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Abstract: Introduction: In the context of the current opioid crisis, non-pharmacologic approaches to
pain management have been considered important alternatives to the use of opioids or analgesics.
Advancements in nano and quantum technology have led to the development of several nanotrans-
porters, including nanoparticles, micelles, quantum dots, liposomes, nanofibers, and nano-scaffolds.
These modes of nanotransporters have led to the development of new drug formulations. In pain
medicine, new liposome formulations led to the development of DepoFoam™ introduced by Pacira
Pharmaceutical, Inc. (Parsippany, NJ, USA). This formulation is the base of DepoDur™, which
comprises a combination of liposomes and extended-release morphine, and Exparel™, which com-
prises a combination of liposomes and extended-release bupivacaine. In 2021, Heron Therapeutics
(San Diego, CA, USA) created Zynrelef™, a mixture of bupivacaine and meloxicam. Advancements
in nanotechnology have led to the development of devices/patches containing millions of nanoca-
pacitors. Data suggest that these nanotechnology-based devices/patches reduce acute and chronic
pain. Methods: Google and PubMed searches were conducted to identify studies, case reports, and
reviews of medical nanotechnology applications with a special focus on acute and chronic pain.
This search was based on the use of keywords like nanotechnology, nano and quantum technology,
nanoparticles, micelles, quantum dots, liposomes, nanofibers, nano-scaffolds, acute and chronic pain,
and analgesics. This review focuses on the role of nanotechnology in acute and chronic pain. Results:
(1) Nanotechnology-based transporters. DepoDur™, administered epidurally in 15, 20, or 25 mg
single doses, has been demonstrated to produce significant analgesia lasting up to 48 h. Exparel™ is
infiltrated at the surgical site at the recommended dose of 106 mg for bunionectomy, 266 mg for hem-
orrhoidectomy, 133 mg for shoulder surgery, and 266 mg for total knee arthroplasty (TKA). Exparel™
is also approved for peripheral nerve blocks, including interscalene, sciatic at the popliteal fossa, and
adductor canal blocks. The injection of Exparel™ is usually preceded by an injection of plain bupiva-
caine to initiate analgesia before bupivacaine is released in enough quantity from the depofoarm to
be pharmacodynamically effective. Finally, Zynrelef™ is applied at the surgical site during closure. It
was initially approved for open inguinal hernia, abdominal surgery requiring a small-to-medium
incision, foot surgery, and TKA. (2) Nanotechnology-based devices/patches. Two studies support
the use of nanocapacitor-based devices/patches for the management of acute and chronic pain. A
randomized study conducted on patients undergoing unilateral primary total knee (TKA) and total
hip arthroplasty (THA) provided insight into the potential value of nanocapacitor-based technology
for the control of postoperative acute pain. The results were based on 2 studies, one observational
and one randomized. The observational study was conducted in 128 patients experiencing chronic
pain for at least one year. This study suggested that compared to baseline, the application of a
nanocapacitor-based Kailo™ pain relief patch on the pain site for 30 days led to a time-dependent
decrease in pain and analgesic use and an increase in well-being. The randomized study compared
the effects of standard of care treatment to those of the same standard of care approach plus the use
of two nanocapacitor-based device/patches (NeuroCuple™ device) placed in the recovery room and
kept in place for three days. The study demonstrated that the use of the two NeuroCuple™ devices
was associated with a 41% reduction in pain at rest and a 52% decrease in the number of opioid
refills requested by patients over the first 30 days after discharge from the hospital. Discussion:
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For the management of pain, the use of nano-based technology has led to the development of nano
transporters, especially focus on the use of liposome and nanocapacitors. The use of liposome led to
the development of DepoDur™, bupivacaine Exparel™ and a mixture of bupivacaine and meloxicam
(Zynrelef™) and more recently lidocaine liposome formulation. In these cases, the technology is
used to prolong the duration of action of drugs included in the preparation. Another indication of
nanotechnology is the development of nanocapacitor device or patches. Although, data obtained
with the use of nanocapacitors are still limited, evidence suggests that the use of nanocapacitors
devices/patches may be interesting for the treatment of both acute and chronic pain, since the studies
conducted with the NeuroCuple™ device and the based Kailo™ pain relief patch were not placebo-
controlled, it is clear that additional placebo studies are required to confirm these preliminary results.
Therefore, the development of a placebo devices/patches is necessary. Conclusions: Increasing evi-
dence supports the concept that nanotechnology may represent a valuable tool as a drug transporter
including liposomes and as a nanocapacitor-based device/patch to reduce or even eliminate the use
of opioids in surgical patients. However, more studies are required to confirm this concept, especially
with the use of nanotechnology incorporated in devices/patches.

Keywords: nanotechnology; nanotransporters; nanoparticles; micelles; quantum dots; liposomes;
nanofibers; nano-scaffolds; nanocapacitors; acute pain; chronic pain; opioids

1. Introduction

The use of opioids to manage pain is an established determinant for the development
of opioid use disorder in medical and surgical patients and therefore an important con-
tributor to the current opioid crisis. Multiple factors are responsible for the present opioid
epidemic and associated rate of death by overdose. The risk factors expressed as odds
ratios are 1.75 for a history of addiction to alcohol [1–6], 1.94 for a history of addiction to
tobacco/nicotine use [1–5,7–12], 1.59 for a history of depression [1–6,9,13–17], 1.67 for male
gender [6,18], 2.35 for a prior/current history of substance abuse [19], and 1.62 for younger
age [1,2,9,10,16–22]. Following surgery, the overall frequency of persistent opioid use is
estimated to be 28% at two months [14], 9.96% at three months [1–4,10,11,15,16,20,23–29],
3.92% at six months [1,2,16,25], 2.82% at one year [1,2,6,12,15,30–34], and 1.85% at two years
after surgery [17,18]. After minor or ambulatory surgeries, the overall estimated fre-
quency of persistent opioid use is 7.5% at three months [4,10,29] and 7.7% at one year [30].
Among minor surgeries, elective hand surgery is associated with the highest frequency
of persistent opioid use—13.5% at three months [10]. After major surgeries, the overall
frequency of persistent opioid use is estimated to be 28% at two months [14], 10.4% at
three months [1–4,11,15,16,20,23,25–28], 3.92% at six months [1,2,16,25], 2.43% at
one year [1,2,12,15,31–34], and 1.85% at two years [17,18]. The major surgeries associ-
ated with the highest frequency of persistent opioid use are orthopedic surgeries, includ-
ing joint replacement, trauma surgery, and surgery associated with cancer. For ortho-
pedic surgeries, the overall frequency of persistent opioid use is estimated to be up to
28% at two months [14], the mean at three months is 9.79% [1,2,10,15,16,23–25], 3.92% at
six months [1,2,16,25], 2.16% at one year [1,2,31,34], and 1.85% at two years [17,18]. More
specifically, the frequency of persistent opioid use following total knee arthroplasty is
estimated to be 13.4% at three months [2,25], 8.2% at six months [25], 1.8% at one year [34],
and 1.4% at two years [18]. The frequencies are 7.8% at three months [1,15,25], 4.3% at
six months [25], and 2.3% at two years [19] following total hip arthroplasty. For oncology
surgery, it is estimated to be 17.53% at three months [11,28,29]; the estimated frequency
seems to vary according to the type of surgery. It is 23.7% at three months for surgery for
oral cavity cancer [11] and 18.5% at three months for head and neck oncology surgery [28].
For trauma surgery, the estimated frequency of persistent opioid use is estimated to be
28% at two months [14] and 11.35% at three months [10,23]. Several other types of surgeries
have been investigated, including kidney transplantation (8.4% at one year [32]), bariatric
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surgery (1.3% at one year [12]), caesarean section (C-section) (0.36% at one year [9]), and
dental surgery (0.1% at three months [29]). However, a recent report indicated that opioid
use disorder increases after delivery. Aside from the risk for misuse and abuse, opioids are
nonspecific analgesics that are not universally well tolerated; limiting or eliminating their
use in favor of novel approaches is imperative. The use of opium and its compounds has
been described since the Neolithic era; their ubiquity as analgesic agents have persisted into
the 21st century. Individuals have varying responses to opioids with respect to analgesic
efficacy and side effects/adverse events [35].

Recently, consideration has been given to non-pharmacological pain treatments. Sev-
eral techniques have been proposed as an alternative to opioids, including acupunc-
ture [36,37], hypnosis [38], transcutaneous electrical nerve stimulation [39,40], and auricu-
lotherapy [41]. However, the effectiveness of these techniques remains to be established,
as very few well-designed placebo-controlled studies have been conducted. Also, these
complementary techniques require intensive training, which limits their acceptance.

Advancements in nano and quantum technology have led to an increasing number of
medical applications [42–50]. In vivo indications are based on the use of nano-transporters,
including nanoparticles [42], micelles, quantum dots [43], liposomes, nanofibers [42–46],
and nano-scaffolds [47,48]. These modes of nano-transporters have allowed for the devel-
opment of drug formulations with decreased drug toxicity, prolonged drug effectiveness,
and in some cases, more specific delivery [49–51]. Examples include the use of liposomes
to deliver amphotericin B and the use of chemotherapy to treat cancer [50]. Other in vivo
applications are based on the development of nanomaterial-based biosensors and nano-
biomarkers, which greatly improve image quality and the monitoring of physiological
functions such as cardiac and nerve conduction [49] and intracellular metabolism [50]. The
potential applications are considered endless.

Finally, advancements in nanotechnology have led to the development of nanocapac-
itor devices/patches. The use of this technology has been applied to control acute and
chronic musculoskeletal pain and has demonstrated some degree of effectiveness.

2. Methods

Google and PubMed searches were conducted to identify studies, case reports, and
reviews of medical nanotechnology applications with a special focus on acute and chronic
pain. This search was based on the use of keywords like nanotechnology, nano and quantum
technology, nanoparticles, micelles, quantum dots, liposomes, nanofibers, nano-scaffolds,
acute and chronic pain, and analgesics. This review focuses on the role of nanotechnology
in acute and chronic pain.

3. Results
3.1. Nanotechnology-Based Transporters

The use of nanotechnology-based transporter for the treatment of pain has focused on
liposome-based transporters. These formulations have been found to extend the duration
of analgesia and reduce the toxicity of medications [51,52]. The first application was the
basis of the development of DepoFoam™ a liposome-based formulation. It was combined
with morphine for an epidural administration or DepoDur™ (Endo Pharmaceuticals Inc.,
Chadds Ford, PA, USA; Skye Pharma, Inc., San Diego, CA, USA). In a clinical trial involving
patients undergoing THA, patients were randomized to receive a single dose of 15, 20, or
20 mg of DepoDur™ or placebo. All DepoDur™ dosages reduced intravenous patient-
controlled fentanyl use (510 +/− 708 vs. 2091 +/− 1803 microg; p < 0.0001) and significantly
improved pain control at rest through 48 h compared to the placebo (area under the curve
(AUC) [0–48 h], p < 0.0005) [53]. In another randomized, double-blind study on lower
abdominal surgery patients, single-dose of DepoDur™ provided superior pain control up
to 48 h post-dose, both at rest and during activity, and significantly reduced intravenous
patient-controlled fentanyl use compared to conventional epidural morphine [54].
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DepoFoam™ was also used to develop a liposome-bupivacaine formulation for lo-
cal injection either by surgeons or anesthesiologists. (Exparel™, Pacira Pharmacutical Inc.,
Parsippany-Troy Hill, NJ, USA) [55]. Although this technology allowed for the consistent
release of the medication over an extended period [56], some publications failed to report
superiority in terms of pain control or opioid consumption in postoperative pain management
compared to conventional bupivacaine [57,58]. Exparel™ is currently FDA-approved for
postsurgical local analgesia, bunionectomy, hemorrhoidectomy, interscalene nerve block, and
adductor canal and sciatic nerve blocks [59].

The most recent use of a liposome preparation for the treatment of acute pain is a combina-
tion of bupivacaine and meloxicam (Zynrelef™, Heron Therapeutics, San Diego, CA, USA) [60].
In this formulation, meloxicam was found to increase the effectiveness of bupivacaine by main-
taining the pH of the preparation when applied at the time of the wound closure. Zynrelef™ is
reconstituted using a needle-free syringe and a luer-lock applicator, allowing for the application
of the viscous solution at the level of the subcutaneous tissue and/or at the soft tissue incision
level at the time of the wound closure. Zynrelef™ is approved as an agent allowing for the
provision of 72 h of postoperative analgesia following open surgery. Zynrelef™, also referred
to as HTX-011, is available in 60 mg/1.8, 200 mg/6 mg, 300 mg/9 mg, and 400 mg/12 mg of
bupivacaine/meloxicam, respectively. Initially, it was approved by the FDA in 2021 to be used
at the time of closure at the level of a medium incision following abdominal surgery, for open
herniorrhaphy, total knee arthroplasty (TKA), and bunionectomy. This approval was based
on positive results from phase III clinical studies conducted in these pain models. In trials
conducted by Viscusi et al., the efficacy of bupivacaine/meloxicam PR against bupivacaine HCl
and a placebo was compared in patients who underwent bunionectomy with osteotomy and
internal fixation under regional anesthesia in the EPOCH 1 trial [61] and those who underwent
unilateral open inguinal herniorrhaphy with mesh placement under general anesthesia in the
EPOCH 2 trial [62]. In both trials, the use of Zynrelef™ was associated with significantly re-
duced postoperative pain and opioid consumption up to 72 h postoperatively compared to
plain bupivacaine [62,63]. In 2024, the indications of Zynrelef™ were extended to include open
shoulder and spine surgery. Contraindications included patients with established hypersensi-
tivity to local anesthetics and non-steroidal anti-inflammatory drugs (NSAIDs), patients with
a history of asthma, urticaria, or allergic reaction related to aspirin or other NSAIDs, patients
receiving obstetric paracervical block anesthesia, and patients undergoing coronary bypass
surgery. Recently, we reported that the use of Zynrelef™ was safe in combination with single
nerve block performed prior to surgery. This conclusion was based on the administration of
115 bilateral single blocks with a total dose of 150 mg of bupivacaine or 200 mg of ropivacaine
and the administration of unilateral blocks with 75 mg of bupivacaine or 100 mg of ropivacaine.
Most of these blocks were quadratus lumborum blocks [64]. Prior to instillation, Zynrelef™ is
reconstituted using a needle-free syringe and a luer-lock applicator, allowing for the application
of the solution to the subcutaneous tissue at the time of closure. After reconstitution, Zynrelef™
is applied at either the peri-articular level and/or at the soft tissue incision level at the time of
closure. Examples of studies conducted on liposome-based formulations (DepoDur™, Exparel™
and Zynrelef™) are presented in Table 1.

Table 1. Examples of studies conducted on liposome-based formulations.

Keyword Study Authors # Patients Treatment vs.
Comparison Results

DepoDur™

Forty-Eight Hours of
Postoperative Pain

Relief after Total Hip
Arthroplasty (THA)

Viscusi et al.
(2005)
[53]

200 15, 20, or 25 mg
DepoDur™ vs. saline

All dosages reduced fentanyl use
(510 ± 708 vs. 2091 ± 1803 microg)
and delayed time to first dose of
fentanyl (21.3 vs. 3.6 h).

A Comparison of
DepoDur™ to Standard
Epidural Morphine for
Pain Relief After Lower

Abdominal Surgery

Gambling et al.
(2005)
[54]

541

5, 10, 15, 20, or 25 mg of
single-dose DepoDur™

vs. 5 mg of standard
epidural

morphine sulfate

Patients who received 10, 20, or
25 mg single doses used
significantly less
intravenous fentanyl through
48 h postoperatively.
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Table 1. Cont.

Keyword Study Authors # Patients Treatment vs.
Comparison Results

Exparel™

Exparel™ for
Postoperative Pain

Management: A
Comprehensive Review

Kaye et al.
(2020)
[56]

Review
Liposomal bupivacaine

vs. standard local
anesthetic or placebo

Liposomal bupivacaine provided
prolonged analgesia and
opioid-sparing effect compared
to placebo.

The Efficacy of
Liposomal Bupivacaine

for Opioid and Pain
Reduction: A

Systematic Review of
Randomized
Clinical Trials

Ji et al. (2021)
[57] 6770

Liposomal bupivacaine
vs. other active agents

or placebo

Out of 77 identified trials,
liposomal bupivacaine did not
demonstrate better pain relief in
74.58% of trials compared to other
active agents or placebo. It did not
show reduction in opioid
consumption in 85.71% of trials.

Liposomal Bupivacaine
in Adductor Canal
Block (ACB) before

Total Knee
Arthroplasty (TKA)

Malige et al.
(2022)
[58]

100

Liposomal bupivacaine
20 cc with 5 cc of 0.5%
bupivacaine in ACB

and 20 cc of 0.2%
ropivacaine in iPACK
block vs. 25 cc of 0.2%

ropivacaine in ACB
and 20 cc of 0.2%

ropivacaine in
iPACK block

Subjects receiving liposomal
bupivacaine had shorter hospital
stays compared to the ropivacaine
group (36.3 vs. 49.7 h). Liposomal
bupivacaine decreased pain and
reduced inpatient opioid
consumption compared to
ropivacaine group
(40.9 vs. 47.3 MME/d).

Zynrelef™

HTX-011 Reduced Pain
Intensity and Opioid
Consumption versus
Bupivacaine HCl in

Bunionectomy: Phase
III Results from the

Randomized
EPOCH 1 Study

Bupivacaine/Meloxicam
Prolonged Release: A

Review in
Postoperative Pain

Viscusi et al.
(2019)
[61]

412 subjects
undergoing

bunionectomy

Bupivacaine/meloxicam
60/1.8 mg vs.

bupivacaine HCl 0.5%
50 mg vs. saline

placebo 2.1

Bupivacaine/meloxicam
combination reduced pain intensity
by 27% vs. saline placebo and 18%
compared to bupivacaine. Opioid
consumption was reduced by 37%
in bupivacaine/meloxicam group
vs. saline placebo and 25% vs.
bupivacaine group.

Study
Bupivacaine/Meloxicam
Prolonged Release: A

Review in
Postoperative Pain

Blair et al.
(2021)
[63]

Review of two
randomized
controlled
trials on

bunionectomy
and

herniorrhaphy

Bupivacaine/meloxicam
vs. bupivacaine HCl vs.

saline placebo

As part of non-opioid multimodal
analgesia, bupivacaine/meloxicam
improved pain control and reduced
need for opioids in
postoperative period.

Safety and Efficacy of
Zynrelef™ in

Combination with a
Single Unilateral or

Bilateral Nerve Block
Performed Prior

to Surgery

Goel et al.
(2023)
[64]

184 All received bupiva-
caine/meloxicam

No symptoms suggestive of local
anesthetic toxicity were reported.
Use of combination was associated
with 50% reduction in number of
patients filling their opioid
prescriptions.

3.2. Nanotechnology-Based Devices/Patches

In the past 10 years, nCap Medical LLC (Heber City, UT, USA) developed a
nanocapacitor-based device/patch (referred to as the NeuroCuple™ device). Soon after,
nCap Medical LLC also licensed the technology to Signal Relief technologies
(Sandy, UT, USA) and Kailo Labs LLC (Sandy, UT, USA). This patented device/patch
is constituted of three layers including a middle layer containing millions of nanocapacitors
covered by two layers (Figure 1). The nanocapacitors operate using a method referred to as
“capacitive coupling”. Practically, capacitive coupling allows for the transfer of electrical
energy between two components without a direct electrical connection, utilizing the electric
field and the magnetic field. The nanotechnology-based device/patch does not contain any
chemicals, herbal medicines, or drugs and has no energy source. It can be reused over and
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over. To date, no side effects have been reported with the use of nanotechnology-based
devices/patches.
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In its current configuration, the NeuroCuple™ device/patch has a smooth side and a
Velcro side. The smooth side is usually applied on the skin, whereas the Velcro side is used
to secure the device/patch in place with tape or a piece of cloth. Because the NeuroCuple™
device/patch is not required to be applied on the skin, the Velcro side can be used to secure
the device/patch on the outside of a piece of cloth or bandage. However, if a piece of cloth
is chosen as the mode of securing the NeuroCuple™ device/patch, the cloth should be
composed of a material that allows the device/patch to be kept in the same position to
avoid any displacement of the device.

Prior to securing the NeuroCuple™ device/patch in place, it is critical to determine its
optimal position. This is accomplished by first placing the NeuroCuple™ device/patch
at the site of the pain. Within one to two minutes, the patient should experience some
pain relief. If the effect is limited or no change in the pain level is observed, the next
step is to move the NeuroCuple™ device/patch around the pain source to determine the
patch’s optimal position before it is secured in place. Although the optimum effect of the
NeuroCuple™ device/patch is usually achieved within minutes or an hour, sometimes the
maximum therapeutic effect is observed hours or even one or two days after placement.
The NeuroCuple™ device/patch can remain in place for hours or days. The best way to
determine how long the NeuroCuple™ device/patch should remain in place is to remove it
after one or two days and see if the pain continues. If pain is still present, the NeuroCuple™
device/patch can be placed at the same location for another day or more.

The NeuroCuple™ device/patch comes in several shapes. Each shape was developed
to optimally fit a specific part of the body. Thus, the small rectangular NeuroCuple™
device/patch is specially designed for migraine, wrist, and ankle pain (Figure 2A). To treat
migraines, the NeuroCuple™ device/patch is placed at the site of the pain and can be
secured using a head band. Larger rectangular and square NeuroCuple™ devices/patches
are also available. These NeuroCuple™ devices/patches are best used to control back,
shoulder, and knee pain (Figure 2B,C). Most evidence supports the use of the NeuroCuple™
device/patch to manage musculoskeletal acute and chronic pain; however, anecdotal
reports also suggest that the nano-based technology may also effectively control abdominal
and pelvic pain.

In addition to the original NeuroCuple™ devices/patches, two other versions are
available: one developed and distributed by Signal Relief™ (Figure 3; Salt Lake City, UT,
USA) and one by Kailo™ (Figure 4; Salt Lake City, UT, USA). Although, from a technical
point of view, these nanotechnology-based device/patches are similar to the NeuroCuple™,
they differ in shapes, colors, and modes of securement. The Signal Relief™ device/patch
is triangular, comes in either blue or white, and it is available in two sizes, 4.5′′ and 1.5′′

(Figure 3). The Kailo™ device also contains two conductive elements, copper and silver,
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visible on the surface of the patch (Figure 4). However, both companies’ devices/patches
use a double adhesive transparent liner to attach the device/patch to the skin. One of the
adhesive sides is attached to the device/patch, while the other adhesive side is used to
secure the device/patch on the skin.
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Evidence supporting the use of nano-based technology to treat acute and chronic pain
is based on two studies. The first was a multicentric study conducted in three US centers by
Gudin et al. that included 128 patients (89 females, 39 males), mean age 47 years old with
chronic pain in one body location for at least one year. The pain was related to arthritis
(23.4%), neuropathy or radiculopathy (30.5%), or myofascial or musculoskeletal pain or
spasm at the level of the hands, feet, hips, knees, neck, shoulders, or back (46.1%). The goal
of this prospective, institutional review board (IRB)-approved observational study was to
assess the analgesic properties of the Kailo™ nanocapacitor-based device/patch (Figure 4;
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Salt Lake City, UT, USA, referred to as the Kailo™ Pain Patch). The primary end point was
the effects of the application of the Kailo™ Pain Patch on pain intensity, measured using
the Brief Pain Inventory questionnaire. Secondary end points included self-perceived pain
relief from analgesics, patient satisfaction, quality of life, and ability to return to normal ac-
tivities. Data were collected at baseline, on day 14, and on day 30. The patients were asked
to wear the Kailo™ Pain Patch as long as necessary and for up to 30 days. Twenty patients
were included as controls and crossed over after 14 days [65]. At 30 days, the use of the
Kailo™ Pain Patch resulted in a 61% decrease in pain severity and interference, whereas
a 23% increase in pain severity and a 57% increase in pain interference were recorded in
the control group. Also, in the treatment group, 91% of patients reported “less” or “a lot
less” use of oral analgesics and 86% of patients were very/extremely satisfied. Data also
showed quality of life improvements in mood, relations with other people, sleep, walking
ability, and the enjoyment of life. Most patients indicated that they wore the device/patch
all the time during the study period. This may explain why between day 14 and day 30 the
pain severity dropped by an additional 35% (40% vs. 61%). Although the study was ob-
servational, data supported the benefit of the nanotechnology-based device/patch for the
treatment of chronic pain. However, it is clear that because of the observational nature of
the study and the subjective-based design, additional studies are required to confirm these
preliminary results. We also tested the NeuroCuple™ device/patch analgesic properties
on patients undergoing primary and unilateral TKA and THA. Prior to any patient enroll-
ment, this prospective, randomized study was approved by the IRB and registered with
clinicaltrials.gov. Patients who agreed to participate gave informed consent; those who
qualified were randomly distributed to either a standard of care group or a group who
received standard of care plus two NeuroCuple™ devices/patches. The NeuroCuple™
devices/patches were placed above the knee or on the hip or each side of the thigh after
the patient was situated in the recovery room (Figure 5) [66]. Because mood disorders
have been established to significantly affect pain intensity and opioid consumption [67–69],
only patients without evidence of anxiety, depression, sleep disorders, and catastrophiz-
ing were randomized. The primary end points were pain and opioid consumption. The
secondary end points were time to discharge from the recovery room and the hospital,
PROMIS scores [70], catastrophizing scores [71,72], and patient satisfaction. A total of
163 patients were screened, and 69 patients were randomized. We demonstrated that the
use of NeuroCuple™ devices/patches reduced postoperative pain at rest by 34% (using the
AUC between day 1 and day 30; p = 0.018), decreased pain with movement by 18% (using
the AUC between day 1 and day 30, p = 0.12), and decreased the number of opioid refills
requested by patients after discharge from the hospital by 52%. Table 2 present a summary
of the 2 studies illustrating the use on nanocapacitor-based technologies for the treatment
of chronic and acute pain.
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Table 2. Example of studies conducted on nanocapacitor-based technologies.

Keyword Study Authors # Patients Treatment vs.
Comparison Results

Nanocapacitor
device/patch

Use of Nanocapacitors for
the Control of
Chronic Pain

Observational study

Gudin et al.
(2022) [65] 148

Kailo™ Pain
Relieving Patch vs.

no patch

Over 30 days, Brief Pain
Inventory (BPI) severity scores in
the treatment group decreased by
61%, and the mean BPI
interference score decreased by
61%.In contrast, in the control
group, the BPI severity score
increased by 23%, and the BPI
interference score increased
by 58%.

Role of the NeuroCuple™
Device for the

Postoperative Pain
Management of Patients
Undergoing Unilateral
Primary Total Knee and

Hip Arthroplasty: A Pilot
Prospective, Randomized,

Open-Label Study

Chelly et al.
(2023) [66] 69

NeuroCuple
device/patch vs.
no device/patch

Patients who received the
device/patch experienced lower
pain levels at rest during
postoperative days 1–3, with a
34% reduction in postoperative
pain compared to patients
without the device/patch, the
standard of care. The use of the
device/patch reduced the number
of opioid refills by 52%.

Use of Nanotechnology
as an Alternative to

Opioids for Postoperative
Pain Management

Following TKA
Case report

Chelly et al.
(2023) [73] 1

The patient did not require any
opioids postoperatively with the
use of the nanocapacitor-based
device/patch.

4. Discussion

Besides demonstrating that the use of liposome extends the duration of analgesia,
evidence suggests that the use of these nano-transporters can also decrease drugs toxicity.
This principle has been applied to the use of drugs with known toxicity like ampho-
tericin B [49]. It would be potentially beneficial to use nanotechnology-based to decrease
the cardiac, gastrointestinal, renal and respiratory toxicity of opioids and anti-inflammatory
drugs administered orally [74–79]. One possible barrier may be the fact that there is no
nanotechnology-based oral formulation available.

Although the indications of nanotechnology-based transporters seem to be endless, it
is difficult to assess the future of nanotechnology-based transporters in pain. Today, the
use of Depodur™ is limited. The use of Exparel by surgeons and anesthesiologists is much
more important despite the relative controversy related to its long-lasting effects. Zynrelef™
introduction is too recent to assess its future use. However, a lidocaine liposome as a gel
formulation is being developed. Data reported in animals indicate that this preparation
may be interesting in human [80].

After conducting our randomized standard of care vs standard of care plus the Neu-
roCuple™ device in patients undergoing primary unilateral TKA and THA, it became
apparent that another study was required to confirm our preliminary data and that the
design of the study needed to include a NeuroCuple™ device allowing to cover a larger
surface area and to study the response obtained with an active NeuroCuple™ device vs. a
placebo NeuroCuple™ device. Such a device was developed. It is presented in Figure 6.
Soon after an active NeuroCuple™ device was developed, a prototype was applied on a
patient’s thigh following a primary and unilateral TKA. The patient reported no use of
opioid. This experience was published as a case report [73].
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The mechanism of action of the nanocapacitor device/patch is still under investigation.
Gudin et al. [66] claimed that the observed benefit of the Kailo™ patch was the result of a
central effect. In contrast, we proposed that the mechanism of action of the NeuroCuple™
device was peripheral, suggesting that the nanocapacitors contained within the device
represents as an alternative to the biological capacitors that are locally destroyed in case of
a local trauma. Thus, in physiological conditions, it is established that cellular membranes
play the role of biological capacitors which allows for electrical equilibrium. In trauma,
the membrane is destroyed, resulting in an accumulation of electrons, a decrease in pH,
and an accumulation of fluid, which generates local inflammation and pain. When ap-
plied locally, as an invitro capacitor, the NeuroCuple™ allows a redistribution of the local
excess of electrons. This normalizes the local pH allowing inflammation and pain to be
reduced [81–85]. Evidence supporting this concept is illustrated by measuring the local elec-
tromagnetic field changes associated with the local application of the NeuroCuple™. When
the NEUROCUPLE device was applied just above a patient’s knee following TKA, capaci-
tance increased from 35 pF to 455–474 pF using the Mastech MS8040 (Mastech Digital Inc.,
Pittsburgh, PA, USA).

Most evidence supports the use of the nano-capacitors devices/patches distributed
by nCap Medical, Sign Relief Technologies and Kailo Labs LLC for the management of
musculoskeletal acute and chronic pain; however, anecdotal reports also suggest that
the use of nanocapacitors may also be effective to manage migraine, fibromyalgia and
abdominal and pelvic pain. There is no doubt that nanocapacitor devices/patches represent
a fascinating technology, but their limits need to be tested, because beside their indications
for the management of pain, premilitary data also suggests that the technology may have
interesting indications in the treatment of cancer.

5. Conclusions

Nanotechnology offers promising options for the treatment of pain either as drug
transporters or as capacitor device/patch. As a drug transporter-based formulations for
morphine, bupivacaine and lidocaine nanotechnology allows for extending the duration
of these drugs, a reduction in the effective analgesic dose, therefore reducing potential
drug toxicity. As nanocapacitor-based technology it potentially represents an effective
non-pharmacology approach. In addition, compared to other complementary techniques
the use of nanocapacitor based device/patch don’t require training. However, additional
research is required to establish the usefulness of this technology for the treatment of
chronic and acute pain.
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