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Abstract: Limitations of pharmaceutical drugs and biologics for chronic diseases (e.g., medication
non-adherence, adverse effects, toxicity, or inadequate efficacy) can be mitigated by mobile medical
apps, known as digital therapeutics (DTx). Authorization of adjunct DTx by the US Food and
Drug Administration and draft guidelines on “prescription drug use-related software” illustrate
opportunities to create drug + digital combination therapies, ultimately leading towards drug–device
combination products (DTx has a status of medical devices). Digital interventions (mobile, web-
based, virtual reality, and video game applications) demonstrate clinically meaningful benefits for
people living with Alzheimer’s disease, dementia, rheumatoid arthritis, cancer, chronic pain, epilepsy,
depression, and anxiety. In the respective animal disease models, preclinical studies on environmental
enrichment and other non-pharmacological modalities (physical activity, social interactions, learning,
and music) as surrogates for DTx “active ingredients” also show improved outcomes. In this narrative
review, we discuss how drug + digital combination therapies can impact translational research, drug
discovery and development, generic drug repurposing, and gene therapies. Market-driven incentives
to create drug–device combination products are illustrated by Humira® (adalimumab) facing a
“patent-cliff” competition with cheaper and more effective biosimilars seamlessly integrated with
DTx. In conclusion, pharma and biotech companies, patients, and healthcare professionals will
benefit from accelerating integration of digital interventions with pharmacotherapies.

Keywords: digital health; mHealth; smartphone app; self-management; self-efficacy; analgesic drugs;
anti-cancer drugs; antidepressant drugs; antiseizure medication; anxiolytic drugs

1. Introduction

A high prevalence of chronic diseases has challenged healthcare systems and public
health [1]. The most effective way to reduce the impact of chronic medical conditions is
to integrate disease management and prevention with pharmacological and digital health
innovations [2]. Clinical benefits of pharmaceutical drugs and biologics are confronted
by such limitations as drug-resistance, medication non-adherence, adverse effects, afford-
ability, accessibility, and inadequate efficacy. Drug-related morbidities and mortality also
contribute to increased healthcare spending [3]. Clinical benefits of digital health technolo-
gies are balanced by issues related to cybersecurity, privacy, engagement and attrition rates,
the reimbursement process, evolving regulatory process, and rapid advances in technology
that can outpace their implementation into health care. The pharmaceutical industry has
embraced digital transformation, further accelerated by artificial intelligence (AI) [4,5].

DTx are mobile medical apps that have received the US Food and Drug Administra-
tion (FDA), or other regulatory agency, authorization for treating, or preventing, specific
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medical conditions through a “software as a medical device” (SaMD) regulatory path-
way [5–9]. Since DTx are medical devices, their integration with drugs and biologics can
follow the drug–device combination product guidelines. The FDA Office of Combination
Products defines a combination product as “A product comprised of two or more regulated
components, i.e., drug/device, biologic/device, drug/biologic, or drug/device/biologic,
that are physically, chemically, or otherwise combined or mixed and produced as a single
entity” [10]. To support development efforts towards marketing of drug + digital combina-
tion therapies, the FDA draft guideline, “Regulatory Considerations for Prescription Drug
Use-Related Software”, describes regulatory solutions for integrating a mobile app with
prescription drugs and biologics [11].

Combining clinical benefits of drug- and digital-based therapies can outweigh their
limitations, while simultaneously offering personalized therapies for people living with
chronic diseases [12–15]. For example, the FDA authorization of reSET-O, an adjunct DTx
in combination with buprenorphine for opioid use disorder, illustrates one strategy to
create drug + digital combination therapies [16,17]. The use of reSET-O in combination
with buprenorphine significantly increased opioid abstinence and treatment retention [18].
Digital interventions improve opioid-based analgesia [19] and medication adherence [20,21].
Digital platforms delivering disease self-management and remote patient monitoring (e.g.,
Huma®, BlueStar®, Propeller®, HelloBetter®) offer means to improve pharmacotherapy
outcomes via drug + digital combination therapies. Diverse combinations of digital health
technologies and pharmacological treatments are illustrated in Figure 1.
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Figure 1. Examples of drug + digital combination therapies for the treatment of chronic diseases.
The reSET-O mobile medical app for opioid use disorder (OUD) was authorized by the FDA in
combination with buprenorphine. The CimplyMe companion app was designed for rheumatoid
arthritis or Crohn’s disease patients who take an anti-TNFα biologic, certolizumab pegol. DTx
delivering epilepsy self-management and music-based intervention was proposed as a drug–device
combination product together with an antiseizure drug (levetiracetam is shown as an example) [13].

Creating drug + digital combination products was proposed to improve control of
seizures in people with refractory epilepsy, and to increase the value proposition of branded
and generic drugs by expanding their intellectual property protection [13]. The design of
a DTx prototype for epilepsy to be combined with an antiseizure medication (ASM) as a
drug–device combination product illustrated a means to decrease dosing of a pharmaceuti-
cal drug without compromising clinical efficacy [22]. Sverdlov and colleagues discussed
how drug + digital combination therapies can increase clinical efficacy of pharmacother-
apies [12]. Development of drug + digital combination therapies can be accomplished
through a two-step process: (1) development of DTx using the “software as a medical de-
vice” regulatory pathways (e.g., 510k clearance, de novo, premarket authorization (PMA)),
and (2) development of DTx-Rx combination product, whereas DTx is a medical device.

For preclinical studies, our group described an approach to evaluate DTx “active
ingredients” (audiogenic stimulation, cognitive stimulation, physical activities) in com-
bination with pharmaceutical drugs [23], and proposed a preclinical strategy to evaluate
drug + digital combination therapies in animal models of human diseases, using environ-
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mental enrichment (EE) as a surrogate for digital interventions (Table 3 in [23]). While
research studies show clinical and cost-effectiveness benefits of digital interventions for
diverse chronic conditions, to the best of our knowledge, there are no published studies
on integrating pharmacological and digital interventions via drug + digital combination
products [14,19,24,25].

In this narrative review, we summarize preclinical studies on EE and DTx “active
ingredients”, as well as clinical studies on digital interventions across selected examples
of chronic diseases, namely Alzheimer’s disease, dementia, rheumatoid arthritis, cancer,
chronic pain, depression and anxiety, and epilepsy. A rationale for randomly choosing
these diverse neurological, neurodegenerative, mental, inflammatory, and autoimune
conditions was to review evidence supporting development of drug + digital combination
therapies as a universal strategy for treating chronic disorders. A keyword-based search in
PubMed, Google Scholar, and Embase databases was performed by three authors to identify
systematic reviews, meta-analyses, randomized controlled trials, and preclinical studies on
DTx-compatible interventions and EE. Each section of this review is organized by a specific
chronic disease and provides examples of clinical effects of digital interventions, followed
by preclinical evidence of EE and individual non-pharmacological modalities as a surrogate
for DTx “active ingredients”. We also discuss the impact of drug + digital combination
therapies on the innovation of generic drugs and biosilimars, drug repurposing, and
gene therapies.

The main objective of this review is to encourage translational research on drug–
device combination products. Herein, we summarize preclinical and clinical studies that
bridge pharmacological and digital interventions. The focus on preclinical studies rele-
vant to testing DTx “active ingredients” highlights novel approaches to improve drug-
discovery outcomes when evaluating investigational new drug (IND) candidates. The
focus on reviewing clinical studies of digital health technologies and DTx-compatible
non-pharmacological interventions for chronic diseases highlights new opportunities for
pharma/biotech companies and patients to increase clinically meaningful benefits via drug
+ digital combination therapies.

2. Alzheimer’s Disease and Dementia

Alzheimer’s disease (AD) is a progressive neurodegenerative disease that can lead
to dementia. As AD and dementia progress, patients and caregivers are burdened with
an increased demand for managing and providing care [26]. The slow progress towards
effective pharmacological treatments for AD was recently disrupted by the FDA approvals
of monoclonal antibodies (mAbs) such as aducanumab and lecanemab intended to reduce
amyloid-β in the brain [27–29]. Another biologic, donanemab, is also expected to receive
regulatory approval [30–33]. These new biologics add to a repertoire of pharmacological
agents for AD and dementia, such as cholinesterase inhibitors (donepezil, rivastigmine,
and galantamine) and NMDA antagonists (memantine). More drug candidates against AD
are currently undergoing clinical trials [34].

From wearables that monitor physical and mental health to video games that improve
cognitive functions, digital health technologies can improve therapy outcomes for AD and
dementia patients [9,35–39]. One example of a mobile app for dementia patients is iWander
which delivers audible prompts and improves patient–caregiver communications [40].
Another example is Backup Memory, a mobile app developed by Samsung for AD patients
where patients go through daily reminders of past events to help slow down the progression
of their disease. The WhatMatters app provides personalized support for dementia patients
through caregivers [41]. Recommended mobile apps for people with AD and dementia
were reviewed elsewhere [42–44].

Research studies on digital interventions such as virtual reality (VR) and mobile
apps for people with AD and dementia support patient care benefits [45–49]. Systematic
review and meta-analysis (SR/MA) studies suggest that VR interventions can improve
cognitive functions and ability to perform daily activities in AD patients with mild cognitive
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impairment (MCI) [45,49]. In addition to therapeutic effects [50], digital interventions can
be useful for diagnosis, monitoring AD prognosis [47], improving communications [46],
and preventing loneliness and social isolation [51]. Promises and challenges of digital health
technologies for older people have been recently reviewed [38]. Since non-pharmacologic
interventions, such as physical exercises and music, offer clinical benefits for AD and
dementia patients [52–57], a combination of these modalities with pharmacotherapies
can further improve patient care. Benefits of integrating digital and pharmacological
interventions are summarized in Figure 2.
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Figure 2. Examples of clinical and patient care benefits delivered by digital health technologies
that can be combined with specific pharmacological agents targeting cognitive functions in AD and
dementia patients. HCPs, healthcare professionals; NMDA N-methyl D-aspartate.

As illustrated in Figure 3, integration of digital and pharmacological therapies for AD
patients can address some disadvantages of mAbs targeting amyloid-β protein, such as
requiring intravenous administration (IV) every 2–4 weeks, limited efficacy, and the devel-
opment of amyloid-related imaging abnormalities (ARIA) [29]. In between IV infusions,
AD patients taking these biologics would benefit from digital interventions delivering
non-pharmacological treatments, similar to those AD patients who received NMDA antag-
onists, acetylcholine esterase inhibitors, and internet-delivered multimodal treatments [58].
Daily digital interventions could include daily physical exercises, listening to music, and
cognitive stimulation activities.
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Animal studies in AD and dementia models showed that EE and physical activity
improved spatial and working memories, and reduced levels of amyloid-β and tau pro-
teins [59,60]. EE also improved cognitive functions in vascular dementia rats [61,62], and
had positive effects on the cognitive reserve [63]. Zhang and colleagues [64] discovered that
voluntary physical exercise ameliorated cognitive impairment in transgenic male APP/PS1
and wild-type mice. The running group had significantly shorter escape latency, better
discrimination in the new object recognition test, and lower amyloid plaque deposition
than sedentary AD mice. This finding is in accord with another study showing that both
physical activity and cognitive stimulation can restore spatial memory, recognition, and
motor deficits in the Tg4-42 AD mouse model [60]. Alzheimer’s rats that had both EE and
donepezil showed significant improvement in performance on the Morris Water Maze tests
compared to having either EE or donepezil alone, or neither [65].

Preclinical studies of the FDA-approved drugs for AD such as acetylcholinesterase
inhibitors and NMDA antagonists can reduce cognitive decline and levels of amyloid-β
protein in AD animal models [66]. Based on the effects of EE, testing drug-like compounds
in the context of physical exercise, cognitive stimulation, music, and social interactions
can further improve therapy outcomes, as compared to testing compounds under “stan-
dard” conditions. For example, EE and physical exercise increase neural plasticity, spatial
and working memory [59], improve cognitive flexibility [67], increase hippocampal neu-
rogenesis and expression of brain-derived neurotropic factor (BDNF) and nerve-growth
factor (NGF) [68], and even reverse cognitive decline [63]. As illustrated in Figure 4, such
EE-based preclinical studies may accelerate discovery and development of drug + digital
combination therapies comprising non-pharmacological interventions with drugs targeting
neurodegenerative pathways.
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3. Rheumatoid Arthritis

Rheumatoid arthritis (RA) is a chronic disease that causes painful joint swelling and
inflammation. Current pharmacological drugs used for arthritis include nonsteroidal
anti-inflammatory drugs (NSAIDs), corticosteroids, and disease modifying anti-rheumatic
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drugs (DMARDs) [69]. Two main objectives of the therapy are pain relief and slowing the
progression of joint damage [70]. NSAIDS are important for arthritis pain management [71],
while DMARDs are immunomodulators (e.g., methotrexate and biologics such as cer-
tolizumab and adalimumab). Biological DMARDs can differ in their effectiveness [72,73],
and can also increase the risk of serious infections [74].

Arthritis self-management programs improve therapy outcomes [75], and can be
transformed into digital interventions [76–81]. Mobile apps for people living with RA
(e.g., CareHand, LiveWith, The RAISE, RA Healthline, and ArthritisPower) differ in their
content and quality [82–85]. These apps aim to improve patient outcomes with a variety of
methods, such as tracking disease progression, providing patient education, encouraging
healthy habits like physical exercise, and promoting social interactions and better nutrition.
Users of the application LiveWith had higher scores on the patient self-efficacy of managing
symptoms (P-SEMS) scale [86]. Patients with higher P-SEMS scores also tended to have
lower levels of pain and increased levels of patient activation. Rodriguez and colleagues
conducted a trial with the CareHand app, which included personalized exercise regimens,
social functions, and patient education [80]. In their study, 53% of patients were also
receiving concurrent drug treatments. Their findings showed that the group using the
app + drug combination fared significantly better in their recovery compared to the group
provided only with an exercise program. Despite promising clinical studies, real-world
acceptance and adoption of digital interventions for RA is challenging [87,88].

Given that non-pharmacological interventions like physical exercise, quality sleep, op-
timized nutrition, social interactions, and patient education can improve patient outcomes,
the combination of these methods with NSAIDs or DMARDs could further compound
patient benefits [89,90]. Non-pharmacological management of pain, fatigue, inflamma-
tion, disability, and mental comorbidities is recommended for difficult-to-treat RA pa-
tients [89,91]. As an example of clinical benefits of combining pharmaceutical drugs with
non-pharmacological interventions, a recent SR/MA suggested that exercise therapy was a
better treatment option than NSAIDs and opioid analgesics for knee osteoarthritis pain [92].
As illustrated in Figure 5, integrating digital interventions with pharmacotherapies offers
personalized therapies that aim to improve disease prognosis, as compared to “drug-
alone” treatments.
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Improving drug efficacy in animal models of arthritis can be achieved by testing com-
pounds in the presence of EE (Figure 4). A number of preclinical studies in animal model
of arthritis evaluated the effects of physical exercise [93–96]. Arthritic mice treated with
exercise showed slower disease progression, thicker knee cartilage, and lower TNF-α levels
compared to a control group [94]. The benefits of physical exercise on joint pathophysiology
were reviewed by Derue and Ribero-da-Silva [93]. Running wheels, treadmills, or other
exercise-based interventions in animal models improved preserved bone structure, down-
regulation of inflammatory signaling, improvement in weight asymmetry, and reduced
pain compared to sedentary mice [93]. EE in the form of larger cages, running wheels,
toys, and other enrichments ameliorated inflammatory changes, reduced acute edema, and
increased expression of BDNF in the hippocampus among arthritic mice [97]. Preclinical
studies showing positive effects of EE in animal arthritis models support EE-enhanced
testing of new pharmacological compounds to improve the therapeutic window of potential
IND candidates.

4. Cancer

Cancer is a chronic disease characterized by abnormal cells dividing uncontrollably
and impacting healthy parts of the body. In addition to killing cancer cells, oncology
patients often need to navigate pain, changes in their daily habits, mental and physical
fatigue, and other symptoms related to both cancer and anti-cancer therapies. Current
treatments for cancer include chemotherapy, immunotherapy, surgery, radiation therapy,
hormone therapy, and cryoablation. For patients and healthcare professionals, the main
clinical challenges are treatment adherence, symptom monitoring, symptom management,
social support, and self-efficacy. Empowering oncology patients using digital technologies
has been recognized as a promising strategy to improve therapy outcomes [98–104].

An early example of digital interventions for oncology patients is Re-Mission, a video
game developed by Hope Labs that was shown to increase treatment adherence, cancer self-
efficacy, and knowledge of cancer among younger patients [105,106]. Another example is
an exercise-empowerment video game “Empower Stars”, which aimed to support children
with cancer undergoing chemotherapy [107]. For adult oncology patients, a “LivingWith®”
app delivers self-management interventions that reduced medical office visits [101]. Kaiku
Health is a digital patient monitoring platform that supports cancer care, where patients can
report symptoms, connect with their healthcare team, and receive self-care instructions to
help detect cancer signs, symptoms, and relapses. This technology was also used to collect
patient-reported outcomes during chemotherapy treatments [108–110]. It is noteworthy that
the use of a web-based app to monitor symptoms and initiate palliative care significantly
increased survival of lung cancer patients [111].

In a narrative review, Gussoni and colleagues summarized commercially available DTx
for oncology indications [112]. The majority of these mobile apps are focused on symptom
monitoring and management, and improving quality of life (QoL). Digital interventions can
improve psychological outcomes [113], adherence to chemotherapy [106,114], and cancer
pain management [115,116]. For example, Pain Guard app offers medication reminders,
patient education, and treatment with the use of soothing music [117]. Using this app was
associated with increased instances of pain remission, improved medication adherence,
and reduced breakthrough pain [117]. Similarly, VR-based applications can reduce pain,
fatigue, depression, and anxiety among cancer patients [118–120].

Mobile apps promoting physical activity can improve cancer-related fatigue, seden-
tary lifestyle, and psychosocial outcomes [121], also through personalized home exercise
programs [122,123]. As cancer mortality declines, digital interventions delivering phys-
ical exercise interventions for cancer survivors are of equal importance [124]. A mobile
app iCanFit was designed for cancer survivors to facilitate physical activity by tracking
goals, finding resources, and providing peer-support and health education [125]. After
2–3 months of using iCanFit, the treatment group showed a significant increase in QoL and
engagement in physical exercise [126]. Digitally delivered, personalized exercise programs,
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additionally supported by online health education, improved physical health among cancer
survivors [127].

As illustrated in Figure 6, combining digital interventions with chemotherapy and
immunotherapy agents is a rational strategy to improve cancer prognosis. For exam-
ple, integrating cancer-specific DTx with pembrolizumab (Keytruda®) or paclitaxel as a
drug–device combination product can offer more personalized treatments that maintain
anti-cancer effectiveness, reduce drug side effects and cancer pain, improve psychosocial
outcomes and health-related QoL, and support overall cancer care including communica-
tions with HCPs.
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Animal models of cancer provide an opportunity to accelerate preclinical development
of drug + digital combination therapies by testing anti-cancer drug candidates in the
presence of DTx “active ingredients”. Studies show that EE in the form of physical exercise,
social interactions, and cognitive and sensory stimulation can enhance anti-tumor immunity,
increase lifespan, reduce tumor volume and cancer progression, and decrease cancer pain
and chemotherapy-related toxicity [128–132]. The effects of physical exercise on cancer
growth and treatment efficacy are generally positive [133,134]. Physical exercise was
shown to enhance anti-PD-1 immunotherapies [135,136] and the efficacy of checkpoint
inhibitors [137], and reduce doxorubicin-mediated cardiotoxicity in mice [138]. Stretching
exercises for 10 min every day for 4 weeks in breast cancer mice models significantly
reduced tumor volume and growth, as compared to the control group [139]. Kutz and
colleagues discussed an exercise-oncology strategy to improve cancer treatments [136].

The promise of EE to improve cancer therapies is illustrated by an increased lifespan
in colon cancer mouse model [129]. EE in the form of cages with running wheels, toys, and
social interactions slowed tumor size and growth in pancreatic cancer mice [132]. Even
simpler EE conditions such as providing an ‘igloo’ in the mice’s cage increased the NK
cytotoxicity against Yac-1 lymphoma cells and decrease the number of tumors [131]. EE
intervention in lung cancer mice reduced metastasis while increasing the number of lung-
infiltrating NK cells and T and B lymphocytes [140]. EE can also include sensory stimulation,
e.g., exposure of rats with bone cancer to music for two weeks showed lower tumor
volumes and pain scores [128]. Music was also shown to mitigate a stress-induced increase
in metastatic nodules in lungs of rats injected with carcinosarcoma cells [141]. These
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preclinical studies suggest that testing novel anti-cancer compounds in the presence of EE
can increase their efficacy and decrease toxicity, thus widening their therapeutic window.

5. Chronic Pain

Chronic pain is defined as “pain that persists or recurs for more than 3 months” [142].
It is estimated that 25–30% of the human population is affected by pain [143,144], while
inadequate pain treatment can lead to disability, mental health comorbidities, substance
use disorder, and public health crisis [145–147]. NSAIDs, opioids, muscle relaxants, and
other analgesic drugs are common pharmacological treatments for chronic pain. However,
these medications provide short term pain relief, while causing adverse effects, gastroin-
testinal and cardiovascular toxicities, tolerance, and addiction. Non-pharmacological
treatments for pain include physical exercise, psychological therapies, mindfulness and
meditation, music, education, self-management, digital interventions, and other multi-
modal treatments [148–154]. A multimodal approach that integrates pharmacotherapy and
non-pharmacological interventions enables more efficient and personalized pain manage-
ment [14,24,155].

Since pioneering efforts to develop a VR-based technology for burn pain [156–158],
DTx, such as RelieVRx, Kaia Health, and Hello Better Chronic Pain have expanded pain
indications to other chronic conditions [24,159–161]. Digital therapeutic programs such as
RelieVRx and Hello Better Chronic Pain are multi-week digital interventions that deliver
patient education, mindfulness- and distraction-based practices, immersive environments,
relaxation, breathing and physical exercises. RelieVRx received FDA authorization to
market this prescription adjunt DTx treatment to adults with moderate to severe chronic
low back pain, while Hello Better Chronic Pain is CE-certified as a medical device and
DiGA-approved prescription app available in Germany. Kaia Health mobile technology
can analyze body movements and recommend personalized physical therapy, as well
as offering patient education, relaxation techniques, and consultations with coaches and
medical providers. The Kaia Health app was shown to reduce non-specific lower back
pain [159,162] and improve sleep in back pain patients [163]. This DTx is indicated for
musculoskeletal pain, and is available in the US and Europe.

Clinical studies confirm the effectiveness of VR and mobile apps for acute, periopera-
tive, and chronic pain [9,154,164–170]. These technologies deliver such “active ingredients”
as physical exercises, psychotherapies, education, relaxation, self-management, and em-
powerment, while offering the convenience of at-home use [160]. Early post-marketing
studies suggest an overall safety profile with a very low rate of adverse effects [171]. Chal-
lenges in developing DTx for chronic pain include meeting such primary care needs as
patient–provider communications and counseling [172].

The benefits of integrating digital interventions with analgesic drugs are illustrated in
Figure 7. Of particular importance for patients taking opioids are DTx that can lead to drug
tapering [173–175]. Since patient education is gaining recognition as an “active ingredient”
for pain relief and management, digital technologies are being explored to scale up such
interventions [160,176,177]. Given the analgesic properties of music [149,150,178–182], this
non-pharmacological modality is underutilized as an adjunct digital intervention [183,184].
The compatibility of DTx with other pharmacological and non-pharmacological treatments
as drug + digital combination therapies for chronic pain was highlighted in Figures 6 and 7
in the perspective article [24].

For preclinical studies on drug + digital combination therapies for pain, our group
proposed the use of EE as a surrogate for testing DTx “active ingredients” in combination
with analgesic drugs [23]. In the carrageenan model of inflammatory pain in mice, the
sensory stimulation (3-week exposure to music) significantly enhanced ibuprofen-based
analgesia [23]. In the music-treated mice, cannabidiol and galanin-based NAX-5055 sig-
nificantly reduced paw edema, suggesting positive interactions between the stimuli and
drug treatments [23]. Music-induced analgesic effects were reported in a rat model of
bone cancer pain [128], while other studies with mice produced mixed results [185–187].
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Analgesic activities of physical exercises in rodents were reviewed elsewhere [188]. Another
non-pharmacological modality tested in animal pain models is the exposure to specific
light [189–191]. A light-emitting diode (LED) producing green light elicited antinocicep-
tive effects in both neuropathic pain and postsurgical pain models in rats [189,191]. The
light-induced analgesia was mediated by a release of endogenous opioid neuropeptides
and reduced neuroinflammation [191,192]. The authors emphasized translational aspects
of their findings to improve pain relief and reduce opioid use [191].
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The effects of EE in animal pain models are well documented [193–198], including a
wide range of nociception-related responses like reducing levels of inflammatory cytokines
(IL-1β) and enhancing production of anti-inflammatory cytokines (IL-10), endogenous
opioids, and BDNF [193]. Positive effects of EE on neuropathic pain were observed in a
mouse model of chronic constriction injury (CCI) [194]. EE-mediated analgesic effects, re-
duction of depression-like phenotype, and memory deficits in the CCI mice were explained
by involvement of neuronal PAS domain 4 protein and lowered levels of TNFα in the
hippocampus [194]. EE also decreased stress-induced visceral pain and anxiety/depression-
like phenotypes, while upregulating expression of IL-10 and downregulating expression of
TNFα and IL-1β in specific parts of the mouse brain [199].

Pleiotropic effects of EE on pain-related physiology and behavior can modulate the
activity of analgesic compounds. A combination of EE and ketamine was more effective
than ketamine alone in reducing nociception in spinal cord injury model in rats [195].
Green LED light exposure enhanced the analgesic activities of morphine and ibuprofen in
postsurgical pain model in rats [191]. Voluntary wheel running lowered doses of analgesic
drugs needed to alleviate complete Freund’s adjuvant (CFA)-induced pain in mice [200].
The use of a running wheel to screen analgesic compounds was proposed [201]. The
aforementioned studies suggest that EE containing running wheels, green light-emitting
diodes, and music can improve the efficacy of drug candidates being evaluated for the
treatment of pain.

6. Depression and Anxiety

Depression and anxiety are common mental health conditions that can impact an
individual’s health-related QoL and can lead to disability and suicide [202,203]. Both
disorders can affect mood, appetite, ability to engage socially, enjoyment of life, and
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the ability to take care of one’s self or their work. Depression and anxiety are treated
with antidepressant and anxiolytic medications, as well as psychotherapies. Challenges
with drug-based treatments are onset of action, non-adherence, drug-resistance, adverse
effects, and abuse [204–207]. Challenges with psychotherapies, such as cognitive behavioral
therapies (CBT), are accessibility, affordability, and effectiveness [208–210].

Digital health technologies are helpful for monitoring and treatment of anxiety and
depression [211,212]. An early success in reducing depressive symptoms with a mobile
app SuperBetter [213] and a computer game SPARX [214] opened doors to many mental
health mobile apps [215,216]. Examples of DTx for depression include Deprexis® [217–219],
SparkRx® [220], HelloBetter [221,222], and Daylight for anxiety [223]. Some mental well-
being apps were shown to reduce depressive and anxiety symptoms in RCTs, for example
Headspace [224], MoodHacker [225], or MoodGym [226,227]. In addition to mobile apps,
VR-based apps are also effective in treating depressive and anxiety symptoms [228,229].
Most digital interventions for mental disorders employ such “active ingredients” as CBT,
patient education, physical exercises, self-management, mindfulness practices, encourag-
ing social interactions, and promoting healthy lifestyles [230–234]. Personalizing digital
therapies for depression and anxiety is important to optimize their effectiveness [235,236].
Adjunct digital interventions for drug-based treatment of refractory depression appeared
more effective, as compared to drug-alone treatment, illustrating the benefits of drug +
digital combination therapies [237,238]. Opportunities to combine antidepressants with
adjunct digital therapies were illustrated using software delivering non-pharmacological
modalities shown to reduce depressive symptoms [239–241].

Preclinical testing of drug candidates and DTx “active ingredients” in EE-enhanced
animal models for depression and anxiety can accelerate development of drug + digital
combination therapies [242–244]. The need to innovate preclinical psychopharmacology
through the “use of disease-relevant experimental perturbations” [245] was addressed
by Branchi and colleagues who applied a drug-EE model for testing the efficacy of flu-
oxetine under either enrichment or stressful conditions [242,244]. Mice were exposed to
interchanged stressful and EE living conditions, followed by 21-day treatments with either
fluoxetine/EE or fluoxetine/stress [242]. Mice treated with fluoxetine/EE had significantly
lower depressive symptoms, higher hippocampal and hypothalamic BDNF levels, and
lower levels of cortisol compared to the “standard-cage” mice [242]. While fluoxetine and
EE can reduce depression-like behaviors, they elicit distinct gene expression patterns in
the amygdala, suggesting potential benefits of the fluoxetine/EE combination, instead of
mono-therapies [246]. Another research group showed that EE reduced onset of action of a
serotonin-norepinephrine reuptake inhibitor (SNRI) drug venlafaxine in mice, and these
effects could be accounted for by parvalbumin interneurons in the hippocampus [247].

Animal studies show positive effects of EE-based treatments for depression and anxi-
ety [248–252]. EE intervention in depression-induced male rat pups through administration
of clomipramine reversed depression-like phenotype, depression-induced dentate gyrus
hypotrophy, and basolateral amygdala hypertrophy [253]. Antidepressant and anti-anxiety
effects of music were shown in chronic unpredictable mild stress in mice [252] and in a
maternal separation rat model of early-life stress [254]. Anxiolytic effects of music were
observed in knock-in transgenic mice (BDNFMet/Met) that exhibited fluoxetine-resistant
anxiety symptoms [255]. Another DTx “active ingredient”, namely physical exercise, when
tested in mice showed similar antidepressant and neuroregenerative effects as fluoxe-
tine [256]. Physical exercise showed better outcomes than fluoxetine when comparing
depressive behaviors and promoting hippocampal myelination [257]. From translational
research and clinical perspectives, drug + digital combination therapies may offer improved
effectiveness of psychopharmacology (Figure 8).
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7. Epilepsy

Epilepsy is a neurological disorder characterized by patients having spontaneous
epileptic seizures [258]. Epilepsy impacts cognitive and psychological functions, with
higher prevalence of anxiety, depression, and migraine as comorbidities [259]. People
with epilepsy experience higher incidence of body injuries, disability, diminished quality
of life (QoL), and higher mortality rates [260]. Treatment options include antiseizure
medications (ASMs) [261] and neuromodulation devices [262], while brain surgery remains
an option for refractory epilepsy [263]. The multiple challenges with pharmacological
management of epilepsy are drug resistance [264], drug adverse effects [265], medication
non-adherence [266], polypharmacy [267], and drug shortages [268]. Notably, only 50% of
newly diagnosed epilepsy patients become seizure free for one year, or longer, following
their initial ASM treatment [269]. Given apparent limitations of ASMs, a rationale for
integrating epilepsy self-management and pharmacological treatments via drug + digital
combination therapies was proposed [13].

Mobile apps for people with epilepsy deliver self-management tools, including a
seizure diary, medication reminders, stress and sleep management, patient education,
and communication with a healthcare team [270–272]. An early example of online self-
management programs was the WebEase platform which focused on medication, sleep,
and stress management [273–276]. A 12-week RCT of a mobile app delivering medication
reminders, seizure diary, healthy habits checklist (sleep, exercise, and stress), and health
education showed increased medication adherence and self-efficacy [277]. EpApp is an
epilepsy self-management app intended for adolescents, and it was shown to increase
epilepsy knowledge and medication management; however, there was no significant
difference in seizure burden after 4-week use [278]. In one RCT, the 6-month use of a
self-management mobile app resulted in significant reduction of seizure frequency and
improved self-management [279]. A web-based prototype DTx for the treatment of epilepsy
was designed based on behavioral and music-based interventions that were previously
shown to reduce seizures [22]. The “active ingredients” in this digital intervention included
management of sleep, stress, and emotions; medication adherence; patient education; self-
esteem; avoiding seizure triggers; and listening to specific music compositions [280–285].

Preclinical studies showed that EE and individual non-pharmacological interventions
can reduce epileptic seizures in animal models of epilepsy [286–289]. EE intervention
yielded disease-modifying (antiepileptogenic) effects by delaying an onset of seizures
in a rat model of absence epilepsy [288]. These EE effects were transgenerational, since
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the next generation of the animals had reduced seizure frequency, as compared to the
control offspring group [288]. Delayed kindling epileptogenesis via EE was observed in
another rat model of epilepsy [290]. In post-status epilepticus TLE rat model of epilepsy,
EE intervention was able to restore neurogenesis and cognitive functions and decrease the
duration of spontaneous EEG seizures [291]. In the same TLE model of epilepsy, another
group showed that EE reduced seizures and depressive symptoms [292]. In addition to
preclinical findings on reducing epileptic seizures, EE was able to restore epilepsy-induced
sleep and cognitive and behavioral impairments [293–295].

A promising DTx “active ingredient” for epilepsy is specific music [280,281,296–301],
and the clinical effects were also reproduced in preclinical studies [23,302,303]. Xu and
colleagues showed that exposure of TLE mice to a specific music composition enhanced
the anti-seizure activity of sub-effective doses of valproic acid or levetiracetam [303]. In
the corneal kindling mouse model of epilepsy, the same music composition reduced
cumulative seizure burden and mortality rates in the music-treated group [23]. In the
spontaneous absence epilepsy rat model, music exposure reduced both seizure frequency
and spontaneous high-rhythmic spike discharges [302]. Another possible DTx “active
ingredient” for epilepsy management is physical activity [304–307]. Preclinical studies
show that physical exercise can reduce epileptic seizures [308–310] and enhance the effi-
cacy of ASMs, such as carbamazepine and valproate [311,312]. Translational aspects of
physical exercises in epilepsy suggest such benefits as antiepileptogenesis and neuroprotec-
tion [313,314]. As illustrated in Figure 9, the combination of ASMs with digitally delivered
non-pharmacological modalities can offer better seizure control, as compared to drug-alone
interventions.
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8. Other Indications and Applications

Drug + digital combination therapies can benefit people living with cardiometabolic
disorders. Digital therapies for the treatment of diabetes type 2 were pioneered with the
development of DTx BlueStar® [5,315,316], and showed efficacy in reducing HbA1c [317,318].
Diverse diabetes digital health technologies include such DTx as glucose tracking/monitoring
systems apps, self-management, and lifestyle support apps (e.g., d-Nav, Glooko, mySugr,
Dexcom, and Dario) [319,320]. New opportunities exist to combine DTx with automated
close-loop insulin delivery systems [321]. DTx for hypertension and obesity can be inte-
grated with beta blockers to improve blood pressure management, or with semaglutide
(Ozempic®, Wegovy®) for weight loss, respectively [322–324].



J. Clin. Med. 2024, 13, 403 14 of 32

Drug-based management of chronic infections (e.g., dolutegravir for HIV/AIDS, or
sofosbuvir for hepatitis C) can be integrated with DTx that improve therapy outcomes
through medication tracking and diverse self-management interventions [325–327]. No-
tably, positive effects of EE and physical exercise on the innate and adaptive immune
functions and viral infections in rodents were reported [328–330], opening translational
opportunities to develop combination therapies for chronic infections [331].

Gene therapy is another example where combinations with DTx can improve ther-
apy outcomes. Since gene therapies aim to improve symptoms after only one injection,
developing DTx as an adjunct digital intervention or/and “biologic + digital” combina-
tion product may support a patient’s journey before and after the correction of a mutated
gene. In the case of the treatments for amyotrophic lateral sclerosis with tofersen [332]
and spinal muscular atrophy with onasemnogege abeparvovec [333], these patients could
use digital technologies for monitoring therapy outcomes and delivering neurorehabil-
itation exercises [334–337]. “One-time treatment” gene therapies for indications where
self-management and self-efficacy can improve therapy outcomes can be developed to-
gether with DTx that provide clinically meaningful benefits beyond the injection of DNA
vectors [338].

Due to software flexibility in delivering just-in-time adaptive interventions through
DTx, drug + digital combination therapies can redefine precision medicine by providing
digital therapy content tailored to a patient’s needs and disease progression [14]. Given
advances in biomarker research for metabolic or neurodegenerative conditions, drug +
digital combination therapy can start with digital-first care [339,340]. This approach is
applicable for the treatment of osteoarthritis [341,342]. For rheumatoid arthritis and other
chronic inflammatory conditions associated with flares [343], drug + digital combination
therapies offer the flexibility of tapering DMARDs between longer periods of remission.
For people living with chronic pain or depression, personalized drug + digital combination
therapies can adjust drug-based management of symptoms after remission. Figure 10
illustrates diverse scenarios for patient-centered care in which pharmacotherapies are
adjusted based on a disease activity status and prognosis.
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Another application of drug + digital combination therapies and products is drug
repurposing, which is recognized as an innovative way to expand indications for existing
drugs [344–346]. Computational, molecular, and cellular screening approaches aim to
match drug phenotypes with a new therapeutic target. Once a new indication is identified,
preclinical validation of a repurposed drug in a new target disease animal model can include
both the “standard” testing conditions, as well as the EE conditions that include disease-
relevant surrogate ingredients for DTx (Figure 11). Similarly, adjunct digital intervention
during clinical validation of a repurposed drug may offer better primary endpoint out-
comes, since such combination therapy can include new disease-specific self-management
digital content. Example applications for chronic conditions include repurposing anti-
inflammatory drugs for cardiovascular [347], psychiatric [348], neurological [349], and
autoimmune disorders [350].
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can further improve patient outcomes.

9. “Patent Cliff” as an Incentive for Developing Drug + Digital Combination Therapies

Opportunities to develop drug + digital combination therapies can be illustrated by
adalimumab (Humira®) indicated for rheumatoid arthritis and other autoimmune and
inflammatory disorders. While facing a “patent cliff” for this commercially successful
biologic and competition from several FDA-approved biosimilars, AbbVie engaged with
diverse strategies to extend the US market exclusivity beyond 2023 [351,352]. However,
Humira-based treatments have not been innovated by developing drug–device combi-
nation products comprising adalimumab and DTx that could provide additional clinical
benefits [79–81]. Such a drug + digital combination product approach could offer copyright-
protected therapy that could improve both Humira’s market dominance and patient out-
comes. Instead, AbbVie continues to offer a mobile app “Humira Complete”, delivering
medication reminder, injection instructions, symptom trackers, creating personal goals, and
connecting with a Nurse Ambassador, among other features.

Transforming the “Humira Complete” app into DTx would require (1) expansion
of disease self-management and empowerment interventions and (2) clinical validation
of its efficacy in RCT. The FDA’s draft guidelines illustrate innovative opportunities for
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marketing adalimumab plus a mobile app for which “use of the prescription drug use-
related software with the product results in a meaningful improvement in a clinical outcome
as compared to use of the product without the prescription drug use-related software” [11].
Therefore, after ending the market exclusivity, brand-name Humira® may compete with
cheaper and more effective biosimilars seamlessly integrated with DTx that would deliver
clinically meaningful benefits.

As shown in Figure 12, these opportunities to advance drug + digital combination
products apply to many blockbuster drugs that face a “patent cliff”. Pharma and biotech
companies that own patent-protected market exclusivity for brand-name drugs and bio-
logics can face new challenges when more effective combination therapies with respective
generics enter patient-driven competition. We hypothesize that anticipation of marketing
“more innovative” drug–device combination products from generic drug competitors will
motivate development of drug + digital combination therapies.
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10. Limitations of This Review

While this review is focused on translational aspects of drug + digital combination ther-
apies, it has several limitations, including (1) a lack of reviewing research on mechanisms
of action (MOA) of digital and EE interventions, (2) restricting overview of existing studies
to only several chronic diseases, (3) not discussing regulatory aspects, patient privacy
and security protections, interoperability, standards, and cost-effectiveness considerations
of DTx, and (4) literature selection bias of a narrative review. Pleiotropic MOA of EE
interventions was reviewed elsewhere [193,353,354]. It is also noteworthy that a diversity
of EE experimental protocols precludes generalization for MOA [355]. A lack of data for
physiological outcomes of DTx interventions is likely due to an initial focus on the efficacy
studies rather than to delineate MOA. Regarding the second limitation of this review, we
acknowledge that drug + digital combination therapies are applicable to other chronic
conditions not discussed here. For example, advances in DTx for Parkinson’s disease,
including the MedRhythm’s technology [356], support their combinations with levodopa.
Digital interventions for bipolar disorder are developed by MindPax and others [357,358].
DTx for insomnia, such as Somryst®, Sleepio®, Somzz®, and HelloBetter® Sleep, can be
integrated with drug-based treatments for sleep [359].
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Regulatory aspects for DTx and drug + digital combination products have been
omitted in this review, due to the complexity of evolving regulations across the FDA, EMA,
and other country-specific agencies [6]. The FDA draft guidelines support integration of
mobile apps with prescription drugs and biologics, opening a new frontier for pharma
and biotech to advance drug + digital combination therapies. Cost-effectiveness studies
support financial benefits of DTx [360–362]. However, there are also multiple barriers
to a broader implementation of DTx in healthcare systems [88,363]. Insights from early
adopters of DTx, for example Germany, can be helpful for healthcare stakeholders in other
countries to navigate both opportunities and challenges of bringing digital and drug +
digital combination therapies to patients [364].

This narrative review also has the innate limitation of summarizing relevant articles
without the rigor of a systematic review. An apparent selection bias can impact both an
objective analysis of published literature for individual chronic diseases, and the validity
of the authors’ conclusions.

11. Conclusions

Clinical and preclinical studies support translational research on integrating digital
interventions with pharmacotherapies. Available evidence for digital interventions varies
from disease to disease while showing clinically meaningful benefits for patients living
with the chronic diseases reviewed here. Academic and industry groups focused on drug
discovery and preclinical development may consider evaluating their lead compounds in
the presence of DTx “active ingredients” delivered as EE intervention, hence increasing the
odds of advancing IND candidates to clinical studies. When studying new compounds in
animal disease models, this “EE-pharmacology” approach will require more standardized
testing conditions. The observed diversity in experimental design in animal studies of
EE + drug interventions warrants establishing preclinical guidelines for investigating DTx
“active ingredients” that support future co-development of drug + digital combination
therapies.

Developing drug + digital combination therapies is still in its infancy, despite apparent
opportunities to improve effectiveness of pharmaceutical drugs and biologics using digital
interventions [12,13,22,23]. In conclusion, a quote from Helen Keller, “Alone we can do
so little; together we can do so much”, can serve as encouragement for translational and
clinical research to develop drug + digital combination therapies, including drug–device
combination products for a personalized treatment of chronic diseases.
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