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Abstract: Neurocutaneous disorders, also known as phakomatoses, are congenital and acquired
syndromes resulting in simultaneous neurologic and cutaneous involvement. In several of these
conditions, the genetic phenomenon is understood, providing a pivotal role in the development of
therapeutic options. This review encompasses the discussion of the genetic and clinical involvement
of neurocutaneous disorders, and examines clinical management and treatment options. With the
current advances in genetics, the role of precision medicine and targeted therapy play a substantial
role in addressing the management of these conditions. The interconnectedness between therapeutic
options highlights the importance of precision medicine in treating each disorder’s unique molecular
pathway. This review provides an extensive synthesis of ongoing and current therapeutics in the
management of such clinically unique and challenging conditions.

Keywords: neurocutaneous disorders; cutaneous; neurologic; phakomatoses; genetic advances;
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1. Introduction

Neurocutaneous disorders are a group of conditions that result in long-term involve-
ment of the nervous system and skin. Often, they are genetically inherited and symptoms
emerge throughout adolescence [1]. Many of these conditions involve an understood ge-
netic phenomenon, although spontaneous mutations can occur. These conditions also exist
on a wide spectrum of phenotypes and often have multi-system involvement [1]. A chal-
lenge that occurs with diagnosing these conditions is that certain symptoms present as age
progresses, further complicating the diagnosis. Given the various systems involved and
the varying differences in presentation, treatment is often difficult and focuses on palliative
efforts in patients with tumors or life-threatening conditions. However, given the advances
in genetics, targeted therapies offer a promising future for the development of treatments
in the management of neurocutaneous disorders, offering patients a tailored therapeutic
option. Our review covers neurofibromatosis 1 and 2, tuberous sclerosis, Sturge–Weber
syndrome, Von Hippel-Lindau disease, ataxia–telangiectasia, and Osler-Weber-Rendu syn-
drome, some of the diseases that are currently being studied for treatment based on their
genetic phenomena.

2. Neurofibromatosis 1 & 2

Neurofibromatosis 1, also known as von Recklinghausen’s disease, makes up 96% of
all neurofibromatosis cases and is an autosomal dominant neurocutaneous disorder caused
by a germline mutation in the NF1 gene [2,3]. NF1 affects 1 in 3000 to 4000 individuals
worldwide [4]. The mutation rate of NF1 is one of the highest in the human genome, with
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about 50% of cases occurring due to de novo mutations [5]. The NF1 gene is a tumor
suppressor gene on chromosome 17q11.2 that promotes the production of neurofibromin, a
protein that helps regulate the cell cycle by inhibiting RAS/MAPK and PI3K-AKT-mTOR
signaling pathways (Figure 1) [6,7]. The NF1 pathway has also been shown to demonstrate
the two-hit pattern, in which patients inherit one mutated copy of NF1 gene through a
germline mutation and develop the phenotype of NF1 once a second hit occurs, a somatic
mutation [4]. The NF1 pathogenic variant leads to the production of non-functional or
inadequate amounts of neurofibromin, which is associated with an increased risk of various
tumors [8]. Neurofibromin also contains other domains, and some studies suggest that
these domains play a role in the clinical manifestations of NF1. Therefore, further insight
into how these domains interact and function might elucidate the clinical development of
NF1 and provide a new avenue for therapeutics [9].
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Figure 1. Pathogenesis of neurofibromatosis 1.

Mutations in the NF1 gene may result in a non-functional neurofibromin protein. Neu-
rofibromin is a tumor suppressor that downregulates the RAS/MAPK and PI3K-AKT-mTOR
signaling pathways, which play a major role in cell proliferation. When these pathways go
unchecked, the risk for tumor formation increases, resulting in the development of tumors
in patients with neurofibromatosis 1.

Neurofibromatosis 1 presents clinically with neurofibromas; café-au-lait spots; Lisch
nodules; freckles; bone abnormalities, like bowing of the legs or curvature of the spine;
learning disabilities; and an increased risk of tumor formation [10,11]. Refer to Table 1 for
the diagnostic criteria. NF1 can also present with peripheral neuropathy. Patients can vary
in their presentation, but one study has shown that patients can develop sensory and/or
motor manifestations. The study determined that peripheral neuropathies are a serious
consequence of NF1 and are associated with mortality due to spinal complications [12].
Spinal neurofibromatosis is another form of NF1 that is defined as bilateral neurofibromas,
which involve all spinal roots, resulting in spinal nerve compression. These symptoms
manifest as pain, weakness, or sensory changes; therefore, early detection and management
are critical [13].

Additionally, neurofibromatosis 1 can present with mosaicism and cutaneous manifes-
tations [14,15]. Notable exceptions include NF-1 patients with microdeletions, who make
up 5% to 11% of all NF-1 patients. This subgroup of patients often presents with tall stature
and dysmorphic facies, along with severe global development delays and cognitive disability
presenting at an earlier age. Patients with microdeletions are at an increased risk of malignant
peripheral nerve sheath tumors. Therefore, early genetic testing is crucial for managing patient
treatment plans [16]. Genetic testing has been gaining significance as a tool to distinguish
neurofibromatosis 1 from other conditions and identify mosaicism in patients [8].
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Table 1. Diagnostic criteria of NF1.

Diagnostic Criteria of NF1

• Six or more café-au-lait macules over 5 mm in diameter in prepubertal individuals or over
15 mm in postpubertal individuals

• Freckling in axillary of inguinal regions
• Two or more neurofibromas of any type or one plexiform neurofibroma
• Optic pathway glioma
• Two or more iris Lisch nodules, or two or more choroidal abnormalities
• Sphenoid dysplasia, anterolateral bowing of the tibia, or pseudoarthrosis of long bone
• Heterozygous pathogenic NF1 variant with a variant allele fraction of 50%

Diagnosis of NF1 requires at least two of the following features in an individual without an affected parent, or at
least one of the following features in a parent with NF1 [17].

Current treatment aims to prevent complications and improve patient quality of
life. Regular monitoring is recommended for tracking the progression of the patient’s
condition and to detect any complications early. Monitoring includes blood pressure
checks, spinal checks, and whole-body MRIs to detect malignant transformations. Surgical
management of painful or uncomfortable neurofibromas may not prevent the recurrence of
neurofibromas, but may provide the patient with pain relief and improve quality of life.
Selumetinib is the first FDA-approved treatment for inoperable plexiform neurofibroma
in patients with neurofibromatosis 1 that seeks to induce anti-tumor activity by inhibiting
the MEK pathway [18–20]. Patients taking selumetinib have reported improved physical
function, decreased pain, better mobility, and overall mental health. Other MEK inhibitors
(binimetinib, mirdametinib, and trametinib) are also currently being investigated for NF1
plexiform neurofibromas [21]. Additionally, research is being done to target the other
domains of neurofibromin, along with possibly looking into vectors to deliver DNA [22].

Neurofibromatosis 2-related schwannomatosis is an autosomal dominant neurocuta-
neous disorder caused by mutations in the NF2 gene on chromosome 22q12, which has
been shown to follow a two-hit pattern. The NF2 gene codes for the formation of the
protein, Merlin (schwannomin), a tumor suppressor that is associated with the formation
of central nervous system tumors upon NF2 gene mutation [23,24]. NF2 affects 1 in 25,000
to 40,000 individuals [25]. Approximately half of neurofibromatosis 2 cases occur because
of spontaneous mutations, despite being an autosomal dominant disorder [26]. Like neu-
rofibromatosis 1, neurofibromatosis 2 can exhibit mosaicism and symptoms can localize in
regions of affected cells. The severity of the disorder is variable and can present early on in
life with multiple tumors, or later in life with a milder presentation [27].

Cutaneous manifestations of neurofibromatosis 2 are less prominent compared to neu-
rofibromatosis 1, and do not commonly include the dermatological findings normally seen
in neurofibromatosis 1. Distinct features of neurofibromatosis 2 mainly include the devel-
opment of tumors that arise from Schwann cells, like vestibular NF2-related schwannomas
that can be associated with tinnitus, hearing loss, and balance dysfunction. Meningiomas
and ependymomas are also common [28]. Additionally, neurofibromatosis 2 may present
with cataracts, retinal abnormalities, and, rarely, cutaneous NF2-related schwannomas
under the skin [2].

The less prominent cutaneous manifestations of neurofibromatosis 2 help distinguish it
from neurofibromatosis 1 clinically. The diagnosis of neurofibromatosis 2 mainly involves clin-
ical presentation of the associated tumors, family history of NF2, and genetic testing [29,30].

While neurofibromatosis 2-associated tumors are largely benign, lack of treatment can
lead to auditory, facial, and vestibular functional deficiencies, and extreme cases can lead to
brainstem compression, obstructive hydrocephalus, and death. Surgery and radiation are
treatment options that pose major risks, like hearing loss, intracranial bleeding, and stroke.
Additionally, surgical removal is not possible in multiple situations where tumors com-
monly arise in patients with neurofibromatosis 2, and radiation treatment may transform or
accelerate the growth of NF2-related schwannomas. As a result, neurofibromatosis 2 does
not have a curative or long-term therapy [31,32].
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Emerging therapeutic developments are drugs like bevacizumab, endostatin, and
axitinib, which seek to downregulate VEGF expression. Bevacizumab has shown promising
results in tumors that grow rapidly and was also noted to improve hearing in 20% of
patients [33]. Antisense oligonucleotides targeting exon 11 demonstrated promising results
in in vitro studies, but delivery of the drug and effective formulation remain challenges.
Other approaches include RTK-targeting drugs, PI3K/Akt/mTORC1, Ras/Raf/MEK/ERK
signaling pathway-targeting drugs, and the use of aspirin. Additionally, therapies directed
against tumor-associated macrophages are a potential avenue of investigation [34]. Trials
are ongoing and more research is needed to determine the efficacy of treatment [34,35].

3. Tuberous Sclerosis

Tuberous sclerosis complex (TSC) represents a neurocutaneous genetic disorder char-
acterized by the development of benign tumors, known as hamartomas [36,37]. TSC is
estimated to impact between 1 in 6000 to 10,000 individuals [38]. The clinical expression
of TSC arises from disruptions in various cellular functions. TSC results from autosomal
dominant or sporadic mutations in the TSC1 or TSC2 genes, encoding the hamartin and
tuberin proteins, respectively [37,39–42]. These proteins jointly regulate cell proliferation
through the mammalian target of the rapamycin pathway (mTOR). Mutations in either
gene lead to dysregulation of the TSC1:TSC2 complex, consequently affecting the mTOR
pathway and causing tissue overgrowth [43]. Although inherited in an autosomal dominant
manner, it is important to note that around 70% of TSC cases result from de novo mutations
in the germline [44].

Clinically, TSC impacts multiple organ systems (Figure 2), with a predilection for
the central nervous system (CNS), skin, and kidneys [36]. Most common CNS symp-
toms encompass seizures, subependymal nodules (SENs), and subependymal giant cell
astrocytomas (SEGA) [45]. Renal complications arise from renal angiomyolipomas, which
are benign tumors forming in the kidneys. Lastly, cutaneous manifestations involve hy-
pomelanotic macules, adenoma sebaceum, shagreen patches, and ungual fibromas [36].

J. Clin. Med. 2024, 13, x FOR PEER REVIEW 5 of 18 
 

 

 
Figure 2. Multisystem manifestations of TSC. 

Multisystemic manifestations of TSC include the nervous system, skin, lungs, heart, 
kidneys, and eyes, presenting variable phenotypes. 

Regarding dermatologic abnormalities, approximately 90% of patients develop hy-
pomelanotic macules, also known as ash leaf spots [36,46,47]. These are oval-shaped char-
acteristics that are usually present at birth, and a Wood’s lamp examination improves its 
detection [48]. Adenoma sebaceum, formerly known as facial angiofibroma, manifests as 
small hyperpigmented macules in a butterfly pattern on bilateral cheeks [48]. Shagreen 
patches are leather plaques with an orange-peel appearance due to slightly depressed hair 
follicles [48]. Ungual fibromas are commonly observed periungually and subungually, 
particularly in toenails, emerging later in puberty [48]. 

Diagnosing TSC relies on a constellation of features rather than a singular symptom. 
Definitive diagnostic criteria necessitate two major features, or one major and two or more 
minor features (Table 2). Major features observed more frequently in TSC patients include 
11 clinical findings uncommon in the general population [49]. Minor features, also more 
prevalent in TSC patients, are common in the general population [49]. Additionally, im-
aging studies, such as CT and MRI, are crucial for assessing CNS manifestations. Genetic 
testing is also conducted to identify mutations in the TSC1 or TSC2 genes. 

Table 2. Major and minor criteria for the diagnosis of TSC. 

Tuberous Sclerosis Diagnostic Criteria 
Major Minor 

• Hypomelanotic macules 
• Angiofibromas (≥3) 
• Ungual fibromas (≥2) 
• Shagreen patch 
• Cortical dysplasias 
• Multiple retinal hamartomas 
• Subependymal nodules 
• Subependymal giant cell astrocytoma 
• Cardiac rhabdomyoma 
• Lymphangioleiomyomatosis 
• Angiomyolipomas (≥2) 

• ‘Confetti’ skin lesions 
• Dental enamel pits (>3) 
• Intraoral fibromas (≥2) 
• Retinal achromic patch 
• Multiple renal cysts 
• Non-renal hamartomas  

Diagnosis of TSC requires at least two major features, or one major and two or more minor features. 

Treatment options for TSC-associated skin lesions encompass both non-pharmaco-
logical and pharmacological approaches. Systemic mTOR inhibitor treatment is indicated 
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Multisystemic manifestations of TSC include the nervous system, skin, lungs, heart,
kidneys, and eyes, presenting variable phenotypes.

Regarding dermatologic abnormalities, approximately 90% of patients develop hy-
pomelanotic macules, also known as ash leaf spots [36,46,47]. These are oval-shaped
characteristics that are usually present at birth, and a Wood’s lamp examination improves
its detection [48]. Adenoma sebaceum, formerly known as facial angiofibroma, manifests
as small hyperpigmented macules in a butterfly pattern on bilateral cheeks [48]. Shagreen
patches are leather plaques with an orange-peel appearance due to slightly depressed hair



J. Clin. Med. 2024, 13, 1648 5 of 18

follicles [48]. Ungual fibromas are commonly observed periungually and subungually,
particularly in toenails, emerging later in puberty [48].

Diagnosing TSC relies on a constellation of features rather than a singular symptom.
Definitive diagnostic criteria necessitate two major features, or one major and two or
more minor features (Table 2). Major features observed more frequently in TSC patients
include 11 clinical findings uncommon in the general population [49]. Minor features, also
more prevalent in TSC patients, are common in the general population [49]. Additionally,
imaging studies, such as CT and MRI, are crucial for assessing CNS manifestations. Genetic
testing is also conducted to identify mutations in the TSC1 or TSC2 genes.

Table 2. Major and minor criteria for the diagnosis of TSC.

Tuberous Sclerosis Diagnostic Criteria

Major Minor

• Hypomelanotic macules
• Angiofibromas (≥3)
• Ungual fibromas (≥2)
• Shagreen patch
• Cortical dysplasias
• Multiple retinal hamartomas
• Subependymal nodules
• Subependymal giant cell astrocytoma
• Cardiac rhabdomyoma
• Lymphangioleiomyomatosis
• Angiomyolipomas (≥2)

• ‘Confetti’ skin lesions
• Dental enamel pits (>3)
• Intraoral fibromas (≥2)
• Retinal achromic patch
• Multiple renal cysts
• Non-renal hamartomas

Diagnosis of TSC requires at least two major features, or one major and two or more minor features.

Treatment options for TSC-associated skin lesions encompass both non-pharmacological
and pharmacological approaches. Systemic mTOR inhibitor treatment is indicated in patients
with multisystemic manifestations, addressing the underlying TSC pathophysiology and
potentially improving dermatologic symptoms [49]. Alternatively, topical mTOR inhibitors or
surgical procedures may be considered in patients not receiving systemic treatment [49].

Notably, in 2022, the Food and Drug Administration (FDA) approved HYFTOR
(sirolimus) gel, the first FDA-approved topical intervention designed for individuals with
TSC-presenting facial angiofibroma [50]. Lastly, diverse surgical modalities are available,
including laser-based procedures. For elevated angiofibromas, ablative lasers, such as
carbon dioxide (CO2) or erbium: YAG laser, are frequently used [51]. Additionally, a
vascular laser, capable of selectively obliterating blood vessels with minimal scarring risk,
can be employed for the treatment of flat red spots [51].

4. Sturge–Weber Syndrome

Sturge–Weber syndrome (SWS) is a rare neurocutaneous disorder, distinctively marked
by port-wine vascular macules and café-au-lait spots on the skin and eyes [52–54]. Unlike
many genetic conditions, SWS is not hereditary but stems from a sporadic mutation in the
GNAQ gene, leading to a range of abnormalities in the eyes, skin, and brain with varied
clinical presentations, from asymptomatic to severe [55,56].

The underlying mechanism involves a postzygotic somatic mutation in GNAQ on
chromosome 9q21.2, sometimes also implicating the homogenous GNA11 gene on chro-
mosome 19p13.3 [55]. These mutations create a defect in the Gαq protein that does not
allow it to properly shut off, contributing to conditions like phakomatosis pigmentovas-
cularis through mosaic expression [57–59]. SWS’s port-wine lesions result from excessive
capillaries around the trigeminal nerve in the face and abnormal brain vessels that can
lead to tissue atrophy and tram-line calcification [60–63]. Diagnosis primarily relies on
clinical observation and imaging studies, like MRI and CT scans, which reveal the extent of
cerebral involvement [62].
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Neurologically, seizures are a significant concern in SWS, often correlating with the
size of leptomeningeal angiomas [64]. The onset age of seizures is crucial for prognosis,
with early-onset seizures linked to more significant neurological challenges [65]. Glaucoma,
another critical aspect of SWS, tends to emerge in early childhood and can lead to vision
loss if not managed promptly. The variable nature of glaucoma progression and visual
outcomes underscores the importance of early intervention [66,67].

The prevalence of autism spectrum disorders and communication difficulties in SWS
patients highlights the need for comprehensive neurodevelopmental assessment [68]. Further-
more, the disorder can lead to a range of developmental and neuropsychiatric comorbidities,
significantly affecting psychological functioning, especially in younger patients [69].

SWS management requires a personalized, interdisciplinary approach. Laser therapy,
particularly pulsed dye laser, is widely recognized for treating port-wine stains [70]. In
terms of neurological complications, anti-convulsant therapy is crucial for seizure man-
agement, tailored to the seizure type and patient’s age [71]. For refractory cases, sur-
gical options like hemispherectomy might be necessary, although they carry significant
risks [67,72]. Glaucoma management often involves a combination of medical and surgical
interventions, with regular ophthalmological assessments being essential for early detec-
tion and treatment [68]. Additionally, addressing neurodevelopmental and psychological
aspects through early intervention programs and neuropsychological evaluations is vital for
managing developmental delays, learning disabilities, and neuropsychiatric issues [52,69].

Recent discoveries, particularly the identification of the GNAQ gene mutation, have
improved our understanding of SWS and opened possibilities for targeted molecular
therapies (Figure 3) [52,73]. Advances in MRI technology have enhanced the visualization
of leptomeningeal angiomas, aiding in early diagnosis and informing treatment decisions,
especially concerning epilepsy management [74]. However, treatment strategies, especially
regarding epilepsy and cutaneous symptoms, remain subjects of debate. Discussions are
ongoing about the timing, aggressiveness of seizure management, and balance between
medication side-effects and seizure control [75]. Surgical interventions in intractable cases
and the optimal timing and type of laser therapy for port-wine stains are also debated,
considering the risks of skin damage and the psychological impact [76,77].
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Figure 3. How the vascular macules manifest in Sturge–Weber syndrome.

Sturge-Weber syndrome results from a sporadic mutation in the GNAQ gene. This
mutation leads to impaired function of the Gαq protein, leading to excessive capillary
proliferation in a CN V1/V2 distribution on the face. This results in the classic port-wine
stain presentation.
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5. Von Hippel-Lindau Disease

Von Hippel-Lindau (VHL) disease is a rare genetic disorder that causes a variety
of tumors and cysts to manifest throughout various organ systems [78]. These tumors
can manifest as benign or malignant, and show commonly in the central nervous system,
kidneys, adrenal glands, and pancreas. Most notably, Von Hippel-Lindau disease was
found to be the first renal cancer disorder with a defined genetic basis [79]. Specifically, this
relates to inherited renal cell carcinoma. Another common manifestation of the disease is
hemangioblastomas, especially those in the eye [80]. There are two different types of VHL
dependent on the presence of pheochromocytoma and the additional presence of renal
cancers. Pheochromocytomas are benign tumors typically found in the chromaffin cells
of the adrenal medulla or paraganglion [81]. Type 1 VHL is classified via the absence of
pheochromocytoma. VHL type 2 is characterized by the presence of pheochromocytomas
and is further broken down into three subtypes. Type 2A is with renal cancer. Type 2B
is without renal cancer. Type 2C is individuals who develop pheochromocytomas only
(Figure 4) [82].
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Von Hippel-Lindau is an autosomal dominant disease. VHL is rare and found in about
1 in 36,000 people, and it has a de novo manifestation rate of about 20% in new cases [83,84].
It is an inherited germline mutation of the VHL gene on chromosome 3p25 [85]. This leads
to a mutated end product of the VHL gene, the VHL protein (pVHL). This protein causes the
degradation of hypoxia-inducible factor (HIF), which is responsible for oxygen regulation
in cells [78]. When this protein is degraded, HIF is uncontrolled and upregulated, along
with other growth factors promoting tumor formation. Platelet-derived growth factor
(PDGF) and vascular endothelial growth factors (VEGFs) contribute significantly to tumor
formation [83]. HIFs encourage an angiogenic state of continuous mitogenic signaling [86].
Overall, this combination of growth factors leads to an environment where tumors can
grow unchecked and cause a variety of lesions throughout the body.

It is important to note that Von Hippel-Lindau disease has a variety of cutaneous
manifestations. While most of the effects of the disease are internal, about five percent
of cases do show significant cutaneous features [87]. However, VHL is a phakomatosis
with very few and sporadic cutaneous findings. These are seen as melanocytic nevi,
café-au-lait spots, and capillary malformations [88]. Melanocytic nevi (non-cancerous
moles) are a common benign neoplasm of the skin. They appear on the skin as darkened
non-cancerous moles, and affect the melanocytes responsible for skin pigment synthesis [89].
This is important to consider in patients showing this cutaneous manifestation of the
disease as melanomas arise from nevi about 25–33% of the time [90]. Café-au-lait spots
are hyperpigmented spots that are dark to light brown and often appear at birth or early
in life [91]. Typically, they are flat and vary in size. The presence of multiple spots is
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often linked to genetic syndromes, as seen in the association with VHL. While these are
uncommon findings in patients with Von Hippel-Lindau disease, they are a key feature
that puts them in the category of neurocutaneous diseases and can help in the diagnosis
and treatment of patients. It is unclear whether the type of VHL determines the likelihood
of developing cutaneous manifestations.

The diagnosis of Von Hippel-Lindau disease uses a mix of clinical criteria involving
manifestations and genetics/family history of the disease, along with genetic testing to
confirm a diagnosis. There are three main clinical diagnostic criteria used in proband: Dutch,
Danish, and International [92]. Each varies slightly in what they utilize for a family history
of VHL or a related tumor and individual diagnosis of a VHL-related manifestation [93].
The Dutch and International criteria require one VHL-related tumor and a first- or second-
degree relative diagnosed with VHL or with more than one VHL-related tumor. The
Danish criteria is stricter in that it only requires a relative to the first degree to be positive
for VHL [93]. If no known family history is available, then the Dutch criteria requires two
or more VHL-related manifestations to be present. The Danish and International criteria
require either two or more hemangioblastomas or one hemangioblastoma and one other
VHL-related manifestation to be present to be considered for this disease [93]. Molecular
diagnosis is used to find a heterozygous pathogenic variant of VHL and is a conclusive
way to obtain a diagnosis [78]. The two types of genetic testing are gene-targeted testing
and comprehensive genomic testing. This includes single and multigene panel tests. Single
gene testing involves a sequence analysis of the VHL coding region and flanking sequences.
It is used to detect variants, insertions, or deletions. A multigene panel is performed and
includes VHL, along with other genes of interest. This panel is used if the patient presents
with symptoms resembling another disease. These criteria are the standard combination for
assessing an individual’s likelihood of having the disease and follow through with genetic
testing to confirm a diagnosis [92].

The management and treatment of Von Hippel-Lindau disease varies in each case as
the manifestations of the disease vary. There is no standard or universal treatment for VHL,
but options exist for the varying symptoms that may arise. Targeted therapies for advanced
renal cell carcinoma include the oral treatment Pazopanib, which inhibits VEGF, PEGF,
and the stem-cell factor receptor c-kit [94]. Similarly, belzutifan is a newly FDA-approved,
oral drug that is used for the treatment of renal cell carcinoma in VHL. It is an inhibitor
of HIF-2α and has been very effective in treatment [95]. Renal cell carcinoma can also be
treated using radiofrequency ablation or cryoablation over surgical resections [96]. Most
tumors in VHL are safe to be removed. Central nervous system hemangioblastomas and
selected spinal hemangioblastomas are safe and allow for full tumor resection [97,98]. Reti-
nal hemangioblastomas are treated early as they can lead to vision loss. Treatment is safe
and does not cause damage to eyesight. Treatment of retinal angiomas includes diathermy,
xenon, laser, cryocoagulation, and external beam radiotherapy [78]. Pheochromocytomas
should be removed laparoscopically and it is recommended to watch pheochromocytomas
that are less than two centimeters in size as they are not considered harmful [92]. Surveil-
lance is recommended for the common manifestations of VHL as preventative care and
the early finding of tumors can help to improve patient outcomes. Lastly, it is important
to consider genetic counseling in VHL patients who wish to have children. The disease
is autosomal dominant, meaning an affected individual has a 50% chance of passing the
mutation to offspring [92].

VHL can be broken into two main types based on the presence of pheochromocytomas.
Type 2 has three subtypes based on the presence of renal cancers.

6. Ataxia–Telangiectasia

Mutations in the ATM gene result in a defective ataxia–telangiectasia mutated ser-
ine/threonine kinase. Functioning ATM protein acts as a tumor suppressor, with vital roles
in the progression of the cell cycle, induction of apoptosis, and repair of double-stranded
DNA breaks through paramount interactions with p53, CHK2, and ABL. Downstream
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effects of the deficient ATM result in the inability to correct damage in the genome, hinder-
ing the production of mature T and B cells, leading to immunodeficiency and increased
susceptibility to the development of certain malignancies.

In the discourse of inherited neurological disorders, ataxia–telangiectasia (AT), also
recognized as Louis–Bar syndrome, remains a staple of discussion with its characteristic
cutaneous manifestations and etiology [99]. Fortunately, as a neurodegenerative disorder,
AT is seldom diagnosed, occurring in 1 out of 100,000 births in the United States, with
some populations having an increased incidence of up to 1 out of every 40,000 births [100].
Ataxia–telangiectasia is inherited in an autosomal recessive manner and remains one of
the most debilitating primary immunodeficiencies, with patients generally dying before
the third decade of life [101]. However, AT’s prognosis and comprehension have under-
gone significant expansion with the advent of genetic testing, paired with an increased
understanding of its clinical presentation and pathophysiology.

This autosomal recessive disorder’s morbidity is directly linked to its deleterious
involvement in multiple organ systems within the body [102]. Arising from mutations
in the ATM gene, its viral roles in the repair of damaged DNA can lead to a variety of
manifestations, such as the gradual degeneration of the cerebellum leading to progressive
ataxia, the presence of cutaneous telangiectasias, an elevated risk of malignancies (especially
lymphoid malignancies), compromised immune function, and frequent sinopulmonary
infections (Figure 5) [103]. Specifically, a mutation located at 11q22–23, which encodes for
the ATM gene, results in a defective Ataxia–Telangiectasia Mutated Serine Threonine Kinase
(ATM) protein that insufficiently addresses double-stranded breaks in DNA [104]. This
impaired response is vital in the presence of external stressors, such as ionizing radiation
or chemicals, as well as the development of mature T cells [105]. The subsequent faulty
ATM protein is unable to maintain critical interactions with p53 and ABL, leading to the
inability to induce apoptosis and perform DNA repair by homologous recombination
repair [106]. Additionally, CHK2′s interactions with CDC25A and CDC25C contribute to
the bypassing of cell cycle checkpoints at S and G2-M, further exacerbating the loss of p53
bypassing the G1-S checkpoint [107].
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Ataxia–telangiectasia is an autosomal recessive disorder due to mutations in the ATM gene
on chromosome 11q22. The ATM gene encodes an ATM kinase involved in detecting DNA
damage and regulating the cell cycle. Mutations fail to induce apoptosis during the G1-S
transition and cause an inability to repair DNA, resulting in cell cycle progression.

One of the distinctive features prompting clinicians to diagnose AT is its characteristic
cutaneous features, most notably the telangiectasias [108]. Telangiectasias are identified
by the presence of smaller, vasodilated blood vessels on the skin, frequently associated
with dilation or broken blood vessels located near the surface of the skin or mucous
membranes [109]. In the progression of AT, telangiectasias are observed on the whites
of the eyes and various areas on the skin, particularly the bulbar conjunctiva, ears, neck,
and cubital fossa [110]. The exact cause of telangiectasia remains unknown; however,
researchers propose that the development of these manifestations includes weakening
of the blood vessel structure and function, stemming from genetic, environmental, or
an interplay of these influences [103]. It is widely accepted that there is a consensus
in acknowledging AT patients exhibit variability in the cutaneous manifestation of the
disease [111]. The degree of telangiectasias can vary influenced by aforementioned factors;
patients may present with extensive telangiectasias, while others may not manifest them
at all [112].

Diagnosing AT presents a multifaceted challenge from the absence of a consensus
on clinical diagnostic criteria, requiring a comprehensive evaluation of clinical features
to confirm [113]. Arising from the diverse array of affected organs, as well as the varying
severity observed in patients, the complexity of diagnosing patients accounts for the
combination of neurologic clinical features in tandem with one or more cutaneous or
laboratory findings [108]. A lack of coordination and instability of movements affecting
balance and fine motor skills (ataxia), the development of clusters of dilated blood vessels
(telangiectasias) on mucous membranes, and frequent infections are indicative symptoms
that lead toward AT diagnosis [114]. The diverse range of symptomatology underscores the
importance of a comprehensive personal and family history, which can lead a practitioner
toward genetic testing to identify the presence of the 11q22–23 mutation in an individual
suffering from cerebellar effects [115]. Moreover, analysis of the patient’s blood may provide
key insights in diagnosing AT, revealing the presence of either decreased immunoglobulins
or increased alpha-fetoprotein (AFP) levels in adults [116]. A significant reduction in
immunoglobulins in AT results from the lack of mature T cells and the impaired interaction
activating B cells [117]. While elevated AFP levels in infants are commonplace, their decline
is associated with age; however, markedly higher levels in adults are characteristic of AT,
making the recovery of AFP a hallmark diagnostic tool [118].

Unfortunately, as of now, there is no cure for AT, the extent of treatment is supportive
care aiming to address neurological dysfunction and slow deterioration [119]. The chal-
lenge in treating AT stems from the inherited gene mutation on chromosome 11; the lack of
gene editing capabilities to correct such a mutation leaves the population in a persistent
state of risk while being minimal [120]. In terms of supportive care, immunoglobulin
supplementation and antibiotics are routinely utilized to proactively prevent and halt op-
portunistic infection from the immunodeficiency seen in patients with AT [121]. Moreover,
the utilization of chest physiotherapy and airway clearance techniques in children with
recurrent sinopulmonary disease have demonstrated the reduced development of chronic
lung disease in AT [122]. Lastly, the administration of glucocorticoids in a prospective
cohort study has demonstrated promise in relieving ataxia symptoms in AT; however,
the long-term effectiveness is yet to be established [123,124]. Recent advancements in
genetics and immunology have yielded transformative work, igniting a diverse range of
novel treatments that holds considerable potential as innovative therapies in the treatment
of AT. In an effort to correct the hematologic abnormalities seen in AT, bone marrow trans-
plantation is becoming an increasing option of therapy to promote immune competence
while preventing leukemia [125]. Recent publications have shed light on the use of splice-
switching antisense oligonucleotides (ASOs) which are able to modify cellular pre-mRNA
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to alter and correct splice-altering genetic variants that cause AT, leading practitioners in
the future to potentially use ASOs enabling correction of splice-altering genetic variants
that cause disease [126]. Vector therapy has also been investigated regarding AT. Lentiviral
and gammaretroviral vectors have been studied and successfully delivered the ATM gene
to target cells to restore ATM function. Additionally, researchers have investigated the
role of HSV-1 and HSV/AAV hybrid amplicon vectors and have shown promise in animal
models. However, due to the large size of the ATM coding sequence, they might not be
suitable in patients [120].

7. Osler-Weber-Rendu Syndrome

Osler Weber Rendu disease, also known as Hereditary Hemorrhagic Telangiectasias
(HTT), is a disease inherited in an autosomal dominant manner with a later onset of
symptoms [127,128]. The prevalence of HHT in the general population is reported to range
from 1.5 to 2 out of 10,000. In terms of the types of HHT, HHT is divided into two main
forms, HHT 1 and HHT 2 (Figure 6). The HHT 1 form is reported to be more prevalent than
the HHT 2 form [127]. The two forms are initiated by heterozygous mutations [127]. HHT 1
is initiated by a mutation in endoglin, while HHT 2 is initiated by a mutation in Activin
A receptor-like type 1 [127]. Both of these mutations lead to an interruption of the typical
TGF beta-mediated pathways [127]. Consequently, arteriovenous malformations develop
and affect the way that blood vessels form, initiating atypical connections between veins
and arteries and, subsequently, avoiding passing through capillaries [127]. Arteriovenous
malformations (AVMs) of the pulmonary system, brain, spine, or liver can occur in patients
with HHT [127]. Visceral AVMs, such as brain AVMs, can lead to complications, such as
hemorrhagic strokes and seizures [128]. Brain AVMs may also lead to motor weakness and
aphasia [129]. A less common form of HHT is one with mutations within SMAD4, in which
a patient subsequently exhibits traits of both HHT and juvenile polyposis syndrome [130].
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A common manifestation of Osler-Weber-Rendu disease is the formation of telang-
iectasias [130]. About three-fourths of the HHT patient population display telangiectatic
lesions [130]. Telangiectasias are dilated blood vessels formed in various parts of the
body, both visceral and cutaneous [128]. Cutaneous telangiectasias are often described as
“spider-web-like” in appearance, affecting several external surfaces of the body, including
commonly the lips, tongue, and face [127]. In an article by Hyldahl et al. (2022), a more thor-
ough description and evaluation of telangiectasias of HHT patients were performed [130].
Per the Hyldahl et al. article, the lesions of HHT patients were most commonly described
as round, flat, or minimally raised/elevated [130]. More specifically, telangiectatic lesions
can be categorized as confluent round, radiating round, lacunar round, tortuous round,
hemangioma-like round, dilated, and arborized [130]. Overall, per the Hyldahl et al. ar-
ticle, HHT1-type patients are more likely to develop telangiectatic lesions, both mucosal
and cutaneous, compared to HHT2-type patients. Additionally, as patients age, HHT pa-
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tients are more likely to form telangiectatic lesions and acquire dilated blood vessels [130].
Additionally, over 90% of HHT patients from the Hyldahl article experienced epistaxis.
Less commonly, patients may also experience bleeding from the gums, lips, ears, cheeks,
and digits [130].

Early screening is often recommended if HHT is suspected in patients due to the severe
health threat that visceral AVMs may pose [128]. Some criteria to consider when screening
for HHT include family history/first-degree relative with HHT, recurrent epistaxis, visceral
lesions, and the formation of telangiectasias [131]. Genetic testing for mutations in Activin
A receptor-like type 1 (ALK1) and endoglin (ENG) is recommended for the diagnosis of
HHT [127]. In terms of the epistaxis and subsequent bleeding disorders, such as anemia,
that HHT patients often develop, patients may be treated with anti-angiogenics [128,132].
More commonly in the older HHT patient population, GI bleeding may develop and,
subsequently, needs to be addressed with anti-angiogenic modalities and iron transfu-
sions [128]. As a result, clinical recommendations for HHT patients also include iron levels
and anemia testing [133]. Treatments that patients are provided regarding nasal cavity
telangiectasias include bevacizumab, laser therapies, cauterizations, nasal implants, and
surgical procedures to close nasal cavities [130]. In terms of the treatment of visceral AVMs,
depending on the location of the lesion, patients may undergo embolization, resection, or
focal radiation [128]. Specifically for hepatic AVMs, liver transplants or bevacizumab are
the mainstays of treatment, since hepatic lesion embolization leads to subsequent liver
issues in the future [128]. However, the full consequences of the long-term use of beva-
cizumab have not been fully determined at this time, as increased thrombotic risk occurs
with use [133]. More research is currently inquiring about the efficacy of targeting VEGF in
medications for HHT patients to inhibit angiogenesis, given that HHT patients often have
an active pro-angiogenesis process [133].

This figure demonstrates the types of hereditary hemorrhagic telangiectasias based on
gene mutation types and their prevalence in the HHT patient population.

8. Conclusions

Although the clinical characteristics and genetic basis of neurocutaneous disorders
differ, the role of precision medicine and targeted therapy provides a shared theme. Emerg-
ing therapeutics for NF-1 include selumetinib, an MEK inhibitor. Antiangiogenic agents
are being used for the management of NF-2, along with Osler-Weber-Rendu syndrome, to
manage symptoms. mTOR inhibitors are gaining prevalence for the management of TSC.
Regarding VLH, treatments focus on managing renal cell carcinoma. As these conditions
are inherited genetically, genetic counseling should be performed for individuals present-
ing with symptoms concerning neurocutaneous disorders. Overall, the role of precision
medicine and targeted therapies is increasing, elucidating the genetic phenomenon behind
neurocutaneous disorders. With improved understanding, modern medicine can develop
interventions to mitigate symptoms and improve patient outcomes.
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