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Abstract: Frontotemporal neural systems are highly implicated in the emotional 

dysregulation characteristic of bipolar disorder (BD). Convergent genetic, postmortem, 

behavioral and neuroimaging evidence suggests abnormalities in the development of 

frontotemporal white matter (WM) in the pathophysiology of BD. This review discusses 

evidence for the involvement of abnormal WM development in BD during adolescence, 

with a focus on frontotemporal WM. Findings from diffusion tensor imaging (DTI) studies 

in adults and adolescents are reviewed to explore possible progressive WM abnormalities 

in the disorder. Intra- and interhemispheric frontotemporal abnormalities were reported in 

adults with BD. Although evidence in children and adolescents with BD to date has been 

limited, similar intrahemispheric and interhemispheric findings have also been reported. 

The findings in youths suggest that these abnormalities may represent a trait marker 

present early in the course of BD. Functional connectivity studies, demonstrating a 

relationship between WM abnormalities and frontotemporal dysfunction in BD, and DTI 

studies of vulnerability in first-degree relatives of individuals with BD, are discussed. 

Together, findings suggest the involvement of abnormal frontotemporal WM development 

in the pathophysiology of BD and that these abnormalities may be early trait markers of 

vulnerability; however, more studies are critically needed. 
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1. Introduction 

Bipolar disorder (BD) can be a severe and disabling mood disorder, associated with detrimental 

outcomes, such as high rates of hospitalizations, substance abuse and suicide [1–3]. It is a recurrent 

illness that is characterized by manic or hypomanic episodes, which may alternate with depressive 

episodes and periods of normal mood, or euthymia. Dysregulated affective states are central to the 

acute episodes: euphoric or highly irritable states during mania or sad states during depression. The 

affective changes are accompanied by shifts in motivation, impulse regulation, energy, and activity 

levels, in addition to changes in sleep and appetite, implicating the brain regions that subserve 

emotional regulation and these associated functions. 

BD shows a peak in emergence during adolescence and early adulthood [4,5], implicating this 

epoch as highly important in the development of the disorder. Early onset of BD has been of particular 

concern because it is associated with a more severe course of the disorder than later presentations, 

which may have alternate etiologies [6,7]. Therefore, early detection of the illness is of great 

importance and adolescence has been a major focus within BD-research. Understanding of the 

development of BD during this epoch could provide insights into the pathophysiology of the disorder. 

In youth diagnosed with BD, there is a strong overlap in clinical symptoms with other disorders, 

including attention deficit hyperactivity disorder and major depressive disorder. Misdiagnosis can lead 

to interventions that have the potential to worsen the outcome of BD [8–10]. Therefore, the detection 

of trait markers early in the disease course might be of importance in adolescents to ensure they 

receive needed treatments and avoid treatments that could be detrimental. 

Convergent evidence supports a central role for altered development of frontotemporal neural 

systems in BD. Early studies of patients with lesions and seizure foci in anterior cortical and mesial 

temporal regions, and with lesions in white matter (WM) tracts connecting these regions, reported 

behavioral symptoms similar to those seen in BD [11–18]. Findings from neuroimaging studies 

support abnormalities in frontotemporal systems, including abundant findings of abnormal structure 

and functioning in the amygdala and ventral prefrontal cortex (vPFC) [19]. Recently, studies have 

suggested that a progression in regional brain abnormalities is present in BD. For gray matter (GM) 

structures, there is initial evidence that subcortical abnormalities, including the amygdala, may be 

present by adolescence, while PFC abnormalities, including in the vPFC and more rostral PFC regions, 

may progress during adolescence and into early adulthood [20–24]. 

Structural magnetic resonance imaging (MRI) studies and postmortem studies support the 

involvement of abnormal WM in adults with BD. There is little data available on whether 

abnormalities in WM appear early and whether they show a progression during adolescence in BD. 

WM connections continue to develop into adolescence and well into adulthood [25–30], suggesting 

that WM abnormalities in BD might be influenced by developmental changes. In the last decade, the 

advent of diffusion tensor imaging (DTI) techniques has provided the opportunity to investigate the 
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structural integrity of WM tracts in vivo more specifically. Studies have emerged in which this method 

is applied not only to adults with BD, but also to the study of youths with BD. 

This article will review studies that implicate abnormal WM development in frontotemporal neural 

systems in BD, with a focus on what can be learned about WM in adolescents with BD. DTI findings 

in adolescents will be discussed in the context of findings in adults to explore the involvement of WM 

development in the disorder. Although DTI studies will be the focus of the review, studies using other 

structural imaging techniques will also be included to allow comparisons of DTI findings within the 

context of other work in the field. Furthermore, functional connectivity studies will be reviewed to 

explore the relationship between DTI findings and frontotemporal dysfunction in individuals with  

BD. Finally, this article will examine genetic studies related to WM and neuroimaging studies of  

first-degree relatives of BD individuals, considered at-risk for the disorder, as BD is a highly heritable 

illness [31,32] and these studies may help identify possible markers for early detection or even 

prevention of BD. Together, the studies reviewed support neurodevelopmental mechanisms underlying 

frontotemporal WM pathology in BD. 

2. Frontotemporal Neural Circuitry Implicated in BD 

Emotional dysregulation is the characteristic feature of BD, suggesting the involvement of 

abnormalities in frontotemporal brain regions, especially the amygdala and vPFC, which are central to 

emotional regulation. The amygdala plays an early and important role in emotional processing [33–37], 

while the vPFC integrates information from the amygdala and other brain regions that provide 

information about emotional and motivational relevance of stimuli, and synthesizes an adaptive 

executive feedback to regulate amygdala and other subcortical responses [38,39]. The involvement of 

frontotemporal abnormalities has been further implicated in BD by behavioral neuroanatomical and 

neuroimaging studies. Early reports of lesions within the PFC, particularly in the vPFC, provided 

descriptions of symptoms similar to those seen in BD, including depressive symptoms and manic-like 

symptoms such as inappropriate euphoria [11–13,17,18]. BD-type symptoms were also observed in 

patients with seizures with foci in the mesial temporal lobe, including in the amygdala [13,15,16].  

As the vPFC and the amygdala are highly interconnected brain regions [40], these findings suggest  

that abnormalities within both the vPFC and amygdala and/or their connections might contribute to 

BD. Indeed, subsequent findings from structural and functional MRI studies in adults with BD have 

converged in demonstrating abnormalities in each of these frontotemporal neural system components 

in individuals with BD [19]. 

Recent evidence suggests a developmental progression in frontotemporal abnormalities in BD. 

Subcortical brain structures mature earlier than PFC structures and PFC structures continue to show 

dynamic maturational changes over adolescence. Therefore, it was theorized that, consistent with the 

pattern of maturation of brain structures, frontotemporal system abnormalities in BD might emerge 

earlier in subcortical structures and PFC abnormalities might progress during adolescence [21]. 

Preliminary structural and functional neuroimaging studies support this progression, with amygdala 

abnormalities demonstrated in adolescents with BD and PFC abnormalities appearing to progress 

during adolescence and early adulthood [20–22,24]. However, these studies are cross-sectional and 

must be considered as models of longitudinal outcomes with caution. There is a previous longitudinal 
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study that also supports this model; however, the sample size was small and the significance threshold 

modest, so findings should be considered preliminary and in need of replication in a larger cohort [23]. 

In addition to GM developmental changes during adolescence, evidence supports dynamic 

maturational changes in WM connections between the amygdala and vPFC [27]. Human postmortem 

and neuroimaging studies have shown that myelination of these connections continues through 

adolescence and well into adulthood in the normal developing brain [25,26,28–30]. The substantial 

developmental changes in these connections over adolescence and young adulthood suggest that if 

WM connections are involved in the developmental pathophysiology of BD, they may particularly 

show changes in their expression during these epochs in the disorder [22,27,29,41,42]. 

3. Frontotemporal WM Connections Implicated in BD 

For more than a century, lesions in frontal WM and frontal-subcortical connections have been 

described in association with both depressive symptoms and manic-like states, including disinhibition 

and inappropriate excitement and laughter [14]. WM connections within frontotemporal neural 

systems have since been implicated in the pathophysiology of BD, as the frontotemporal GM 

structures in which abnormalities have been shown in BD are highly interconnected within these 

systems. Furthermore, postmortem studies have demonstrated reductions in glia cells, especially 

oligodendrocytes, and downregulation of genes related to oligodendrocytes and myelination, 

particularly in frontal brain regions, in individuals with BD [43–47]. These findings suggest 

abnormalities in myelin synthesis and axonal survival in individuals with BD and implicate the 

involvement of abnormal WM in the pathology of the disorder. 

Frontotemporal WM tracts can be divided into intra- and interhemispheric, i.e., connecting brain 

structures within one hemisphere or providing connection between the two hemispheres, respectively. 

Important intrahemispheric WM bundles in the frontotemporal neural circuitry include the uncinate 

fasciculus (UF) and the cingulum bundle (CB); both carry major connections between the amygdala 

and vPFC and thus are WM structures especially implicated in BD. Frontotemporal interhemispheric 

WM abnormalities are also highly implicated in the pathophysiology of the disorder, as the anterior 

corpus callosum (CC) provides major right-left vPFC connections [48]. Furthermore, studies have 

identified more widely distributed connections from the amygdala and vPFC, such as to more  

dorsal PFC, hippocampus, striatum, thalamus, cerebellum and hypothalamus, areas associated with 

motivational behaviors, biological rhythm and neurovegetative processes [40,49–52]. Thus, this may 

explain why impaired amygdala-vPFC connectivity could lead not only to emotional dysregulation, but 

also to a broader range of symptoms seen in BD. 

Studies of structural abnormalities in WM in adults with BD have shown both decreases in volume 

of WM within ventral frontal regions [22], as well as decreases in CC area and signal intensity, i.e., 

mean signal intensity thought to reflect myelination [53–55]. These implicate both intra- and 

interhemispheric frontotemporal WM abnormalities in the pathology of BD in adults. Additionally, 

decreased signal intensity in the CC in BD children and adolescents has been reported [56], suggesting 

that altered myelination may occur during neurodevelopment in BD and that these WM abnormalities 

may be an early feature of the disorder. 
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Other WM abnormalities reported in MRI studies of BD are WM hyperintensities (WMH). These 

are hyper-intense bright spots that may reflect brain regions of increased water density, possibly 

because of local altered vascular permeability or other processes [57,58]. However, the etiology of 

WMH remains unclear. WMH have been associated with aging [58,59], and an increase in their 

occurrence has also been reported in several studies in adults with BD [60–70]. These findings might 

suggest that the accumulation of WMH might be associated with aging processes in the disorder [71]. 

Furthermore, an association between increased WMH and previous suicide attempts has been  

reported [62], suggesting the involvement of WMH in risk for suicide attempts in BD individuals. 

Some of these studies reported WMH in the deep frontal WM, further suggesting that tracts connecting 

fronto-cortical and subcortical regions are affected in the disorder [61,68]. Evidence related to WMH 

in youths with BD is contradictory. In some studies of children and adolescents with BD, significant 

increases in WMH number were not detected [72,73]. There have also been reports of increases  

in WMH in children and adolescents with BD [74,75]. This suggests that WMH may involve 

pathophysiological processes other than aging or may be associated with particular subtypes of BD, 

such as early onset. However, the involvement of WMH early in the disorder remains unclear. 

4. DTI Studies Implicating Frontotemporal WM Abnormalities in Adolescents with BD 

DTI studies have started to focus on structural integrity differences between WM in adolescents 

with BD, compared to healthy comparison (HC) adolescents (Table 1). DTI studies provide 

noninvasive measures of the organization of WM [76]. Fractional anisotropy (FA) is a common DTI 

measure that provides information on the structural integrity and coherence of fibers within WM 

regions [77]. Some studies report additional measures to provide more insight on diffusivity in WM, 

such as apparent diffusion coefficient (ADC) or mean diffusivity (MD), radial diffusivity (RD) and 

axial diffusivity (AD); however, FA is the most consistently reported measure and therefore the main 

focus of this review. 

Frontotemporal WM abnormalities implicated in BD, both intra- and interhemispheric, have been 

reported in many adult DTI studies. Reduced UF and neighboring orbitofrontal WM integrity [78–88] 

and reduced anterior CB integrity [86,89–92] have been among the most consistent WM integrity 

findings in adults with BD. Studies of adults with BD have also shown intrahemispheric WM 

abnormalities in connections between dorsal frontal regions, to regions such as the striatum or 

thalamus via connections within structures, including the anterior limb of the internal capsule  

(ALIC) [82,87,93,94]. More abundant interhemispheric findings include reduced structural integrity in 

the anterior CC in adults with BD, and supports abnormal interhemispheric frontotemporal circuitry in 

the disorder [70,87,88,94–99]. In addition to tensor-based diffusion MRI studies, recent research in 

adults with BD has also utilized alternative methodologies, such as high-angular resolution diffusion 

imaging (HARDI) and diffusion spectrum imaging (DSI), which are able to further parse 

heterogeneous diffusion directions and crossing fiber tracts [99,100]. These techniques are promising 

and may potentially provide additional insight into WM abnormalities in BD. 
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Table 1. Diffusion tensor imaging (DTI) studies of children and adolescents with bipolar disorder and/or at-risk for bipolar disorder. 

Authors 

and Year 
Subjects 

Mean Age  

(year ± SD) 

Age Range 

(years) 

DTI 

Measures 

Analysis 

Type 

Regions of 

Interest 
Findings and Overall Significance Levels 

Studies of children and adolescents at-risk for BD 

Versace  

et al. 2010 

[101] 

20 AR-BD 

25 HC 

13.2 ± 2.5  

13.9 ± 2.6 
8–17 FA, RD, L1 TBSS Whole brain 

AR-BD > HC: FA in left CC body, L1 in right ILF  

AR-BD < HC: RD in left CC body, right ILF  

Significant group-by-age interaction:  

HC: FA increases/RD decreases with age in left CC body; RD 

decreases with age in right ILF; L1 increases with age in right ILF  

AR-BD: FA decreases/RD increases with age in left CC body; RD 

no relation with age in right ILF; L1 decreases with age in right ILF  

AlphaSim corrected p < 0.05 

Studies of children and adolescents both with BD and at-risk for BD 

Frazier  

et al. 2007 

[102] 

7 AR-BD 

10 BD  

8 HC 

8.9 ± 3.0  

9.2 ± 3.0  

9.2 ± 2.4 

4–12 FA Voxel-based 

A priori CPC 

and SLF, and 

whole brain 

BD < HC: FA in bilateral CPC and SLF, right CC body, left OF WM  

AR-BD < HC: FA in bilateral SLF  

BD < AR-BD: FA in bilateral CPC  

p < 0.05 Bonferroni corrected 

Studies of children and adolescents with BD 

Adler  

et al. 2006 

[103] 

11 BD  

17 HC 
14 ± 2 10–18 

FA, trace 

ADC 
ROI 

Frontal and 

posterior regions 

BD < HC: FA in bilateral superior frontal WM tracts  

p < 0.01 uncorrected 

Kafantaris 

et al. 2009 

[104] 

26 BD  

26 HC 

16.0 ± 1.5  

15.3 ± 1.5 
 FA, ADC Voxel-based Whole brain 

BD < HC: FA in right OF WM, bilateral temporal lobes, left 

occipital lobe  

BD > HC: ADC in bilateral subgenual region, bilateral precuneus, 

left postcentral gyrus, left temporal and right occipital lobes  

p < 0.005 uncorrected, cluster size ≥100 

Pavuluri  

et al. 2009 

[105] 

13 BD  

13 ADHD 

15 HC 

14.8 ± 2.5  

13.4 ± 3.0  

13.7 ± 2.7 

 
FA, ADC,  

r-FCI 

ROI and 

voxel-based 

ACR, ALIC, CB, 

CC (splenium), 

ILF, PLIC,  

SLF, SRI 

BD and ADHD < HC: FA in ACR, r-FCI in CC splenium  

BD and ADHD > HC: ADC in CC splenium  

p < 0.05 uncorrected 
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Table 1. Cont. 

Studies of children and adolescents with BD (continued) 

Barnea-

Goraly  

et al. 2009 

[106] 

21 BD  

18 HC 

16.1 ± 2.7  

14.5 ± 2.7 
9–18 

FA, trace 

values 

(average 

diffusivity), 

ADC 

TBSS Whole brain 

BD < HC: FA in CC, PCR, left mid-posterior CB, fornix, fibers from 

fornix to thalamus  

p < 0.05 corrected 

Gönenç  

et al. 2010 

[107] 

10 BD  

(8 in study) 

10 HC  

(8 in study) 

3M: 16.6 ± 4.8  

7F: 11.8 ± 4.5  

6M: 10.6 ± 4.0 

4F: 14.3 ± 1.9 

6–18 

FA, trace 

diffusivity, 

RD, AD 

ROI Bilateral CPC 

BD < HC: FA left CPC  

BD > HC: left and right trace and left RD in CPC  

p < 0.05 uncorrected 

Saxena  

et al. 2012 

[108] 

10 BD  

10 HC 

13.9 ± 3.6  

13.6 ± 3.6 
7–17 FA TBSS 

5 CC  

subdivisions, AC 

BD < HC: FA genu CC and AC  

p < 0.001 uncorrected, p < 0.05 small-volume FDR correction 

Gao et al. 

2013  

[109] 

18 BD  

18 HC 

15.1 ± 1.8  

14.1 ± 1.6 
10–18 FA TBSS Whole brain 

BD < HC: FA right anterior CB  

p < 0.05 FDR correction 

Abbreviations  

AC Anterior commissure  

ACR Anterior corona radiate  

AD Axial diffusivity  

ADC Apparent diffusion coefficient  

ADHD Attention deficit hyperactivity disorder  

ALIC Anterior limb of the internal capsule  

AR-BD At-risk for BD, i.e., having a first-degree relative 

with BD  

BD Bipolar disorder  

CB Cingulum bundle region  

CC Corpus callosum 

CPC Cingulate-paracingulate  

DTI Diffusion tensor imaging  

F Female  

FA Fractional anisotropy  

FDR False discovery rate  

HC Healthy comparison  

ILF Inferior longitudinal fasciculus  

L1 Longitudinal diffusivity  

M Male 

PCR Posterior corona radiate  

PLIC Posterior limb of the internal capsule  

OF Orbitofrontal  

r-FCI Regional fiber coherence index  

RD Radial diffusivity  

ROI Region of interest  

SD Standard deviation  

SLF Superior longitudinal fasciculus  

SRI Superior region of the internal capsule  

TBSS Tract-based spatial statistics  

WM White matter 
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Studies of children and adolescents with BD have also shown findings of reduced intrahemispheric 

structural integrity in ventral frontal WM regions, compared to HC children and adolescents [102,104] 

(Table 1). Decreased FA values have been reported in pericingulate regions, including the CB, in 

children and adolescents with BD [102,107,109]. These decreases in WM structural integrity include 

findings in prepubertal children [102,107]. This might be an indication that intrahemispheric 

frontotemporal WM abnormalities are already present in childhood, representing some of the earliest 

markers of the disorder. 

Abnormalities in additional tracts have also been demonstrated in children and adolescents with 

BD, including tracts to other connection sites of frontotemporal circuitry, such as to more dorsal 

frontal regions, basal ganglia, thalamus and posterior association cortices [102,105,106]. Reduced 

structural integrity in superior frontal regions has been reported in BD adolescents [103]. Reductions 

of FA values have also been reported in frontal projections through the anterior corona radiata in 

children and adolescents [105,106], and in a group that included both adolescents and young  

adults [98], with BD. In contrast to findings in adults, abnormalities in the ALIC have not been a 

consistent finding in children and adolescents with BD. Studies have reported both no differences [105] 

and reduced structural integrity of the ALIC in children and adolescents with BD compared to HC 

youths [110]. The latter study included both adults and youths with BD and compared early- and  

late-onset of BD and reported lower FA values in the early-onset group, suggesting that early- and  

late-onset BD might represent different subtypes within the bipolar spectrum with different 

pathophysiologies, potentially accounting for some conflicting results in the literature. 

Findings of frontotemporal interhemispheric WM abnormalities in adolescents with BD have also 

started to emerge. Lower FA values of interhemispheric connections in a group with both children and 

adolescents with BD have been found in the anterior commissure (AC) [108]. Decreases in structural 

integrity in the anterior CC have been reported in prepubertal children and adolescents [106,108]. The 

AC and the anterior CC link the right and left temporal lobes and prefrontal lobes respectively, and 

therefore could play a role in the frontotemporal neural circuitry suggested in BD. Findings suggest 

that reduced integrity of frontotemporal interhemispheric WM bundles might be present early in the 

disease course. 

5. Functional Connectivity Studies and the Relationship between DTI Results and  

Dysfunction in BD 

Functional connectivity neuroimaging studies further implicate the involvement of abnormal 

frontotemporal WM connections in BD. Functional connectivity MRI measures can be derived  

from the degree that activity is coordinated in time between different brain regions. Functional 

neuroimaging studies have provided support for trait abnormalities in functional connectivity between 

the amygdala and vPFC regions in both adults [81,111–116] and children and adolescents [117–119] 

with BD across mood states. 

Several studies have aimed to examine the relationship between DTI results and dysfunction in BD. 

An investigation combining DTI and functional connectivity data showed an association between 

reduced structural integrity in the UF with decreases in the functional connectivity between the vPFC 

and the amygdala during processing of emotional stimuli by adults with BD [81]. This multimodal 
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neuroimaging study suggests that the WM aberrations may contribute to disruptions in the ability of 

the frontotemporal brain structures to work together in the regulation of responses to emotional stimuli.  

Hemispheric lateralization of processing of positive and negative emotions is evident in normal 

affective processing, and the balance between the hemispheres has been proposed to be important in 

healthy emotional regulation [120]. A low frequency resting state functional connectivity study 

showed increased interhemispheric correlations between left and right vPFC in adults with BD, 

relative to healthy individuals [111]. This finding suggests that interhemispheric abnormalities might 

contribute to impaired hemispheric integration and the hemispherically-lateralized dysfunction in acute 

mood states of the disorder [48,111]. 

A functional connectivity study investigating children and adolescents with BD showed less 

functional connectivity between the amygdala and posterior association cortices during an emotional 

face identification task [121]. This finding suggests that youth with BD may have impaired 

communication in neural systems critical to processing faces and emotional stimuli and that WM 

connections to posterior regions may be early abnormalities in BD. As connections from posterior 

associations structures to amygdala may carry information used to associate stimuli with emotional 

information [122], abnormalities in these connections could contribute to abnormalities in the 

development of emotional associations to environmental stimuli. More multimodal studies are needed 

to further delineate the relationship between WM abnormalities and dysfunction in BD. 

6. Association of WM Abnormalities with Genetic Risk for BD 

Increasing evidence that genes related to WM and frontotemporal connectivity are associated  

with BD further implicate frontotemporal neural circuitry in the disorder. BD has strong genetic 

contributions with heritability estimates varying from 40% to 70% [123]. Studies have suggested  

that genes involved in cytoarchitecture of frontotemporal WM structures might be associated with  

an increased risk of BD [124]. For example, the neuregulin 1 (NRG1) gene plays a key role  

in neurodevelopmental processes in WM brain connections, such as in axonal guidance and 

myelination [125–127]. NRG1 is suggested to influence the susceptibility to BD and seems especially 

associated with psychotic features [128]. Abnormal frontotemporal WM volume, including in the CB 

and regions in the CC, has been found to be associated with a single nucleotide polymorphism (SNP) 

in the NRG1 gene (rs35753505) in adults with BD [129]. DTI evidence showed that another NRG1 

SNP (rs6994992) is associated with reduced WM density and integrity in the ALIC [130], suggesting 

that NRG1 may increase susceptibility to psychopathology by altering connections between PFC and 

other brain regions. Another gene of particular interest in BD is the CACNA1C gene, which has been 

reported in genome-wide association studies to be related to BD [131,132]. The CACNA1C gene is 

implicated in the development and plasticity of the frontotemporal neural circuitry [133]. CACNAIC 

rs1006737 SNP variation has been associated with altered frontotemporal functional connectivity 

between the amygdala and vPFC [134]. This finding implicates variations in gene expression in the 

neural circuitry associated with BD, and that altered gene expression associated with BD may lead to 

abnormalities in WM connections, including in their development and plasticity, as well as in 

associated frontotemporal functional connectivity. 



J. Clin. Med. 2014, 3 242 

 

 

The high heritability rates in BD are supported by several longitudinal studies, showing offspring of 

individuals with BD to be at greater risk to develop BD [135,136]. First-degree relatives of affected 

BD individuals are considered to have more than a ten-fold higher risk of developing BD than the 

general population [137]. Thus, youths at-risk for BD (AR-BD), as they have a first-degree relative 

with BD but they themselves have not yet developed BD, are of particular interest to investigate. The 

presence of neurodevelopmental abnormalities in AR-BD youth, prior to the onset of acute episodes of 

the disorder, was suggested by a prospective study of a large cohort [138]. AR-BD youths might  

show brain differences that are apparent even before onset of mood episodes, revealing abnormalities 

associated with vulnerability to the disorder and minimizing confounds, such as the possibility that 

abnormalities are a result of having experienced an acute episode or medication exposure. 

Structural MRI studies in AR-BD adults have shown reduced WM volume in the left  

hemisphere [139] and WMH abnormalities [140,141], suggesting that WM disconnectivity might also 

be present in AR-BD individuals. However, only limited DTI studies have to date explored structural 

integrity in AR-BD individuals with BD. 

In DTI studies, frontotemporal structural integrity abnormalities have been reported in both adults 

with BD and their AR-BD adult relatives, both showing decreased FA values in the right UF [87]. 

Reductions of structural integrity in the ALIC and in frontal connections to posterior association 

cortices have also been reported in adult AR-BD individuals [87,94,142,143]. Decreased structural 

integrity found in the CC in BD individuals has not been detected in their relatives [87]; however, 

increased genetic liability for BD was reported to be associated with a trend towards reduced FA in  

the anterior CC, with intermediate values for AR-BD adults [94]. This suggests the possibility that 

intrahemispheric frontotemporal connections are more associated with genetic heritability than 

interhemispheric WM connections. The frontal system WM findings in AR-BD are consistent with 

reports of cognitive dysfunction in AR-BD adults [144]. Future research to combine tests of cognitive 

and behavioral functions with neuroimaging may help to identify relationships between cognitive 

dysfunction and underlying WM abnormalities. 

To date, only limited numbers of studies have been reported that explore WM in AR-BD youths 

(Table 1). One study reported altered WM in the left CC during early adolescence in AR-BD youths, 

compared to youths with no family history of BD, with the AR-BD youths showing decreases in FA 

with age, while the low-risk youths showed an increase of FA with age [101], suggesting altered WM 

developmental trajectories in the AR-BD adolescents. Another study reported decreased structural 

integrity in bundles connecting frontal cortices with posterior association cortices in both prepubertal 

children with BD and AR-BD prepubertal children [102]. These results raise the intriguing possibility 

that abnormalities in WM connections may provide an early marker for vulnerability to BD. However, 

due to the limited DTI research conducted in AR-BD subjects, it remains unclear whether WM 

abnormalities are involved in the vulnerability for developing BD and whether they could potentially 

be a biomarker for the disorder. 

7. Conclusions 

While GM volumetric and functional changes have been a focus of neuroimaging research in BD, 

recent neuroimaging data have been converging to suggest WM abnormalities may be important in the 
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developmental pathophysiology of BD and have potential as early biomarkers. Intrahemispheric WM 

abnormalities in UF and CB are especially implicated in the disorder, and additional abnormalities in 

connections to dorsal frontal regions, striatum and thalamus, as well as to posterior association 

cortices, have also been shown in adults and adolescents. Interhemispheric anterior CC abnormalities 

have also been repeatedly shown in adults with the disorder, although less evidence is available in 

adolescents. WM abnormalities are associated with frontotemporal system dysfunction, as well as 

associated behaviors. Genetic variations associated with both the development of WM connections and 

with BD susceptibility have also shown association with frontotemporal structural and functional 

connection abnormalities, suggesting potential genetic mechanisms that may underlie connection 

abnormalities. The intrahemispheric abnormalities show promise as possible early markers of 

vulnerability to BD. There is less data to support interhemispheric abnormalities in vulnerability. 

More research is critically needed. Longitudinal studies of adolescents with BD could help to 

identify the processes involved in the neurodevelopment of BD, contributing to understanding of the 

progression of abnormalities and the factors that contribute to them. Longitudinal studies of AR-BD 

children are especially needed. These could help to identify neurodevelopmental processes involved in 

the transition from risk to developing the disorder for children who go onto develop BD, as well as 

protective processes for those who do not. Increased sample sizes, as well as consideration of various 

heterogeneous demographic and clinic features, are needed. It will be important to investigate 

associations between specific regional findings with symptom and behavioral domains to provide a 

dimensional understanding of neuropathological mechanisms of BD. 

Measures assessed in imaging studies have been limited, such as a focus primarily on FA in DTI 

studies. As additional measures may help to clarify the types of pathophysiological processes involved 

have been informative in studies of adults, and have shown some differences in studies of youths, they 

will be important to include in future studies. Previous studies have varied in other aspect of the 

imaging acquisition and analyses methods, including variation in the statistical thresholds used. The 

field will benefit from increasingly sensitive and specific measures of white matter features, and of 

studies with larger samples with more stringent statistical thresholds. 

In summary, research on WM in BD supports an important role for frontotemporal WM. 

Neurodevelopmental abnormalities that affect trajectories of WM development during adolescence are 

implicated in the emergence of BD during this epoch. Future studies might reveal important insights 

into the pathophysiology of BD and identify brain differences and mechanisms to target for early 

identification, intervention and prevention strategies. 
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