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Abstract: (1) Background: Atrial fibrillation (AF) is a major risk factor for stroke and is often
underdiagnosed, despite being present in 13–26% of ischemic stroke patients. Recently, a significant
number of machine learning (ML)-based models have been proposed for AF prediction and detection
for primary and secondary stroke prevention. However, clinical translation of these technological
innovations to close the AF care gap has been scant. Herein, we sought to systematically examine
studies, employing ML models to predict incident AF in a population without prior AF or to detect
paroxysmal AF in stroke cohorts to identify key reasons for the lack of translation into the clinical
workflow. We conclude with a set of recommendations to improve the clinical translatability of ML-
based models for AF. (2) Methods: MEDLINE, Embase, Web of Science, Clinicaltrials.gov, and ICTRP
databases were searched for relevant articles from the inception of the databases up to September
2022 to identify peer-reviewed articles in English that used ML methods to predict incident AF or
detect AF after stroke and reported adequate performance metrics. The search yielded 2815 articles,
of which 16 studies using ML models to predict incident AF and three studies focusing on ML models
to detect AF post-stroke were included. (3) Conclusions: This study highlights that (1) many models
utilized only a limited subset of variables available from patients’ health records; (2) only 37% of
models were externally validated, and stratified analysis was often lacking; (3) 0% of models and 53%
of datasets were explicitly made available, limiting reproducibility and transparency; and (4) data
pre-processing did not include bias mitigation and sufficient details, leading to potential selection bias.
Low generalizability, high false alarm rate, and lack of interpretability were identified as additional
factors to be addressed before ML models can be widely deployed in the clinical care setting. Given
these limitations, our recommendations to improve the uptake of ML models for better AF outcomes
include improving generalizability, reducing potential systemic biases, and investing in external
validation studies whilst developing a transparent modeling pipeline to ensure reproducibility.

Keywords: machine learning; atrial fibrillation; prevention; detection; stroke; neural networks;
decision trees; artificial intelligence

1. Introduction
1.1. Background

A prominent risk factor for stroke is atrial fibrillation (AF), which increases the inci-
dence of stroke by between 2.6- and 4.5-fold depending on decade of life [1] and recurrence
of stroke by around 2-fold [2]. Given that 13–26% of patients with ischemic stroke have
AF [3], prediction and management of AF hold promise in addressing the disease burden
of stroke. Yet, screening and diagnosis of AF are not straightforward, especially amongst
asymptomatic patients. In fact, 13.1% of patients with AF in the United States are estimated
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to be undiagnosed, with 56% of undiagnosed patients belonging to higher stroke risk
groups with a CHADS2 score of 2 and above [4].

AF monitoring is complicated by the fact that up to a third of patients do not experience
symptoms [5], which reduces the pretest probability. In absence of any symptomatic cues,
AF episodes can only be captured through continuous long-term monitoring given their
unpredictable nature, which can generate copious data. In addition, although Holter
monitors are frequently used for long-term monitoring of AF, patient compliance is often
a limiting factor for longer monitoring durations [6], possibly due to their bulkiness and
need for applied leads. These challenges can hinder diagnosis of AF and initiation of
anticoagulants for thromboembolism prevention, which is problematic given that recent
studies have shown that AF can be detected after longer monitoring in between 20 and 30%
of patients diagnosed with cryptogenic strokes [7–9].

Big data and machine learning (ML) algorithms can improve AF prediction and
diagnosis in terms of both accuracy and throughput. Digital health approaches could
especially be effective in AF monitoring, since relevant measurements including heart rate
and ECGs can be obtained using wearable devices which are readily available, noninvasive,
and need not be replaced regularly in contrast to, for example, continuous glucose monitors.
Indeed, the low uptake barrier for utilizing wearables for AF monitoring is illustrated by
the fact that clinical trials investigating the performance of wearables such as the Apple
Watch® [10] and Fitbit® [11] were able to recruit upwards of 400,000 volunteers. Vast
amounts of data generated by such wearables, coupled with the ability of ML algorithms
to model complex datasets, can enhance thromboembolic stroke prevention primarily in
two ways. Screening a general population and predicting incident AF can allow high-risk
patients to be monitored more carefully for the primary occurrence of embolic stroke.
In addition, continuous electrocardiogram (ECG) monitoring of patients after ischemic
stroke can identify patients for whom anticoagulants should be started to prevent stroke
recurrence. Hence, improved prediction and detection capabilities conferred via ML models
can improve primary and secondary stroke prevention.

Despite potential advantages, however, clinical uptake of ML-based models has been
slow, and only six devices for artificial intelligence (AI)-based AF detection have been
approved in the United States and Europe between 2015 and 2020 [12]. This study therefore
aims to characterize the barriers to incorporating ML models into the clinical workflow
of AF management. We performed a scoping review of studies proposing or evaluating
ML models for AF prediction and detection to illustrate the current state of the art and
analyzed the limitations of each of the studies, which might hinder clinical uptake. Given
the observed limitations, we propose several recommendations for future studies that could
promote the clinical translation of ML models for AF care.

1.2. Scope and Key Questions

We sought to address the following key questions (KQ):

(KQ1) In adult patients without a known history of stroke or AF or cardiovascular co-
morbidities, what are the performance statistics, data features and processing steps, and
limitations of ML models in predicting incidence of AF?
(KQ2) In adult patients with a previous history of stroke, what are the performance statistics,
data features and processing steps, and limitations of ML models for AF detection?
A PICOTS (population, interventions, comparators, outcomes, timing, and setting) table
with details on the key questions is shown below (Table 1).
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Table 1. PICOTS (population, interventions, comparators, outcomes, timing, and setting) table for
Key Questions addressed in the scoping review.

Key Question 1 Key Question 2

Population Adult patients without a known history of stroke or
atrial fibrillation or cardiovascular comorbidities Adult patients with a previous history of stroke

Interventions ML models to predict incidence of atrial fibrillation ML models to detect atrial fibrillation

Comparators None None

Outcomes

• Predictive performance of models (AUC or
2 × 2 table)

• Input data features and data processing steps
used in model development

• Limitations hindering model incorporation into
clinical practice, including those listed by authors

• Detection performance of models (AUC or
2 × 2 table)

• Input data features and data processing steps
used in model development

• Limitations hindering model incorporation into
clinical practice, including those listed by authors

Timing Any observational cohort study Any observational cohort study

Setting Any setting Any setting

2. Methods
2.1. Search Strategy

The scoping review was performed and written in accordance with the Enhancing
the QUAlity and Transparency of Health Research (EQUATOR) and Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA; Table S1) guidelines. MED-
LINE, Embase, Web of Science, Clinicaltrials.gov, and ICTRP databases were searched for
articles proposing or evaluating ML models (including tree-based models but not logistic
regression models) to (1) predict the incidence of atrial fibrillation in a population with
no known history of stroke or atrial fibrillation or (2) to detect atrial fibrillation in a pop-
ulation with a previous history of stroke. Original research articles in English published
in peer-reviewed journals were included. Conference abstracts were also included in the
search but were removed as duplicates if the same model was evaluated by the same group
in a subsequent peer-reviewed article (i.e., if they were preliminary results for a subse-
quent published article). Databases were searched for manuscripts containing variants
of “atrial fibrillation”, “stroke”, and “machine learning/artificial intelligence”, combined
with “predict” or “detect” as appropriate. Details of search terms can be found in the
Supplementary Information.

2.2. Eligibility Criteria

Observational cohort studies evaluating the accuracy of ML models predicting the
incidence of atrial fibrillation in an adult population without a history of AF or detecting
AF in a stroke population in any setting were included. We selected studies that provided
an area under the receiver operating characteristics curve (AUC) or data sufficient to create
a 2 × 2 table and used the diagnosis of AF using ECG or discharge codes as a gold standard.
For studies regarding the detection of AF in a stroke population, only those that defined
previous incidence of stroke based on the diagnosis of stroke by a neurologist or hospitalist
or discharge codes were included.

Studies using or proposing new clinical risk scores, studies using mortality rather than
diagnosis as the endpoint, studies performed on a disease population with underlying
cardiovascular comorbidities (such as chronic kidney disease or diabetes) or structural
heart disease, and studies not authored in English were excluded.

2.3. Data Collection

Data extraction was performed in duplicate. After the removal of irrelevant records,
screening was performed by two authors (YK, RZ) to identify studies that met the inclu-
sion and exclusion criteria. Disagreements were resolved through discussion involving
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a third reviewer (VA). Full-text reviews were performed for selected studies to identify
model architecture, input data and list of variables, study population, data pre-processing
including addressing missingness and potential selection bias, validation, results including
model performance metrics, follow-up period, and availability of models and codes for
reproducing and transparency. Model performance was rounded to two significant figures.

3. Results
3.1. AI for Primary Stroke Prevention: Prediction of Atrial Fibrillation in the General Population
3.1.1. Search Results and Study Characteristics

The search yielded 2234 results. After removing duplicates, 1352 studies were screened
based on their title and abstracts, which resulted in the selection of 129 studies for further
screening. Of these studies, full texts for three studies were not retrieved. After reviewing
the full texts of 126 studies, 16 studies [13–28] met the inclusion/exclusion criteria (Figure
S1, Table S2). The 16 identified studies were conducted in seven different countries: Seven
in the United States, three in Korea, two in the United Kingdom, and one in Japan, Lebanon,
Germany, and Taiwan (Figure 1, Table S3). The publication dates spanned five years,
ranging from 2017 to 2022. Most of the studies were conducted retrospectively (14/16),
whereas two were conducted prospectively in the United States. The majority of studies
(10/16) curated their data in a database accessible to approved investigators.
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3.1.2. Machine Learning Models: Characteristics and Performance Metrics

Of the 16 studies, two studies were validation studies on the same neural network-
based model incorporating clinical variables, whereas two studies were validation studies
of a separate convolutional neural network model (ECG-AI) developed for AF detection
but repurposed for prediction (Table S4). Hence, the search yielded 14 different prediction
models. Half (7/14) of the models used tree-based models, whereas 11 of the models used
neural network-based models (Figure 2A). Of the tree-based models, five were random
forest models, with the rest being Adaboost and gradient-boosted trees (including light-
GBM and XGBoost). Only four of the models directly took ECG traces as an input for
a convolutional neural network (CNN) model, but two additional studies incorporated
ECG parameters (such as R-R intervals) in the analysis (Figure 2B, Table S4). In some
cases, probability outputs from a CNN model predicting AF were used as input into a Cox
regression model together with clinical data. Other model architectures used included
support vector machines. The performance of predictive models as reported by the authors
ranged from an AUC of 0.69 to 0.96 for simple neural network models, 0.72 to 0.84 for
CNN-based neural networks, and 0.75 to 0.99 for tree-based models (Figure 2C, Table S4).
The follow-up period ranged from 3 months to 16 years (Figure 2D, Table S3).
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3.1.3. Analysis of Limiting Factors and Best Practices: From Data Pre-Processing to
Model Validation

Multiple factors limiting the real-world implementation of AI models for prediction
and detection were identified (Figure 3, Table 2). One of the limiting factors was the lack of
performance benchmarking against conventional predictive models, with the majority of
studies (10/16) utilizing only one model architecture without comparing the performance
of ML models against baseline models such as logistic regression (Figure 3A). The lack
of external validation was another common shortfall, with only a subset (5/16) of stud-
ies reporting external validation and most of the studies relying on internal validation
(Figure 3B). Furthermore, reporting of pre-processing to mitigate sparseness was limited,
with only one study reporting adaptive imputation, two studies reporting complete case se-
lection, and the other studies with no mention of pre-processing for sparseness (Figure 3C).
In addition, the identified models often did not fully make use of the myriad data fea-
tures that were available and instead used a limited subset of these features (Figure 3D,
Table S5). Finally, none of the studies selected made their model or code available in public
repositories (Table S4).
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Table 2. Limitations of selected models for AF prediction.

Study (Original Study Proposing
Model If Validation Study) Limitations of the Study Suggested by the Authors Additional Limitations

Ahmad et al., 2020 [13] None listed
• Extremely small sample size
• No external validation

Ambale-Venkatesh et al., 2017 [14]

• Patient cohort might not be representative of
general population

• Did not include genetic data
• Longitudinal changes in risk not considered

• No external validation

ECG-AI
(Attia et al., 2019 [29],
Christopoulos et al., 2020 [15],
Kaminski et al., 2022 [20])

• Lack of interpretability makes it difficult to
direct therapy

• Patient cohort (training and external validation)
might not be representative of general population

• Datasets could have been mislabeled

• Low PPV (3.2% at 95% sensitivity
threshold) *

Hill et al., 2019 [16],
Sekelj et al., 2021 [27]

• Improvement in accuracy was small
• Patient cohort might not be representative of

general population
• No accounting for ethnic differences
• Datasets could have been mislabeled
• Potentially low cost-effectiveness

• Low PPV (12% at 75% sensitivity
threshold)

Hirota et al., 2021 [17]
• Patient cohort might not be generalizable
• ECG signals might not be generalizable to

other devices
• No external validation

Hu et al., 2019 [18]
• Possibility of unaccounted confounding factors
• Lacking information about lifestyle or family

history of AF
• No external validation
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Table 2. Cont.

Study (Original Study Proposing
Model If Validation Study) Limitations of the Study Suggested by the Authors Additional Limitations

Joo et al., 2020 [19] None listed
• No external validation
• Relatively low AUC

Khurshid et al., 2022 [21]

• Potential selection bias
• Limited sample size
• Prediction window was too long/too short
• Potential lack of interpretability

• Calibration of analysis demonstrates
relatively mediocre performance of
AI model in isolation (when not
combined with CHARGE-AF)

Kim et al., 2020 [22]

• Potential selection bias
• Limited precision regarding time of AF occurrence
• Possible confounding variables
• No external validation

Kim et al., 2020 [23]
• Model only marginally outperformed clinical risk

score when using same number of inputs • No external validation

Lip et al., 2022 [24] • Potential selection bias • No external validation

Raghunath et al., 2021 [25]

• Limited AF monitoring could have led to missed
AF occurrences.

• Limited time of AF recording
• Patient cohort might not be representative of

general population
• Lack of interpretability makes it difficult to find

pathophysiological basis of prediction and
establish causality

• No true external validation

Schnabel et al., 2023 [26]
• Patient cohort might not be representative of

general population
• Low PPV (13% for 95% sensitivity

threshold)

Tiwari et al., 2020 [28]

• Low sensitivity
• Machine learning model did not significantly

outperform logistic regression model and does not
work in real time

• No time-varying effects measured
• Imprecise recording of when AF occurred
• Did not incorporate biomarkers or

laboratory values
• Low PPV (5.9% at 75% sensitivity threshold)
• Patient cohort might not be representative of

general population

PPV: Positive predictive value. * Low PPV is listed as a limitation only when their values are provided; this does
not suggest that studies for which this limitation is not stated have higher PPVs.

3.2. AI for Secondary Stroke Prevention: Detection of Atrial Fibrillation in Stroke Cohorts
3.2.1. Search Results and Study Characteristics

The search yielded 581 articles. After removal of duplicates and further screening,
three studies [30–32] were included in the review. Details on the study selection are
summarized in Figure S2 and Table S6. Of the three identified studies, one was performed
in Germany in 2014, one in the United States in 2019, and one in Taiwan in 2014 (Table S7).
All the studies were performed prospectively on patients with ischemic stroke but differed
slightly in their criteria, which are summarized in Table S7. None of the studies uploaded
their data in a public repository.

3.2.2. Machine Learning Models: Characteristics and Performance Metrics

Of the three studies, two were validation studies on models developed previously,
whereas one study proposed a new model (Table 3). The models were trained on R-R
intervals in two of the studies, whereas one study used ECG traces directly (Table 3). The
model architectures used were support vector machines (n = 2) and convolutional neural
networks (n = 1). The sensitivity of detection models was between 63 and 95%, whereas the
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specificity was between 35 and 96%. Reported positive predictive values ranged between
23 and 27%, whereas negative predictive values ranged between 94 and 96%.

Table 3. Characteristics of Models for Detection of Atrial Fibrillation in a Stroke Population.

Selected Study (Original
Study Proposing Model If

Validation Study)
Input Data Data Source/Data Curated for

Approved Access?
Model Architec-
ture/Validation Results Model

Interpretation

Code or Model
Available/Reported Handling

of Sparse Data

Model Currently Available
for Clinical Use?

Rabinstein et al., 2021 [32]
(ECG-AI [29]) ECG trace Prospective; local EHR/no CNN/External

Sn: 63%
Sp: 75%

PPV: 23%
NPV: 94%

No Neither/No No

Reinke et al., 2018 [30]/
(Schaefer et al., 2014 [33]) ECG parameters Prospective; local EHR/no SVM (Proprietary

model)/External

Sn: 95%
Sp: 35%

PPV: 27%
NPV: 96%

No Neither/No Yes

Shan et al., 2014 [31] Photoplethysmogram
data Prospective; local EHR/no SVM/Internal

Acc: 96%
Sn: 94%
Sp: 96%

AUC: 0.97

No Neither/No No

Sn: Sensitivity; Sp: Specificity; PPV: Positive predictive value; NPV: Negative predictive value; AUC: Area under
the curve.

3.2.3. Analysis of Limiting Factors and Best Practices: From Data Pre-Processing to
Model Validation

Limitations identified by the study authors included the limited size and setting of
the cohort and limited monitoring duration (Table 4). Other limitations included low
positive predictive value and low sensitivity. Furthermore, whilst two of the studies
validated previously published models, one of the studies used a proprietary model whose
development was not available. Common shortfalls regarding model training included the
non-generalizability of the training cohort, as well the as lack of external validation. Other
shortfalls concerned the quality of trained models, such as only marginal improvement on
existing clinical risk scores and low positive predictive values (PPV). Additional limiting
factors that could hinder real-life implementation included the lack of interpretability.

Table 4. Limitations of Selected Models for AF Detection.

Study Limitations of the Study Suggested by the Authors Additional Limitations

Rabinstein et al., 2021 [32]
• Small patient cohort
• Short duration for AF monitoring
• Reduced performance when adjusted for age

• Low sensitivity (63%)
• Low PPV (23%) *

Reinke et al., 2018 [30]

• Monocentric design and small cohort
• Proprietary algorithm which has not been

thoroughly field-tested
• Limited use of multimodal data

• Low PPV (27%)
• No parameters/intermediate weights available

(black-box model)

Shan et al., 2014 [31] None listed • No external validation

PPV: Positive predictive value. * Low PPV is listed as a limitation only when their values are provided; this does
not suggest that studies for which this limitation is not stated have higher PPVs.

4. Discussion
4.1. Recommendations for Clinical Implementation of ML Models

Our study identified 19 studies proposing or validating ML-based models for the
prediction and detection of AF. This review contributes insights into clinically relevant
topics with limited prior attention, such as the reasons for low clinical translation of ML
models as well as ML models for post-stroke AF detection. Whilst the results underscored
the ability of ML models to outperform clinical risk scores and logistic regression, analyzing
the studies revealed limitations in study design and model construction that negatively
affected generalizability and thus could affect clinical translation. In particular, we iden-
tified four concerns which could most significantly hinder clinical uptake and provide
recommendations for each below.

Firstly, many of the ML models did not include a full picture of the patients’ health
status and demographic information potentially available in electronic health records and
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instead used a limited subset of data features. Furthermore, information regarding imaging,
laboratory values, and blood biomarkers were not frequently included as input variables
in the model. Including multimodal information as inputs in ML models could better aid
clinicians in decision-making as it more closely mimics diagnostic reasoning and can also
improve model performance. We suggest that future models take advantage of multimodal
data available in generating a more holistic and clinically relevant decision.

Second, robust external validation should be performed to improve model gener-
alizability. Given that complex ML models often overfit training data, robust external
validation is essential in ensuring reliable results. However, only a small subset of selected
studies included external validation, with the majority of studies relying on internal valida-
tion using data with the same demographic characteristics as the training set. Clinicians
might be disinclined to adopt algorithms lacking external validation, since they might
consider the evidence base to be less rigorous in comparison to clinical evidence based
on consensus derived from multiple large trials. Decentralized training methods, such as
federated learning and swarm learning, hold potential promise in surmounting privacy
concerns whilst ensuring models are appropriately trained and tested on cohorts across
multiple health systems [34,35]. We recommend that future studies incorporate external
validation or use decentralized training methods to ensure that the ML model generates
reliable results on unseen cohorts.

Thirdly, improving code, model, and data availability is essential to ensure trans-
parency and promote clinicians’ confidence in using ML-based models. Indeed, our anal-
ysis highlighted the disparity in cohort characteristics such as AF prevalence and ethnic
composition as well as input variables and data formats amongst different studies, all of
which can hinder generalizability. The availability of both the source code and data in
a readily accessible and standardized fashion is necessary to promote models that can
be deployed widely and effectively. Yet, none of the reviewed studies made their source
code or even a black-box model publicly available online. Additionally, whilst the ma-
jority of studies on AF prediction curated their data in a dataset accessible to approved
investigators, none of the studies for AF detection curated their data in such databases.
Importantly, only one of the studies curated its data in a standardized dataset format, such
as the Observational Medical Outcomes Partnership (OMOP) Common Dataset model [36],
or the Patient-Centered Outcomes Research (PCORnet) Common Data Model (CDM) [37].
We recommend that publishing requirements strongly encourage the source code or the
trained model to be made available, as well as de-identified data where appropriate.

Finally, care must be taken in data pre-processing and the deployment of ML models so
that existing biases in healthcare are not unwittingly perpetuated. Indeed, a commercially
available model in current use falsely assigned lower risk values to Black patients because
it was trained using healthcare costs as a proxy for the severity of condition, despite the
fact that on average less healthcare costs are spent on Black patients [38]. Clinical use of
certain ML models might also require patients to have access to digital devices, which can
be a hurdle for some high-risk populations including older patients and underprivileged
patients [39], who risk being excluded from valuable studies. Possible biases were also
identified in our analysis, such as the fact that most of the studies were performed in
developed countries with high volumes of digital data, as well as selection bias for patients
able to afford tertiary care, especially in the United States. Asian and Caucasian populations
were well-represented, but no studies were performed in Africa or South America. We
suggest maximizing diversity in training cohorts, incorporating fairness audits as standard
practice, and post-processing to mitigate bias and ensure that ML models are amenable to
use in a wide variety of contexts.

4.2. Further Considerations for ML Models in Clinical Practice

Effective incorporation of ML models in clinical practice requires not only the avail-
ability of high-performing and generalizable models but also support for both physicians
and patients to reap maximal benefits. For example, the nature of tort law which privileges
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standard of care regardless of its effectiveness in a particular case could put physicians at
risk of liability should care be withheld based on risk assessment using ML models [40].
Implementing a clear legal framework on the use of and liability regarding ML models
in clinical practice will aid physicians in defining how to incorporate model output in
the clinical workflow and is likely to boost their uptake. Support for patients is just as
important; a study comparing five commercially available wearable devices for AF mon-
itoring demonstrated that approximately 20% of photoplethysmography or ECG traces
were inconclusive due to artefact, which was a much higher rate than the rate published by
the manufacturers [41]. Educating patients and promoting awareness of correct device use
could be effective in improving the quality of collected data. Clinical trials validating the
real-world effectiveness of ML-guided interventions would provide insights into ways in
which human-AI interactions can be optimized.

Additionally, cost-effectiveness for the implementation of AF screening must also
be considered. Given that AF prediction for a general population requires no invasive
investigation and stroke patients with suspicion of cardioembolic stroke already receive
telemetry, implementation of ML models itself might not be a significant economic burden.
An analysis using the prediction model proposed by Hill et al., 2019 [16] suggested that
AF screening will increase costs by approximately GBP 322 million but will also result an
increase of 81,000 QALYs [42] in the UK population. However, screening a wide population,
especially with a low pre-test probability of AF, could lead to an increased burden on
the healthcare system due to more visits and confirmatory testing in a predominantly
healthy, younger population. Indeed, the 2023 ACC/AHA/ACCP/HRS guidelines state
that it has not been established that patients deemed to be of high risk of developing
AF by validated risk scores benefit from screening and interventions [43]. Choosing the
right target population and creating a clinical and legal framework which avoids the
need for additional follow-up clinician visits are ways in which cost-effectiveness could
be improved.

4.3. Limitations of the Study

This study has several limitations. First, only a limited number of studies were
found regarding the detection of AF in stroke patients, because whilst there were many
algorithms tested on a general population, there were few which were specifically tested
on a stroke cohort. Future studies could externally validate existing algorithms on stroke
cohorts to evaluate the performance of ML models on this clinically relevant population.
Second, a quantitative comparison of different models was precluded because of significant
differences in the types of models and variations in the input data, making it impossible to
compare the performances of the models directly with one another. Studies comparing the
performance of multiple models on an identical unseen dataset could provide insights into
the generalizability of currently available ML models.

4.4. Conclusions

In conclusion, ML models hold promise in accurately predicting AF in a healthy popu-
lation for primary prevention or detecting AF in a stroke population for secondary stroke
prevention. Yet, their real-world deployment is currently limited. Our recommendations
to improve clinical translation include improving generalizability, reducing potential sys-
temic biases, and investing in external validation studies whilst developing a transparent
modeling pipeline to ensure reproducibility. Future developments addressing these points
would facilitate the much-needed translation of these models into the clinic.

Supplementary Materials: The following supporting information can be downloaded at: https://
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tion Characteristics of Studies for Prediction of Atrial Fibrillation in General Population. Table S4.
Characteristics of Models for Prediction of Atrial Fibrillation in the General Population. Table S5.
Features Used in Final Model Training. Table S6. Excluded Studies for Detection of Atrial Fibrillation
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