inhibiting several cancer hallmark phenotypes in vitro, and abrogating tumorigenesis
in vivo, by downregulating/inactivating a specific spectrum of Receptor Tyrosine Kinases
(RTKs), including EphA2, FGFR1, FGFR3, HER2, HER4, and AXL [16–23].

SLIT3 is also associated with tumor proliferation, migration, and invasion. The
Slit/Robo signaling pathway is reportedly involved in breast cancer development and
metastasis. Overexpression of Slit/Robo induces its tumor suppressive effects possibly by
altering β-catenin/E-cadherin-mediated cell-cell adhesion in breast cancer cells [24,25].

Our study suggests that, when discussing complex phenotypes with many influencing
factors, the contribution of a single SNP is limited, and the predictive effect could be better
if multiple SNPs with higher contributions were included in the model [26]. Through
high-throughput screening, more than one SNP was associated with the efficacy of NSCLC
platinum chemotherapy. In this study, the most significant SNP has a small impact on the
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efficacy of NSCLC platinum chemotherapy, with an OR value of less than 2.5. However,
a better predictive effect can be achieved by including multiple relatively significant SNPs
into the model at the same time.

We also suggest that PRS is better than other algorithms at building predictive models.
PRS is the mainstream method to discuss the influence of genetic factors on phenotypes
in recent years, and has become the standard to quantify the genetic role in disease risk
prediction, such as the prediction of the risk of inflammatory bowel disease (IBD), thyroid
cancer, lung cancer, fatal prostate cancer, colorectal cancer, and type 2 diabetes [27–32].
PRS can be used to predict a variety of cancer susceptibilities, but its role in the cancer
field may not be limited to cancer risk. Our results show that PRS can be used not only
to quantify the prediction of disease risk but also to predict drug efficacy, with superior
results to traditional data mining methods. This provides a new idea for the selection of
modeling methods for evaluating drug efficacy.

Our team has been focused on the pharmacogenomics of platinum responses for over
a decade. A number of genes and mutations were observed that affect the efficacy of
platinums. For example, our study found that rs2280496 and rs189178649 in the ADCY1
gene were associated with the sensitivity of platinum–based chemotherapy in NSCLC
patients [33]. It was also found that the eIF3A R803K somatic mutation has the potential to
predict chemotherapy resistance in SCLC [34]. These studies looked at the effect of muta-
tions in a single gene on the response to platinum. As mentioned above, in order to further
understand the influence of genetic factors on the response to platinum–based chemother-
apy, we established a prediction model for NSCLC platinum–based chemotherapy efficacy
based on the candidate gene method [8]. In this study, a large part of the content is to
compare the new model with the prior model. The specificity of the model has been greatly
improved. In addition, there are thirteen SNPs selected for modeling by the candidate
gene method, while only four SNPs are included in the new model, indicating that the
SNPs included in the new model are more representative. The genotypes of rs7463048,
rs17176196, rs527646, and rs11134542 in patients with NSCLC can predict the efficacy of
platinum–based drugs and thus guide clinical use.

When discussing clinical factors, we suggest that most of the clinical factors had no
significant effect on the model’s performance (disease stage, age, gender, smoking history),
and the improvement of the model’s performance when only considering pathology and
chemotherapy regimen was similar to that when considering all clinical factors.

Therefore, SNPs were selected for the first time by the GWAS method to build a pre-
dictive model for platinum drug efficacy in NSCLC, modelled by the PRS method, and
two clinical factors with significant effects on phenotype were incorporated into the model,
ultimately perfecting the previous predictive model for platinum drug efficacy in NSCLC.

Many studies have attempted to integrate genetic factors with clinical characteristics
to develop models for predicting responses to drug therapies. Most of these models have an
AUC above 0.7. Meenal Gupta et al. identified a predictive model for response to atypical
antipsychotic monotherapy treatment in south Indian schizophrenia patients, their model
had an AUC of 0.733 [35]. Kimi Drobin et al. found circulating proteins and a SNP variant
of VEGFA predict radiosensitivity in breast cancer (AUC = 0.76) and head-and-neck cancer
(AUC = 0.89) [36]. In contrast to other studies, the main shortcoming of our model is that
the AUC should be further improved. Subsequently, the sample size needs to be expanded
to find SNPs with greater contributions to the phenotype for modeling.

In conclusion, by GWAS, we identified four genetic susceptibility SNPs and two clinical
factors affecting platinum–based chemosensitivity in NSCLC, and constructed a new
predictive model.
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