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Abstract: This article summarizes our current knowledge of the epidemiology, pathogenesis, 

and morbidity of hypoglycemia in patients with diabetic kidney disease and reviews 

therapeutic limitations in this situation. 

Keywords: chronic kidney disease; diabetes; diabetic nephropathy; hypoglycemia; renal 

 

1. Introduction 

Hypoglycemia is a common occurrence in people with diabetes and most frequently it is the result 

of pharmacologic intervention. Avoidance of and fear of hypoglycemia are often the major 

impediment for achieving optimal glycemic control [1]. Moreover, hypoglycemia is associated with 

significant morbidity and mortality [2–6].  

Chronic kidney disease (CKD) is an independent risk factor for hypoglycemia, and augments the 

risk already present in people with diabetes [7–9]. In addition, CKD imposes restrictions on 

antidiabetic therapeutic options and increases the risk of cardiovascular disease and death [7,10–13]. 

This review represents an update and expansion of a recent publication of ours on this subject with 

more detailed discussion on therapeutic options limitations facing care providers in this common 

clinical situation [14]. PubMed and MEDLINE were searched for literature published in English from 
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January 1989 to January 2015 for diabetes mellitus, hypoglycemia, chronic kidney disease, diabetic 

nephropathy, diabetic kidney disease, and chronic renal insufficiency.  

2. Definition and Classification of Hypoglycemia in Diabetes 

The American Diabetes Association and Endocrine Society workgroup on hypoglycemia defined 

iatrogenic hypoglycemia in patients with diabetes as all episodes of an abnormally low plasma glucose 

concentration that expose the patient to potential harm [15]. No single threshold value was assigned to 

define hypoglycemia since this value may differ among patients. An alert value of <70 mg/dL  

(<3.8 mmol/L), however, was chosen to draw the attention of patients and caregivers and also for use 

as a cut-off value in the classification of hypoglycemia in diabetes as outlined in Table 1 [15]. 

Table 1. Hypoglycemia categories as defined by the American Diabetes Association and 

the Endocrine Society [15]. 

Category Definition 

Documented 
symptomatic 

An event during which typical symptoms of hypoglycemia are associated by 
a measured plasma glucose concentration ≤70 mg/dL a 

Severe 
An event requiring assistance of another person to administer carbohydrate, 
glucagon, or other resuscitative actions b 

Asymptomatic 
An event not accompanied by typical symptoms of hypoglycemia but with a 
measured plasma glucose concentration ≤70 mg/dL a 

Probable symptomatic 
An event during which symptoms of hypoglycemia are not accompanied by a 
plasma glucose measurement but that was presumably caused by a plasma 
glucose concentration ≤70 mg/dL a 

Pseudo-hypoglycemia 
An event during which the person with diabetes reports any of the typical 
symptoms of hypoglycemia with a measured plasma glucose  
concentration >70 mg/dL a but approaching that level 

a 70 mg/dL equals 3.8 mmol/L; b If plasma glucose measurements are not available during such an event; the 

neurological recovery attributable to the restoration of plasma glucose to normal is considered sufficient 

evidence that the event was induced by hypoglycemia. 

3. Definition and Classification of CKD 

The Kidney Disease Improving Global Outcomes (KDIGO) has defined CKD as abnormalities of 

kidney structure or function, present for >3 months, with implications for health [16]. The group 

classified CKD based on cause, estimated glomerular filtration rate (eGFR), and albuminuria. Diabetic 

kidney disease (DKD) refers to CKD caused by diabetes. DKD is usually a presumptive diagnosis 

detected clinically by screening for increased albuminuria and decreased eGFR. Since there may be 

other causes of CKD in patients with diabetes (e.g., hypertension, pyelonephritis), kidney biopsies may 

sometimes be needed to establish a definitive diagnosis [16].  

Increased albuminuria is usually detected through abnormal reagent strip test for total protein or a 

random urine albumin/creatinine ratio (ACR) assessment. Although the appearance of increased 

albuminuria is usually the earliest finding of DKD, the severity of albuminuria does not necessarily 

predict DKD progression in patients with either type 1 or type 2 diabetes [17–19]. The normal ACR in 
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young adults is <10 mg/g (<1 mg/mmol) [16]. Abnormal results should be confirmed by repeat testing 

at least twice over a 6 month period because of frequent false positives [20]. An elevated random ACR 

can be confirmed by urine albumin excretion rate in a timed urine collection, as necessary. 

Albuminuria categories in CKD according to KDIGO are summarized in Table 2. 

Table 2. Albuminuria categories in chronic kidney disease (CKD) based on KDIGO a 

classification [16]. Adapted by permission from Macmillan Publishers Ltd.: Kidney 

International. KDIGO.  

Albumin Excretion Rate 
(mg/24 h) 

Albumin Creatinine Ratio 
(mg/mmol or mg/g) 

Category (Description) 

<30 <3 mg/mmol (<30 mg/g) A1 (Normal to mildly increased)
30–300 3–30 mg/mmol (30–300 mg/g) A2 (Moderately increased) 
>300 >30 mg/mmol (>300 mg/g) A3 (Severely increased) 

a KDIGO = Kidney Disease Improving Global Outcomes. 

Estimating GFR from serum creatinine is appropriate for staging and tracking the progression of 

CKD in most clinical situations including in patients with DKD. The 2009 Chronic Kidney Disease 

Epidemiology Collaboration (CKD-EPI) formula and its modifications, which have been adopted by 

many clinical laboratories, were found more accurate than the Modification of Diet in Renal Disease 

(MDRD) Study equation and its modifications [16,21,22]. Using 2009 CKD-EPI equation is thus 

recommended by the KDIGO over the MDRD study equation for estimating GFR [16]. GFR 

categories according to KDIGO are outlined in Table 3. 

Table 3. GFR categories in CKD based on KDIGO a classification [16]. Adapted by 

permission from Macmillan Publishers Ltd: Kidney International. KDIGO. Summary of 

recommendation statements. Kidney Int. 2013; 3(1):1–150, © 2013. 

GFR (mL/min/1.73 m2) Category (Description) 

≥90 G1 * (Normal or high) 
60–89 G2 * (Mildly decreased) 
45–59 G3a (Mildly to moderately decreased) 
30–44 G3b (Moderately to severely decreased) 
15–29 G4 (Severely decreased) 
<15 G5 (Kidney failure) 

a KDIGO = Kidney Disease Improving Global Outcomes; * Glomerular filtration rate (GFR) categories G1 

and G2 do not constitute CKD in the absence of evidence of kidney damage. 

4. Epidemiology 

The U.S. National Health and Nutrition Examination Survey (NHANES) of 2011–2012 found that 

about 19% of participants with diabetes (type 1 or 2) had an estimated glomerular filtration rate 

(eGFR) of <60 mL/min/1.73 m2 [23]. The prevalence of kidney disease, characterized by either 

reduced kidney function (eGFR of <60 mL/min/1.73 m2) or albuminuria (ACR ≥3 mg/mmol  

(≥30 mg/g)), was nearly 50% among patients with diabetes [23]. The prevalence appears to be similar 

in several other countries. In the United Kingdom, one study showed that patients with diabetes  
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(type 1 or 2) were four times more likely to have clinically significant CKD (defined as an  

eGFR <60 mL/min/1.73 m2) than those without diabetes. Nearly one-third of people with diabetes 

(31%) had eGFR <60 mL/min/1.73 m2 compared with only 6.9% of the general population [24]. In 2011, 

diabetes was the primary cause of new cases of end stage renal disease (ESRD) in approximately 60% of 

patients in Malaysia, Mexico, and Singapore; and in more than 40% of patients in the Republic of 

Korea, Hong Kong, the Philippines, Japan, the United States, and New Zealand [25].  

The exact incidence and prevalence of hypoglycemia in patients with diabetes and/or renal disease 

are difficult to define because mild to moderate hypoglycemia may go unnoticed or unreported. 

Overall, hypoglycemia unawareness can be found in 25% of patients with diabetes [26]. The complete 

detection of chemical hypoglycemia would require continuous blood glucose measurements over 

prolonged periods. Studies using this approach have generally found that the frequency and duration of 

hypoglycemia, especially nocturnal hypoglycemia, are greater than what was previously  

thought [27,28]. More reliable data are available from studies reporting severe hypoglycemia that is 

associated with loss of consciousness or requiring external assistance [15]. In general, the frequency of 

hypoglycemia is lower in people with T2DM than in those with type 1 diabetes [29–34]. For example, 

the UK Hypoglycemia Study Group reported severe hypoglycemia rates in patients with type 2 

diabetes on insulin >2 years (10 episodes per 100 patient-year) to be far less than in patients with type 1 

diabetes (<5 years disease duration, 110 episodes per 100 patient-year; >15 years disease duration, 320 

episodes per 100 patient-year) [33].  

Renal hypoglycemia (hypoglycemia associated with CKD without any other obvious cause) is 

known to occur spontaneously in non-diabetic individuals with an incidence of 1%–3% [35,36]. The 

presence of diabetes adds another layer of complexity. For example, Moen et al. found that the 

incidence of hypoglycemia is increased in the presence of either diabetes (type 1 or 2) or CKD, with 

the risk most pronounced in the presence of both conditions (Figure 1). Among patients with diabetes, 

the rate was 10.7 versus 5.3 per 100 patient-months and among patients without diabetes was 3.46 

versus 2.23 per 100 patient-months, for CKD versus no CKD, respectively [7]. In a study by 

Muhlhauser et al., type 1 diabetes patients with impaired kidney function had a fivefold higher 

incidence of severe hypoglycemia than type 1 diabetes patients with normal serum creatinine [37]. 

Among people with T2DM the frequency of hypoglycemia will vary by treatment modality. In 

general the frequency of hypoglycemia is greatest with insulin and insulin secretagogues that are 

excreted primarily by the kidney and/or have active metabolites that may accumulate in patients with 

impaired renal function such as glibenclamide (glyburide) [2,34,38]. Prandial insulin (short-acting 

insulin administered before meals to limit postprandial hyperglycemia) is associated with a greater 

frequency of hypoglycemia than long-acting basal insulin [39]. Metformin, thiazolidinediones, 

dipeptidyl peptidase-4 inhibitors, glucagon-like peptide 1 (GLP-1) mimetics and sodium glucose 

cotransporter-2 (SGLT2) inhibitors do not increase the risk of hypoglycemia when used without 

sulfonylureas or insulin [30,34,40]. 
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Figure 1. Risk for hypoglycemia of varying severity and expressed as an adjusted 

incidence rate ratio in patients classified by presence or absence of CKD and diabetes. 

Reference group are patients without CKD or diabetes. Rates adjusted for race, gender, age, 

Charlson comorbidity index, cancer, diabetes, and cardiovascular disease (all rate ratios  

p < 0.0001) [7]. 

5. Pathogenesis 

5.1. Hypoglycemia Counterregulation 

Normally plasma glucose levels are maintained within a relatively narrow range (between 70 and  

140 mg/dL (3.8 and 7.8 mmol/L)) despite considerable variations in frequency and magnitude of 

carbohydrate intake and in energy expenditure. The maintenance of the stability of plasma glucose is 

due to the glucose counterregulatory system. By the time plasma glucose levels reach 70 mg/dL  

(3.8 mmol/L), secretion of counterregulatory hormones is stimulated—the key ones being glucagon 

which increases hepatic glucose production and catecholamines which mainly increase renal glucose 

release but also reduce muscle glucose uptake [1].  

Within a few years of diabetes onset, people with type 1 diabetes develop impaired  

counter-regulatory hormone responses, which are manifested first by decreased or absent glucagon 

responses to hypoglycemia [1]. This is followed by decreased catecholamine responses and later (and 

variably) by decreased growth hormone and cortisol responses. The mechanism of the loss of glucagon 

response is poorly understood but recent evidence suggests that it could be related to increased activity 

of ATP-regulated potassium channels in glucagon-producing alpha cells [41]. The pathogenesis for 

impaired catecholamines and other hormones responses is also not entirely clear but may be a result of 

recurrent hypoglycemia that: (a) impairs glucose sensing in the ventromedial hypothalamus (a brain 

region that plays a major role in controlling the counterregulatory responses to hypoglycemia); and (b) 

leads to cellular adaptation which results in hypoglycemia unawareness and reduced adrenomedullary 

response to subsequent hypoglycemia [42,43].  

Defective glucose counterregulation plays a major role in the susceptibility to severe hypoglycemia 

in patients with T1DM. By contrast, people with T2DM experience more modest impairment in 
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glucose counterregulation [44]. While the counterregulatory responses to hypoglycemia have not been 

evaluated in people with CKD, there are various factors that would predispose those individuals to 

impaired counterregulation; for example, impairment of glucose release into the circulation by both the 

liver and kidney [45].  

5.2. Renal Insufficiency as a Risk Factor for Hypoglycemia 

Presence of CKD adds risk factors for hypoglycemia to these already existing in patients with  

diabetes. Some of the additional factors are altered drug metabolism, drug-drug interactions (e.g., 

angiotensin-converting enzyme inhibitors), albuminuria, autonomic neuropathy, anorexia, 

malnutrition, infections, problems linked to dialysis, associated cardiac and hepatic disease, and 

impaired renal glucose release [46,47]. 

In healthy people, both the liver (via glucagon) and kidney (via catecholamines) equally contribute 

to the increase in glucose release into the circulation during counterregulation of hypoglycemia; this is 

largely achieved by gluconeogenesis [1,45,48]. People with moderate to severe CKD have reduced 

renal mass, and therefore, a reduced capacity for renal glucose release. Moreover, these individuals 

could be malnourished and/or have muscle wasting, which decreases their hepatic glycogen stores and 

reduces the availability of gluconeogenic substrates [49]. Finally, acidosis would limit the ability of the 

liver to compensate via hepatorenal reciprocity (reciprocal changes in hepatic and renal glucose release 

to maintain normoglycemia) [45].  

A decrease in renal clearance of insulin is evident when GFR falls below 15–20 mL/min/1.73 m2 [50]. 

At this point, a decline in hepatic insulin metabolism is also noted and is thought to be due to uremic 

toxins effects on the liver [50]. Management of CKD with dialysis reduces insulin resistance and increases 

insulin degradation and this includes an improvement in hepatic insulin metabolism [50,51]. Additionally, 

glucose is the most commonly used osmotic agent in peritoneal dialysis and glucose containing 

dialysis solutions can in many cause alternating hyperglycemia and hypoglycemia unless antidiabetes 

regimen and dialysis schedule is carefully managed [52].  

Management of CKD consequences may also affect diabetes and alter insulin requirements.  

Examples of which include; increased insulin-induced glucose utilization following correction of 

anemia by erythropoietin [53,54], and improved insulin sensitivity following intravenous 

administration of calcitriol [55–57].  

Over a 10-year follow-up period, Yun et al. demonstrated that the presence of baseline 

macroalbuminuria (defined as urinary albumin excretion ≥300 mg/day) was an independent risk factor for 

future development of severe hypoglycemia in T2DM patients with apparently normal or only 

minimally decreased renal function (e.g., GFR >60 mL/min/1.73 m2) irrespective of whether or not 

they were receiving insulin [9]. The exact underlying pathogenic mechanism for this is unclear.  

6. Hypoglycemia Morbidity and Mortality 

Both hypoglycemia and CKD are associated with increased morbidity and mortality, particularly 

from cardiovascular disease [3,4,12,58–60]. Renal disease is associated with classic major 

cardiovascular risk factors, including hypertension, hyperlipidemia, and diabetes. Whether hypoglycemia 

per se is an additional risk factor or only a marker of cardiovascular frailty is currently a matter of 
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debate [61,62]. There are theoretical, experimental and clinical considerations that suggest a causal 

effect, such as effects of hypoglycemia on oxidative stress, endothelial dysfunction,  

ST-segment prolongation and precipitation of arrhythmias via activation of the sympathetic nervous  

system [59,63,64]. 

7. Therapeutic Considerations 

Prescribing protocols change in patients with CKD mostly to account for predicted pharmacokinetic 

changes. Recognizing these changes and applying principles of good prescribing is needed to reduce 

risk of hypoglycemia in patients on insulin or insulin secretagogues. Guidelines for use of antidiabetic 

agents vary among medical communities [65–70]. Information about dosing adjustments in patients 

with CKD and diabetes is summarized in Table 4. 

Table 4. Recommended dosing adjustments of antidiabetic drugs in patients with diabetes 

and CKD. 

Class and Agents References Therapeutic Considerations 

Biguanides [65–69,71–73]  

Metformin  

 Review use/reduce dose if eGFR < 45–60 mL/min/1.73 m2 

 Avoid if eGFR < 30 mL/min/1.73 m2 

 FDA is more restrictive indicating that metformin is 

contraindicated if serum creatinine ≥1.5 mg/dL (133 μmol/L) in 

males or ≥1.4 mg/dL (124 μmol/L) in females 

Sulfonylureas [65,69,70,74]  

Glyburide 

(glibenclamide) 
  Not recommended if eGFR <60 mL/min/1.73 m2  

Gliclazide   
 Reduce dose if eGFR <30 mL/min/1.73 m2 

 Not recommended if eGFR <15 mL/min/1.73 m2  

Glimepiride  

 Reduce dose if eGFR <30 mL/min/1.73 m2  

 Start at 1 mg daily or consider alternative agent if  

eGFR < 15 mL/min/1.73 m2  

Glipizide  
 Can be used in all stages of CKD with caution. May need  

dose reduction 

Meglitinides [65,70,75,76]  

Repaglinide and 

Nateglinide 
 

 Can be used in all stages of CKD with caution. May need dose 

reduction if eGFR <30 mL/min/1.73 m2  

DPP-4 inhibitors [65,69,70]   

Sitagliptin  
 Reduce dose to 50 mg daily if eGFR 30–50 mL/min/1.73 m2 and 

to 25 mg daily if eGFR <30 mL/min/1.73 m2 

Saxagliptin  
 Reduce dose to 2.5 mg daily if eGFR <50 mL/min/1.73 m2 

 Administer postdialysis in hemodialysis requiring patients 

Linagliptin   No restrictions 
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Table 4. Cont. 

Class and Agents References Therapeutic Considerations 

Vildagliptin   Reduce dose to 50 mg daily when eGFR <50 mL/min/1.73 m2 

Thiazolidinediones [65,69,70]  

Rosiglitazone and 

Pioglitazone 
 

 No dose adjustment required 

 

α-glucosidase 

inhibitors 
[65,70,74,77,78]  

Acarbose and 

Miglitol 
 

 Not recommended if eGFR <25 mL/min/1.73 m2 or serum 

creatinine >2 mg/dL 

Voglibose  
 Not well studied but is minimally absorbed and dose reduction 

unlikely needed 

GLP-1 analogs [70,71,79–86]  

Exenatide   Not recommended if eGFR <30 mL/min/1.73 m2 

Liraglutide   Not recommended if eGFR <50 mL/min/1.73 m2 

Albiglutide and 

Dulaglutide 
 

  Experience is limited. No dose adjustment required per FDA 

approval but the European Medicines Agency recommended 

avoiding their use in patients with GFR <30 mL/min/1.73 m2) 

SGLT2 inhibitors [72,87–90]  

Dapagliflozin    Not recommended if eGFR <60 mL/min/1.73 m2 

Canagliflozin  
 Reduce dose to 100 mg once daily if eGFR 45–60 mL/min/1.73 m2

 Not recommended if eGFR <45 mL/min/1.73 m2 

Empagliflozin  
 Reduced dose to 10 mg once daily if eGFR 45–60 mL/min/1.73 m2

 Not recommended if eGFR <45 mL/min/1.73 m2 

Insulin [42,52,70]  

Insulin  
 Use with caution. Dose reduction usually necessary if  

eGFR <30 mL/min/1.73 m2 

GLP-1 = Glucagon-like peptide-1; DPP-4 = Dipeptidyl peptidase 4; SGLT2 = Sodium-glucose co-transporter 2. 

A. Metformin. The only route of elimination of metformin is via the kidneys. Consequently it  

may accumulate in people with impaired renal function. Most guidelines recommend 

reviewing or reducing metformin dose when eGFR is <60 mL/min/1.73 m2 (example, 

Canadian Diabetes Association and Swiss Society for Endocrinology and  

Diabetology [65,69]) or <45 mL/min/1.73 m2 (example, British National Institute for Health 

and Clinical Excellence, Australian Diabetes Society, and Japanese Society of  

Nephrology [66–68]) and avoiding its use altogether when eGFR is <30 mL/min/1.73 m2. 

The US Food and Drug Administration has stricter prescribing information limiting 

metformin use to men and women with serum creatinine <1.5 mg/dL (133 umol/L)  

and <1.4 mg/dL (124 umol/L), respectively [71]. On the other hand, a consensus statement of 

the American Diabetes Association mentions that metformin appears safe unless eGFR  

becomes <30 mL/min/1.73 m2 based on a review by Lipska et al. [72,73]. 

B. Sulfonylureas. Hypoglycemia risk is increased as a consequence of accumulation of the 

sulfonylurea and/or its active metabolites and their long duration of action [74]. 

Glibenclamide (glyburide) and its two active metabolites (M1 and M2) are cleared by the 
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kidneys. Its use is not recommended for people with eGFRs < 60 mL/min/1.73 m2 [65,69,70]. 

Glimepiride and gliclazide can be used with caution in people with mild-moderate renal 

insufficiency, and dose reduction is usually necessary especially when eGFR  

is <30 mL/min/1.73 m2; however, it is recommended to consider alternative agents in people 

with moderate-severe renal insufficiency specifically when eGFR is <15 mL/min/1.73 m2 [65,70]. 

The metabolism of glipizide occurs mainly in the liver and its primary metabolites are either 

inactive or with very weak hypoglycemic effect that are excreted in the urine; therefore, 

glipizide is the preferred sulfonylurea, but usually at a reduced-dose, in people with  

CKD [70,74].  

C. Meglitinides. Repaglinide can accumulate in patients with advanced renal dysfunction  

(eGFR <30 mL/min/1.73 m2) without significant increase in hypoglycemia [75]. A 

metabolite of nateglinide, that has modest hypoglycemic effect, accumulates in patients with 

CKD [76]. Both drugs may be used in CKD patients even in those with end-stage renal 

disease but with caution and at a reduced dose with careful upward titration [65,70]. 

D. Dipeptidyl peptidase 4 (DPP-4) inhibitors. Sitagliptin, vildagliptin, and saxagliptin require 

reduction in dose once eGFRs are <50 mL/min/1.73 m2 because accumulation may in theory 

increase side effects. However, linagliptin does not require dose adjustment since its renal 

excretion is minimal. All these agents may be used in patients with severe renal  

impairment [65,69,70]. 

E. Thiazolidinediones. Pioglitazone and rosiglitazone require no dose adjustment in  

renal disease and are not associated with a risk of hypoglycemia when used as  

monotherapy [65,69,70]. 

F. Alpha glucosidase inhibitors. Acarbose and miglitol are not generally recommended for 

people with CKD due to potential accumulation and lack of safety information. Serum levels 

of acarbose and its metabolites are increased in CKD patients despite its minimal intestinal 

absorption [74,77]. Miglitol undergoes kidney excretion after substantial intestinal  

absorption (>50%) [74,77]. Data are lacking on the significance of accumulation of these 

drugs on hypoglycemia risk. Both medications are not recommended when the eGFR  

is <25 mL/min/1.73 m2 [65,70,74,77]. Voglibose is poorly absorbed after clinically relevant 

oral dose suggesting that no dose adjustment is required. However, studies in patients with 

renal insufficiency are not available [78]. 

G. Glucagon-like peptide-1 (GLP-1) analogs. Exenatide clearance by the kidney is reduced in 

CKD and its use has been associated with acute kidney injury or acceleration of CKD 

progression [79,80]. It is therefore not recommended if the eGFR is <30 mL/min/1.73 m2 [70]. 

Experience is limited with liraglutide that is mostly metabolized outside the kidney. It is now 

recommended to avoid using it when eGFR is <50 mL/min/1.73 m2 until more data are 

available on its safety and risk of hypoglycemia [70,81]. Albiglutide and dulaglutide are new 

once weekly GLP-1 analogs. Experience of their use in patients with CKD is limited. In clinical 

pharmacology studies, there has been modest increase in their plasma concentration when used 

in type 2 diabetic patients with CKD [82,83]. There were also more hypoglycemia (when used 

in combination with insulin or insulin secretagogues) and more gastrointestinal side effects in 

this patient population [82–84]. The FDA has approved both drugs for patients with CKD 
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without dose adjustment but the European Medicines Agency recommended avoiding their 

use in patients with GFR <30 mL/min/1.73 m2 and in patients on dialysis [83–86]. More data 

are expected in the future to clarify their safety further in patients with CKD.  

H. Sodium-glucose co-transporter 2 (SGLT2) inhibitors. Dapagliflozin, canagliflozin and 

empagliflozin do not increase the risk of hypoglycemia but are associated with increased risk 

of hypovolemic side effects in people with moderate to severe renal impairment, who are 

elderly (>70 years of age), and taking loop diuretics. Furthermore, because their efficacy 

decreases as renal function decreases, their use is restricted to patients with eGFR >45 

(canagliflozin and empagliflozin) and >60 (dapagliflozin) mL/min/1.73 m2 [71,87–90]. 

I. Insulin. There are no restrictions on the use of insulin in patients with renal disease, and 

clinically significant reductions in renal insulin metabolism are uncommon in patients with 

eGFRs >20 mL/min/1.73 m2 [50]. Nevertheless, people with severe renal disease  

(eGFRs <30 mL/min/1.73 m2) may have reduced glycogen stores and a reduced supply of 

gluconeogenic substrates, resulting in diminished capacity of the liver and kidney to release 

glucose and reverse insulin-mediated hypoglycemia. For all of the above considerations,  

insulin requirements may decrease by 20% or more when GFRs decrease below  

45 mL/min/1.73 m2 [51]. Insulin requirements are often lower the day after  

hemodialysis [52]. The reduction varies among patients and regimen therefore must be 

individualized. Furthermore, special consideration needs to be made in people undergoing 

peritoneal dialysis depending on composition of the dialysate and mode of dialysis 

(continuous versus intermittent) [52].  

8. Conclusions 

Hypoglycemia is often the rate-limiting factor in achieving optimal glycemic control in patients 

with diabetes and is associated with substantial morbidity and mortality.  

CKD with a GFR <60 mL/min/1.73 m2 is found in up to 40% of people with diabetes. It is an 

independent risk factor for hypoglycemia, augments the risk for hypoglycemia that is already present 

in people with diabetes, and increases the risk of cardiovascular disease and death. 

In addition to impaired hormonal counterregulation, people with CKD may have other risk factors 

for hypoglycemia, such as altered drug metabolism, albuminuria, malnutrition, impaired renal glucose 

release and insulin clearance, and dialysis associated problems. 

Presence of CKD presents a challenge when deciding on appropriate antidiabetic drugs to use in 

patients with diabetes. Some agents (glipizide, meglitinides, DPP-4 inhibitors, thiazolidinediones, 

albiglutide, dulaglutide, orlistat, colesevelam, and insulin) can be used in all categories of CKD, 

provided they are used with caution or at a reduced dose. Other agents (metformin, glibenclamide 

(glyburide), glimepiride, gliclazide, exenatide, liraglutide, alpha glucosidase inhibitors, and SGLT2 

inhibitors) are not recommended particularly in people with moderate to severe CKD  

(eGFR <45–60 mL/min/1.73 m2) because their efficacy is reduced and/or the risks of hypoglycemia or 

other adverse events are increased. 
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