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Abstract: The growing attention that non-coding RNAs have attracted in the field of cancer 

research in recent years is undeniable. Whether investigated as prospective therapeutic 

targets or prognostic indicators or diagnostic biomarkers, the clinical relevance of these 

molecules is starting to emerge. In addition, identification of non-coding RNAs in a plethora 

of body fluids has further positioned these molecules as attractive non-invasive biomarkers. 

This review will first provide an overview of the synthetic cascade that leads to the 

production of the small non-coding RNAs microRNAs (miRNAs) and presents their 

strengths as biomarkers of disease. Our interest will next be directed at exploring the 

diagnostic utility of miRNAs in two types of cancer: the brain tumor glioblastoma 

multiforme (GBM) and breast cancer. Finally, we will discuss additional clinical 

implications associated with miRNA detection as well as introduce other non-coding RNAs 

that have generated recent interest in the cancer research community. 
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1. Introduction 

Tremendous effort has been dedicated in recent years to elucidating the underlying functions of  

non-coding RNAs, including the small microRNAs (miRNAs), in numerous types of cancer. Several 

studies have characterized the roles played by miRNAs in primary tumors and have positioned these 

molecules as significant drivers of malignancy [1–3]. Importantly, such work has put the light on 

miRNAs as appealing cancer biomarkers, notably due to their significant stability and their ability to 

reveal crucial information on tumor grade and treatment response [4–6]. With an emphasis on in vivo 

human studies, this review first presents the potential advantages associated with miRNAs as cancer 

biomarkers and subsequently discusses studies that have identified miRNAs with diagnostic relevance 

in two types of cancers: glioblastoma multiforme and breast carcinomas. Finally, we introduce examples 

of work that have assessed the usefulness of miRNAs in other, non-diagnostic, clinical applications as 

well as present additional non-coding RNAs with diagnostic relevance to cancer. 

2. MiRNAs: An Overview 

MiRNA biogenesis usually starts with the transcription of miRNA genes by RNA polymerase II to 

generate a primary miRNA transcript termed pri-miRNA [7,8]. This capped and polyadenylated 

structure is further processed in the nucleus by the microprocessor complex comprised of the RNase III 

enzyme Drosha and the cofactor DiGeorge syndrome critical region gene 8 (DGCR8) to generate a  

pre-miRNA that is subsequently exported to the cytoplasm via Exportin-5 [7,9–12]. The RNase III 

enzyme Dicer performs pre-miRNA cleavage to yield a 20–24 nucleotide duplex miRNA from which 

the mature miRNA sequence will associate with Argonaute and other proteins to form the miRNA-induced 

silencing complex (miRISC) [13,14]. MiRISC can interact, via imperfect base pairing, with the  

3′-untranslated region (3′-UTR) of transcript targets and alter their expression via translational repression 

or mRNA destabilization. Complementarity between the seed region of the miRNAs (nucleotides 2–8) 

and nucleotides of the target mRNA plays a pivotal role in target recognition and silencing [15]. Recent 

evidences suggest that miRNA/transcript target interaction can also occur in the 5′-UTR or within the 

coding region of some mRNAs [16,17]. 

There are multiple arguments that support the investigation of miRNAs as biomarkers for diseases. 

MiRNAs can notably be packaged into exosomes, small bioactive reservoirs secreted by cells, and 

subsequently regulate transcript targets of recipient cells [18]. Previous work has demonstrated that 

miRNAs secreted by cancer cells can have various effects such as increased drug resistance and 

transformation of target cells [19,20]. Isolation and characterization of the molecules present in 

exosomes for diagnostic and prognostic purposes have been performed in different types of cancer 

including gliomas and breast cancer [21,22], the focus of the current review. Accordingly, miRNAs are 

thus present in various body fluids including serum, urine and saliva, making them collectable and 

quantifiable via non-invasive methods [23–25]. Furthermore, miRNAs are significantly stable in a 

variety of biological specimens such as blood, urine and postmortem formalin-fixed paraffin-embedded 

(FFPE) tissues [26–28]. MiRNA isolation from these sources is thoroughly documented and their 

subsequent quantification can be performed with a variety of techniques such as quantitative reverse 

transcription polymerase chain reaction (qRT-PCR), miRNA microarrays or next-generation sequencing 
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to name a few [29–31]. Finally, miRNA levels, in primary tissues and in circulating samples, have also 

been associated with different clinical parameters in cancer such as metastatic progression and response 

to chemotherapeutic agents [32,33]. MiRNAs thus possess a number of criteria that position them as 

appealing cancer biomarkers, and the subsequent sections will focus on the diagnostic potential of 

miRNAs in two types of cancer. 

3. Glioblastoma Multiforme and MiRNAs 

Glioblastoma multiforme (GBM) is the most aggressive and frequently diagnosed primary brain 

tumor [34]. This grade IV glioma is highly malignant and the prognosis for patients diagnosed with a 

GBM remains poor with a median survival rate between 12 to 15 months [35,36]. Standard of care consists 

of surgical resection of the tumor followed by a combination of radiotherapy and chemotherapy [37].  

At the molecular level, GBMs can be divided into four subtypes based on the following gene signatures: 

classical, mesenchymal, neural and proneural [38]. Amplification of the epidermal growth factor 

receptor (EGFR) gene is a frequent occurrence in primary GBMs as well as mutations of phosphatase 

and tensin homolog (PTEN) tumor suppressor gene [39,40]. Interestingly, selected biomarker status is 

progressively being considered in the clinical assessment and management of certain subtypes of brain 

tumors such as the evaluation of O6-methylguanine-DNA methyltransferase (MGMT) promoter 

methylation status in elderly patients diagnosed with a GBM [41]. 

MiRNAs are appealing therapeutic targets and potential biomarkers of GBMs [42]. Deregulation of 

these molecules, capable of impacting several processes including cell proliferation, cell cycle regulation 

and angiogenesis, underlie GBM pathogenesis [43]. Not surprisingly, numerous miRNAs are differentially 

expressed in primary GBM tumors with targets that notably include transcript coding for proteins with 

oncogenic or tumor suppressive functions. Early work that assessed miRNA expression via microarray 

in tissue samples obtained from nine primary GBM patients and ten GBM cell lines notably revealed 

elevated miR-221 levels in this tumor [44]. It was subsequently demonstrated that the tumor suppressor 

p27(Kip1), which displays reduced protein levels in GBMs, was a direct miR-221 target [45]. Two 

additional tumor suppressors, CDKN1A (p21) and CDKN2A (p16), were shown to be direct targets of 

miR-10b, a miRNA significantly upregulated in malignant gliomas [46]. MiR-21 and miR-26a are also 

overexpressed in primary GBM tumors and can alter PTEN expression [47,48]. MiR-21 has been 

associated with GBM cell proliferation and response to cisplatin by targeting FOXO1 [49]. MiR-21 can also 

impact GBM cell proliferation by regulating Fas ligand (FASLG) protein expression [50]. Interestingly, 

miR-21 downregulation significantly reduces the oncogenic potential of GBM cell lines independently 

of PTEN status and affects Akt activity as well as EGFR levels [48]. Expression of the latter is also 

regulated, directly or indirectly, in GBMs by miRNAs such as miR-7, miR-34a, miR-146b-5p and  

miR-219-5p [51–54]. The strong invasiveness observed in GBMs is also mediated by differential 

expression of miRNAs including miR-218, a miRNA that directly targets LEF1 and affects MMP-9 

protein levels [55], as well as miR-491-5p and miR-491-3p, which notably target CDK6 and other 

molecular players linked with GBM cell invasion [56]. 

While examples abound of modulated miRNAs in primary GBM tumors, miRNAs are also released 

by GBMs and can be subsequently isolated and quantified in various body fluid samples, thus positioning 

these molecules as circulating biomarkers of malignancy. A study revealed significant miR-128 
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upregulation and miR-342-3p downregulation in blood samples of GBM patients when compared with 

healthy individuals [57]. Subsequent work confirmed altered miR-128 and miR-342-3p levels in plasma 

samples of GBM patients and showed that these miRNAs positively correlated with histopathological 

grades of glioma [58]. It is important to mention that miR-128 levels, as opposed to circulating samples, 

are reduced in primary GBM specimens which positions this miRNA as an interesting therapeutic target 

for this malignancy [59,60]. Monitoring miRNAs in pre-operative plasma samples also revealed 

increased miR-21 levels in GBMs [61]. MiR-21 was also identified as significantly upregulated in  

extra-cellular vesicles (EVs) isolated from cerebrospinal fluid (CSF) of GBM patients when compared 

with EVs from healthy subjects further supporting the diagnostic relevance of miR-21 [62]. A similar 

study investigated the miRNA content of serum microvesicles collected from 25 GBM patients and 

notably highlighted a correlation between miR-320 and miR-574-3p levels and GBM diagnosis [63]. 

Overall, these studies provide a glimpse of the potential associated with miRNAs as non-invasive 

biomarkers for GBM diagnosis. 

4. Breast Cancer and MiRNAs 

Breast cancer, unlike GBM, is at the opposite end of the cancer incidence being the most frequent 

carcinoma observed in women in the United States. It is also the cancer that ranks second on the list of 

estimated deaths per cancer types for the same gender [64]. As for other types of cancer, early breast 

cancer detection is of crucial importance to improve the chance of patient survival. Substantial profiling 

of primary breast tumors has highlighted a variety of subtypes, such as luminal A, luminal B, HER2-enriched 

and basal-like, with different molecular background and clinical outcomes [65]. The latter subtype also 

includes triple-negative breast cancer, which lacks immunohistochemical detection of estrogen receptor 

(ER), progesterone receptor (PR) and human epithelial growth factor receptor-2 (HER-2) [66]. Mutations 

of the BRCA1 gene, besides conferring a significant lifetime risk of breast cancer diagnosis [67], are also 

frequently observed in the triple-negative phenotype [68]. 

Pioneering work performed in tumor samples collected from a cohort of 344 patients diagnosed with 

primary breast cancer revealed strong miR-21 expression [69]. MiR-21 was correlated with limited 

disease-free survival in early stage patients. Subsequent work further positioned miR-21 as an important 

miRNA underlying breast cancer as it displayed strong expression in triple-negative primary breast 

cancers as well as in breast cancer patients with short disease-free survival [70,71]. Interestingly, and as 

previously observed in GBMs, miR-21 can target the tumor suppressor protein programmed cell death 

4 (PDCD4) in human breast cancer cells [72]. This miRNA can also target, as in GBMs, PTEN in breast 

cancer and impact the response to chemotherapeutic agents [73]. An overview of the principal miR-21 

validated targets in GBMs and breast cancer is presented in Figure 1. 

The former study also demonstrated elevated miR-221 and miR-222 expression in the triple-negative 

specimens. MiR-221/222 is upregulated in HER2-positive primary human breast cancer tissues and has 

been linked with tamoxifen resistance [74]. MiR-221/222 deregulation leads to modulation of p53 

upregulated modulator of apoptosis (PUMA), a pro-apoptotic protein, in human gliomas and breast 

cancer cells [75,76]. Interestingly, miR-221 can regulate the expression of the tumor suppressor proteins 

p27 and PTEN in GBMs and breast cancer models [45,77,78]. An overview of the principal miR-221/222 

validated targets in GBMs and breast cancer is shown in Figure 2. 



J. Clin. Med. 2015, 4 1616 

 

 

MiR-155 is also one of the first miRNAs to be reported as significantly deregulated in primary  

breast tumors [79]. Several subsequent studies confirmed miR-155 overexpression in breast cancer 

tissues [80–82] and recent work presented the tumor protein p53-induced nuclear protein 1 (TP53INP1) 

as a miR-155 target in MCF-7 cells [83]. MiR-10b is another example of a miRNA with oncogenic 

properties that is differentially expressed in primary breast cancer. MiR-10b levels in primary breast 

carcinomas correlate with several clinical parameters including tumor size, pathological grading, clinical 

staging and lymph node metastasis [84,85]. While these oncogenic miRNAs are only the tip of the 

iceberg when it comes to deregulated miRNAs in breast cancer, it is important to mention that several 

deregulated miRNAs with tumor suppressive functions have also been identified. Examples include 

miR-125b, a miRNA that directly targets the ETS1 proto-oncogene in breast cancer [86], which exhibits 

differential expression between primary and metastatic breast tumors [87] and was most recently 

reported to impact breast cancer chemoresistance in blood serum samples of breast cancer patients [88]. 

Downregulation of miR-205, a direct regulator of HER3 receptor expression in breast cancer [89], was 

observed in primary tumor tissues versus adjacent benign breast tissue [90] and subsequent work in 

FFPE tissues of patients with early breast cancer further demonstrated that differential expression of this 

miRNA could impact overall survival [91]. MiR-206 levels were measured in cancer tissues of 128 

breast cancer patients via qRT-PCR and revealed reduced expression when compared with normal 

adjacent tissues [92]. The tumor suppressive properties of miR-206 are likely explained via modulation 

of its validated target Cyclin D1 [93]. Interestingly, Cyclin D1 is a well-characterized occurrence in 

primary breast cancer [94] and this further highlights the potential importance of the miR-206-Cyclin 

D1 axis in this malignancy. 

As for GBMs, miRNAs have also been identified in circulating samples of breast cancer patients and 

have been investigated further for their diagnostic potential [95]. Early work revealed elevated miR-195 

levels in blood samples collected from pre-operative breast cancer patients when compared with samples 

processed from matched controls [96]. The same study also revealed circulating miR-155 overexpression 

in multiple types of cancer. MiR-155 serum levels were subsequently reported to identify healthy subjects 

from breast cancer patients further strengthening its diagnostic potential [97,98]. As in primary breast cancer 

tissues, differential expression of miR-21 in circulating samples has been demonstrated in numerous 

studies. MiR-21 levels measured by qRT-PCR in serum samples collected from 102 breast cancer 

patients and 20 healthy female donors highlighted the capacity of this miRNA to discriminate between 

the two groups [99]. Subsequent work in different cohorts of breast cancer patients further reported miR-21 

differential expression between circulating samples collected from patients and samples obtained from 

healthy individuals [100,101]. Novel studies have revealed signatures of multiple miRNAs associated 

with breast cancer [102,103] and validation of such footprints in other cohorts of breast cancer patients is 

foreseen to better decipher their clinical relevance. 

5. MiRNAs as Biomarkers: Beyond Diagnostic 

Several miRNAs with diagnostic potential in GBMs and in breast cancer have been presented up  

to this point and a list of commonly deregulated miRNAs in these two types of cancer is presented in  

Table 1. 
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In addition and as alluded in this article, the clinical usefulness of miRNAs reach beyond their 

capabilities of diagnosing malignancy. Indeed, miRNAs have also been investigated as prognostic 

markers. Specific examples in brain tumors include miR-328 which is strongly expressed in glioma cells 

in vivo and is associated with poor overall patient survival [104] as well as elevated miR-210 levels in 

serum samples of GBM patients which correlate with poor survival [105]. In breast cancer, miRNA 

expression by qRT-PCR was performed in blood samples collected from patients and healthy individuals 

and revealed that miR-200c and miR-141 levels correlated with overall survival [106]. A signature 

comprising of miR-18b, miR-103, miR-107 and miR-652 efficiently predicted overall survival in serum 

samples obtained from a cohort of 60 triple-negative breast cancer patients [107]. Examples of miRNAs 

as potential biomarkers of therapeutic response also exist. In GBMs, elevated MGMT levels confer 

resistance to the alkylating agent temozolomide (TMZ) [108]. MiR-181d was shown to act as a suitable 

predictor of TMZ response in GBM cases and to directly regulate MGMT expression [109]. Other 

examples of miRNAs capable of modulating MGMT expression include miR-221, miR-222, miR-603, 

miR-648 and miR-767-3p, further supporting the underlying importance of these non-coding RNAs in 

TMZ response in GBMs [110–112]. MiRNAs such as let-7i, miR-93, miR-130a, miR151-3p, miR-423-5p, 

miR-938, miR-1238, and miR-1280 have also been correlated with TMZ response in GBMs 

independently of MGMT status [113,114]. In breast cancer, elevated miR-125b levels were detected in 

blood serum samples collected from 56 patients and were associated with poor chemotherapeutic 

response [86]. A study in plasma samples of breast cancer patients also linked circulating miR-210 levels 

with trastuzumab resistance [115]. While this review has focused on the diagnostic potential of miRNAs, 

there is clear evidence that these molecules also possess additional clinical properties. 

6. Conclusions 

In addition to miRNAs, it is important to mention that other non-coding RNAs such as long  

non-coding RNAs (lncRNAs) are appealing molecules to investigate for their diagnostic potential in 

different types of cancer. While the information available regarding lncRNAs as potential cancer 

biomarkers in human in vivo models is not as vast as for the miRNAs, interesting work is starting to 

emerge in this research area. Two studies notably reported elevated HOX antisense intergenic RNA 

(HOTAIR) lncRNA levels in blood samples collected from cervical and colorectal cancer patients and 

correlated this observation with poor prognosis [116,117]. In gliomas, the identification of subtypes 

based on lncRNA expression provided pioneering work for the clinical relevance of lncRNAs in brain 

tumors [118]. MEG3, an lncRNA with tumor-suppressive functions, displayed significant 

downregulation in glioma tissue samples when compared with adjacent normal tissues and its 

overexpression in two GBM cell lines promoted apoptosis [119]. Early work in breast cancer FFPE 

tissues notably showed that strong HOTAIR expression was linked with ER and PR expression [120] 

and a recent study observed elevated lncRNA RP11-445H22.4 levels in serum samples collected from a 

cohort of 136 breast cancer patients [121]. 

In conclusion, whether to monitor treatment response in GBMs or for early breast cancer detection, 

several examples exist that illustrate non-coding RNAs with diagnostic, prognostic and therapeutic 

response assessment potential. Deciphering the circulating miRNA footprint associated with these 

malignancies is undoubtedly of great clinical interest and tremendous progress has been made in this 
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research area in recent years. Nevertheless, challenges remain before non-coding RNAs are leveraged 

as bona fide biomarkers in the two types of cancer explored in this review and further investigation is 

needed in this research field to unveil clinically relevant miRNA-based signatures. 

 

Figure 1. MiR-21 validated targets in glioblastoma multiforme and breast cancer studies. 

Targets in breast cancer are shown in pink and targets in glioblastoma multiforme are shown 

in gray. 

 

Figure 2. MiR-221/222 validated targets in glioblastoma multiforme and breast cancer 

studies. Targets in breast cancer are shown in pink and targets in glioblastoma multiforme 

are shown in gray. * Targets regulated by miR-221 alone. ** Target regulated by  

miR-222 alone. 
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Table 1. Commonly deregulated microRNAs (miRNAs) in primary and circulating 

glioblastoma multiforme (GBM) and breast cancer (BC) samples. BC: Differential 

expression of miRNA only reported in breast cancer. 

miRNA Differential expression Sample type References 

miR-7-5p Downregulated Primary tumors [146,147] 

miR-10b Upregulated 
Primary tumors 

Serum (BC) 
[148–151]  

miR-17/92 Upregulated Primary tumors [152,153] 

miR-21 Upregulated 
Primary tumors 

Plasma 
[61,69,154,155] 

miR-155 Upregulated 
Primary tumors 

Serum (BC) 
[79,150,156] 

miR-182 Upregulated Primary tumors [157,158] 
miR-221 Upregulated Primary tumors [44,70] 
miR-222 Upregulated Primary tumors [44,74] 
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