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Abstract: Tumor hypoxia is a pathophysiologic outcome of disrupted microcirculation with
inadequate supply of oxygen, leading to enhanced proliferation, epithelial-mesenchymal transition
(EMT), metastasis, and chemo-resistance. Epigenetic changes induced by hypoxia are well
documented, and they lead to tumor progression. Recent advances show that DNA demethylation
mediated by the Ten-eleven translocation (TET) proteins induces major epigenetic changes and
controls key steps of cancer development. TET enzymes serve as 5mC (5-methylcytosine)-specific
dioxygenases and cause DNA demethylation. Hypoxia activates the expression of TET1, which
also serves as a co-activator of HIF-1α transcriptional regulation to modulate HIF-1α downstream
target genes and promote epithelial-mesenchymal transition. As HIF is a negative prognostic factor
for tumor progression, hypoxia-activated prodrugs (HAPs) may provide a favorable therapeutic
approach to lessen hypoxia-induced malignancy.
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1. Introduction

Low oxygen, or hypoxia, is a hallmark of tumor mass formation. Studies have indicated that
hypoxia heralds the epithelial-mesenchymal transition (EMT), metastasis, angiogenesis, and negative
clinical outcome [1,2]. Tumor cells exposed to hypoxia may experience a profiling change at the
epigenetic level, leading to overall aggressiveness. DNA methylation/demethylation epigenetically
governs transcription, genome stability, and development by associating with DNA imprinting,
X-chromosome inactivation, suppression of repetitive elements, and carcinogenesis. Aberrant
methylation of promoter regions, for example, leads to gene silencing, particularly at the promoter of
tumor suppressors [3]. A dysregulated mechanism in cancer also involves the process of methyl group
removal, which can be a passive or active process. While passive DNA demethylation results from
inhibition of methyltransferases during cell division and replication by replacement with unmethylated
cytosine, active demethylation needs direct enzymatic removal of the methyl group [4,5]. This
requires oxidation of the methyl group by the Ten-eleven translocation (TET) family proteins and
thymine-DNA glycosylase (TDG) [6]. Of note, TET proteins first hydroxylate 5-methylcytosine (5mC)
to 5-hydroxymethylcytosine (5hmC) in mammals, which is a critical step in DNA demethylation. TET
further oxidizes 5hmC to 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) [7,8], both of which can
be excised by TDG, a component in the base excision repair (BER) machinery, eventually completing
the cycle of DNA demethylation [9] (Figure 1).
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Figure 1. Chemical structures of TET-oxidized products. The DNA base cytosine can be methylated
as epigenetic regulation at the DNA level by DNMTs. DNA methylation affects transcription and
governs genomic stability during development as well as cancer progression. The methylated product
(5-methylcytosine, 5mC) can be reversed actively by a set of enzymes, TET proteins and TDG back to
cytosine. The intermediate products include: 5-hydroxymethylcytosine (5hmC), 5-formylcytosine
(5fC), and 5-carboxylcytosine (5caC). The amount of 5hmC serves as a marker to indicate the
status of DNA demethylation. Loss of 5hmC is often seen in cancers, particularly in myeloid and
leukemia. TET: the Ten-eleven translocation family protein; DNMT: DNA methyltransferase; TDG:
thymine-DNA glycosylase.

In this review, we will focus on hypoxia-induced EMT and hypoxia-related epigenetic changes,
particularly DNA demethylation mediated by TET proteins.

2. Hypoxia-Induced EMT

The epithelial-mesenchymal transition (EMT) is characterized by loss of cell-cell adhesion and
apical-basal polarity. During EMT, epithelial cells lose E-cadherin expression and obtain mesenchymal
markers, such as vimentin and fibronectin [10]. Subsequently, rearrangement of the cytoskeleton
and cell-cell dissociation endows transited cells with a mesenchymal phenotype, such as increased
cell protrusions and motility. EMT has been known to be an important process during embryonic
development as well as tumor progression. For the latter, EMT promotes invasion, which is considered
an initial and critical step for metastasis (Figure 2). E-cadherin loss, as a hallmark of EMT, is therefore
a diagnostic biomarker in many cancers, including head and neck cancer [11], breast cancer [12],
pancreatic cancer [13], etc.

Hypoxia upregulates the transcription factor, hypoxia-inducing factor (HIF-1α and HIF-2α),
which, in turn, modulates a variety of target gene expressions in metabolism [14–16], tumor
growth [17], EMT and metastasis [18,19], angiogenesis [20], and stemness [21,22]. In particular,
hypoxia/HIF-induced EMT is a well-known phenomenon which has been implicated in numerous
cancers [23]. Several EMT transcriptional regulators, including Twist1, Snail, Slug, ZEB1/2, and
E12/E47, are activated either transcriptionally directly or indirectly through HIF-1α under hypoxia [19].
Subsequently, these EMT regulators bind to the promoters of EMT marker genes, such as E-cadherin,
etc., to facilitate EMT [24]. Aberrant expressions of HIF-1α, EMT inducers, and E-cadherin are
correlated with one another and are associated with lymph node metastasis, an advanced TNM
stage, and shorter patient survival [25,26]. Given the fact that hypoxia-mediated EMT is pivotal in
cancer progression and in patients’ clinical outcomes, it would be paramount to explore the molecular
mechanism that leads to tumor aggressiveness.
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Figure 2. The epithelial-mesenchymal transition (EMT). The process of EMT requires loss of cell-cell
contact, apical-basal polarity, and adhesion molecules (e.g., E-cadherin). Transformed epithelial cells
then gain front-rear polarity and dissociate from the neighboring cells with increased expressions of
mesenchymal markers. Thus, EMT increases cell motility which facilitates invasion and metastasis
during cancer progression. Hypoxia is one of the driving forces that facilitate EMT. During hypoxia,
many transcriptional regulators that govern the expressions of E-cadherin are activated by HIF-1α.
As a result, downregulation of E-cadherin facilitates the development of mesenchymal phenotypes,
leading to invasion and metastasis.

3. Epigenetic Alterations under Hypoxia

Hypoxia can induce epigenetic alterations at chromatin remodeling or DNA demethylation
levels. Chen et al. have found that H3K9me2 is induced by histone methyltransferase G9a both
at the global and gene-specific levels under hypoxia [27]. In support of this, using ChIP-chip and
RNA expression profiling at a genome-wide scale, Xia et al. have defined HIF-1 chromatin binding
targets, including jumonji-domain histone demethylases (JHDMs or KDMs), whose upregulation
maintains histone methylation homeostasis, especially at the sites of H3 lysine 4, 9, and 36 [28].
Hypoxia regulates chromatin modifiers, such as histone lysine-specific demethylase 2B (JMJD2B or
KDM4B), whose expressions correlate with the advance of colorectal cancers [29]. Upregulation
of JMJD2B during hypoxia results in decreased H3K9me3 levels on the promoters of a subset of
hypoxia-regulated target genes [29]. Its related demethylase, JMJD2C (i.e., KDM4C), is found to be
upregulated by HIF-1α and it can serve as a co-activator for HIF-1α which epigenetically modulates
metabolic reprogramming and metastasis in breast cancer cells by decreasing H3K9me3 as well [30].
Other well-known hypoxia-induced epigenetic modifications involve histone deacetylases (HDACs).
Wu et al. have found that HIF-1-activated HDAC3 downregulates H3K4Ac on the one hand and
interacts with WDR5 and histone methyltransferase (HMT) complex to increase H3K4me2/me3 levels
on the other [31]. This finding demonstrates that a crosstalk between coregulators (HDAC3 vs. HMT
complex) under hypoxia can together modulate specific histone marks (i.e., H3K4me2/me3) and hence
mediates hypoxia-induced EMT [32]. For instance, HIF, p300, and HDAC4, HDAC5, or HDAC7 can
form a multiprotein complex, thereby enhancing the expressions of HIF-regulated target genes [33,34].
Hypoxia also influences ATP-dependent chromatin remodeling complexes to restructure nucleosomes.
The SWI/SNF chromatin remodeling complex can associate with HIF-1 and is required for HIF-1
transactivation [35]. Knockdown of SWI/SNF components reduces HIF-1α mRNA, indicating HIF-1
itself is a direct target of the SWI/SNF complex under hypoxia and there exists a positive feedback
loop [35].

4. Detection of DNA Methylation Status under Hypoxia

Besides these histone changes, studies on epigenetic modification have been extended to DNA
methylation/demethylation. Feinberg and Vogelstein first reported global DNA hypomethylation in
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the colorectal cell lines and patient specimens [36]. Over the past decades, numerous studies have
been conducted to elucidate the modifications of DNA patterning at the genomic level. Methylome
at single-base resolution has provided copious information on DNA composition in both coding
and non-coding regions of the genome in embryonic stem cells, etc. [37]. To investigate global DNA
methylation alteration, Shahrzad et al. have identified DNA hypomethylation during hypoxia by
examining the amount of 5mC by HPLC in colorectal and melanoma cancers [38]. These epigenetic
changes correlate with the severity of cancers not only in cell lines, but also in a xenograft model
where an inverse relation is present between the magnitude of hypoxia and a reduction of 5mC [38].
Pal et al. have measured the DNA methylation status of short interspersed nuclear elements (SINEs),
i.e., Alu, and long interspersed nuclear elements (LINEs), as they are known to contribute to genome
instability during hypoxia [39]. Using bisulfite sequencing to measure methylation and real-time PCR
and inter-Alu PCR to quantify the transcripts of SINEs and LINEs, they have found that long-term
hypoxic stress causes hypomethylation at these repetitive regions in glial tumor and osteosarcoma [39].
Recently, Liu et al. have found that hypoxia can induce global DNA demethylation by transcriptionally
upregulating methionine adenosyltransferase II, alpha (MAT2A) in human hepatoma cells, maintaining
the S-adenosylmethionine (SAM)/S-adenosylhomocysteine (SAH) ratio at a low level [40]. However,
contrary to the observations in these aggressive tumors, the relation between hypoxia and DNA
hypermethylation has been detected in normal tissues [41]. Prolonged ischemia causes cardiac fibrosis
and the hypoxia-induced pro-fibrotic phenotype is associated with global DNA hypermethylation,
and increased DNMT1 and DNMT3B expressions [41]. Similarly, in benign prostate PwR-1E epithelial
cells, chronic hypoxia also increases DNA methylation and H3K9 acetylation [42]. Both discoveries
use non-cancerous types of cells exposed to a long period of hypoxia, which may partly explain why
the results are opposite to the findings reported in cancers. Also, different methods were utilized to
obtain DNA composition. Where SINEs and 5mC were used to determine methylation in cancer cell
lines, Watson et al. used flow cytometry to analyze average levels of DNA methylation per PwR-1E
cell. It is worth mentioning that conventional bisulfite sequencing may misinterpret the cytosine
information because C/5fC/5caC all react with sodium bisulfite and are deaminated to uracil (C/5fC)
or 5caU (5caC), and are later sequenced as thymine (T), whereas 5mC and 5hmC are sequenced as
C. Therefore, a more sensitive sequencing technique, such as methylase-assisted bisulfite sequencing
(MAB-seq) as well as other base-resolution mapping methods, e.g., TET-associated bisulfite sequencing
(TAB-seq), should be conducted to provide genome-wide quantitative information of cytosine states
with single-based resolution [43]. Nonetheless, hypoxia-adapted cells require specific gene expressions
and their upregulations are accompanied by the change of epigenetic profiling.

Epigenetic modification at a single gene can correlate with the advanced stage of tumors. In gastric
cancers, the mRNA of a proto-oncogene, synuclein gamma (SNCG), is highly expressed due to
its CpG demethylation whereas its expression is not detected in non-neoplastic gastric mucosal
tissues [44]. Of the primary cancers tested, SNCG demethylation has a higher correlation with lymph
node metastasis and advanced stage than those without lymph node involvement or in early stage,
respectively [44]. Overexpression of HIF-1α is frequently identified partly by CpG demethylation
at its own promoter which harbors a hypoxia response element, resulting in auto-transactivation
and self-amplification in colon cancer [45]. In line with hypoxia-induced tumor malignancy, DNA
hypermethylation at the promoter of PHD3 and VHL, two enzymes involved in destabilization of the
HIF-1α protein, is observed in multiple myeloma and B-cell lymphoma [46]. Their downregulations
may sustain HIF-1 protein stability and favor HIF-1 transactivation, thus promoting B-cell neoplasia.
In addition, colorectal carcinoma (CRC) cells which were subjected to hypoxia and hypoglycemia had
reduced DNMT1, DNMT3a, and DNMT3b mRNAs, resulting in a decrease in the 5mC level at the
proximal promoter region of p16INK4a [47]. These lines of evidence support the notion that epigenetic
modification, whether global or site-specific DNA methylation, participates in hypoxia-induced tumor
progression by regulating gene expressions required for aggressive phenotypes.
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5. TET-Mediated Demethylation in Cancer

TET proteins (TET1, TET2, and TET3) are mammalian homologs of the trypanosome proteins
JBP1 and JBP2, and have other orthologs in metazoa, while homologous domains are found in fungi
and algae as well [7]. As a 2OG-Fe(II) oxygenase, TET proteins contain a typical double-stranded
helix (DSBH) fold at the C-terminus, with conserved residues for coordinating the cofactors Fe(II)
and 2OG [7]. Vertebrate TET1 and TET3 also possess a CXXC-type zinc-binding domain, which is
known to distinguish between methylated and unmethylated DNA [48] (Figure 3). It has been found
that TET enzymes, as well as 5hmC, are highly expressed in various tissues, including primordial
germ cells [49], Purkinje neurons [50], zygotes [51], and embryonic stem (ES) cells [52,53]. TET1
participates in ES maintenance and its expression correlates with the 5hmC levels [54–58]. TET1 binds
to the transcription start sites (TSSs) of CpG-rich promoters and gene bodies of pluripotency factors
in embryonic stem cells [54,55]. Intriguingly, Tet1 also binds to Polycomb-targeted developmental
regulators and contributes to gene silencing [54,55]. Therefore, TET1 maintains pluripotency in
embryonic stem cells by modulating DNA methylation on the one hand, and by transcriptionally
repressing developmental regulators on the other. Recruitment of TET1 by NANOG is detected in
mouse embryonic stem cells, whose presence increases 5hmC levels in a set of reprogramming target
genes of NANOG to maintain pluripotency and lineage commitment [59]. TET1 also affects genomic
imprinting in the paternal allele [9,60,61] and meiotic gene expressions in female germ cells [62,63].
Significance of TET3 is demonstrated by Gu et al. in their report where they have found a correlation
between 5hmC levels and TET3 mRNA in the male pronucleus [64]. Knockout of TET3 abrogates
paternal genome conversion of 5mC into 5hmC, abolishes demethylation of the paternal Oct4 and
Nanog genes, and increases aberrant hydroxylation in the oocytes, therefore compromising embryonic
development [64]. These data have established a correlation between TET proteins and embryonic
development, where the level of 5hmC is a critical marker for cell fate determination.

Figure 3. The TET protein family and their structures. Schematic structures of TET1, TET2, and TET3.
TET proteins contain a Cys-rich region and a double-stranded helix (DSBH) at the C-terminus. TET
proteins require cofactors, such as Fe(II) and 2OG, to hydroxylate substrates. Both TET1 and TET3
proteins contain a CXXC zinc-finger domain at the N-terminus, which can distinguish the methylation
status of DNA.

Song et al. first used a chemical labeling technique to demonstrate the genome-wide distribution
of 5hmC in human cell lines [65]. Later, loss of the TET activity as well as 5hmC contents is found to
be associated with tumor development in certain solid tumors [66–69] (Figure 4). For example, colon
cancer is characterized by loss of TET1. Expression of TET1 reduces cell proliferation by binding to the
promoter of the DKK inhibitors of the WNT signaling pathway, keeping them hypomethylated and
silenced [70]. Hsu et al. explored the function of TET1 in tumor invasion [71]. TET1 downregulation is
found in prostate and breast cancer tissues, which facilitates tumor growth, cell invasion and metastasis.
TET1 activates tissue inhibitors of metalloproteinase (TIMP) proteins 2 and 3 by inhibiting their DNA
methylation. Low levels of TET1, TIMP2, and TIMP3 correlate with advanced stage in breast cancer
patients [71]. Further investigation demonstrates that reduced TET proteins and TDG mRNAs are
associated with poor prognosis in patients with early breast cancer [72].
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Figure 4. Methylation status and 5hmC levels in normal, tumor, and hypoxic tumor cells. In normal
cells, particularly in ES and hematopoietic cells, TET proteins are highly abundant, usually in
accordance with an enrichment in 5hmC and unmethylated DNA (white circle). However, during
tumorigenesis, many of the CpG islands near or around the promoters of tumor suppressors are highly
methylated (dark circle). Loss of 5hmC and TET proteins can be detected globally or site-specifically.
However, when tumor cells undergo hypoxia, TET proteins can be induced by HIF-1α and elevated
5hmC composition can be detected at promoters, introns, exons, as well as 31-UTR at a global scale
(76), leading to gene expressions, e.g., those in the EMT and metabolic pathways. Hypoxic tumor cells
are thus more malignant with enhanced migration/invasion, angiogenesis, and stemness, etc., and
resistant to anti-cancer drugs. TSS: transcriptional start site; TTS: transcriptional termination site.

Moran-Crusio et al. have delineated that conditional loss of TET2 in mice increases hematopoietic
stem cell (HSC) self-renewal and myeloproliferation [73–75]. Studies using a large cohort of
leukemia patients suggest frequent TET2 mutations in myeloid malignancies and B- and T-cell
lymphoma [73,74,76–80]. Recently, Wang et al. have found that Wilm’s tumor gene (WT1) is mutated
in acute myeloid leukemia (AML) in a mutually exclusive manner with TET2 mutation [81]. TET2
binds and activates WT1 target genes by increasing the 5hmC levels at the promoter regions of these
specific sites in normal HSC, and therefore TET2 inhibits leukemia proliferation in a WT1-dependent
manner [81]. In addition to AML, the authors also pointed out that WT1 and TET2 genes are mutated
in other types of tumors, including bladder, breast, kidney, liver, lung and uterine cancers [81].
It would be interesting to inquire whether TET2 suppresses tumor formation in these solid tumors
in WT1-dependent or -independent pathways. However, Ko et al. have surprisingly found that low
5hmC is associated with hypomethylated CpG sites compared to the healthy controls in myeloid
cancers with mutant TET2 [82], implying that TET2 might modulate DNA methylation indirectly
via recruitment of other DNA methyltransferases. Experiments using co-immunoprecipitation of
5hmC-binding proteins should be tested to provide a concrete answer to this hypothesis. More
recently, TET1 has been identified as a tumor suppressor in hematopoietic malignancy as well [83].
TET1-deficient tumors reveal mutations of non-Hodgkin B cell lymphoma (B-NHL), showing that
TET1 is required for B cell lineage [83]. TET1 mutations in hematopoietic malignancy have a much
lower frequency than TET2 mutations and their deletions cause different tumor types, suggesting that
TET1 and TET2 are non-redundant and lineage-specific [83]. TET3 mutation has been reported in colon
cancer, but its biological consequence in tumorigenesis has not been fully uncovered.

6. Bridging Hypoxia-Induced EMT to TET

Interestingly, although TET activities and 5hmC loss are frequently observed in cell lines
or tumor specimens, tumors exposed to hypoxia are associated with an upregulation of global
5hmC by TET induction [84]. The Godley group shows that hypoxia can induce TET1 expression,
thereby enriching global 5hmC, and 5hmC is specifically gained at hypoxia-regulated genes in
neuroblastoma [84] (Figure 5a). The versatile role of TET proteins in transcription regulation
independent of their enzymatic activity has been reported in other studies. TET1 can bind to
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H3K4me3- and H3K27me3-enriched promoters and recruit the EZh2 Polycomb complex indirectly [54],
or it can associate with the Sin3a histone deacetylase repressive complex [55] (Figure 5b). Moreover,
proteomic studies have revealed binding between TET2, TET3 and the O-linked N-acetylglucosamine
transferase (OGT) glycosyltransferase [85]. TET2/3 promotes GlcNAcylation and enhances H3K4me3
via SET1/COMPASS methyltransferase complex [86]. These findings may link metabolism to
epigenetic modification, and to the transcriptional control of gene expression. In agreement with the
above discoveries where TET mediates transcriptional regulation independent of the dioxygenase
activity, Tsai et al. further explore the role of TET1 under hypoxia [87]. By RNA sequencing and 5hmC
sequencing comparing TET1 knockdown cells under normoxia with those under hypoxia, one of
the regulators in the cholesterol metabolic process, insulin induced gene 1 (INSIG1), was identified.
Among other affected genes are mostly members in metabolic pathways, including sterol and farnesyl
diphosphate metabolism, suggesting a tight connection between epigenetic modification and metabolic
processing. Knockdown of TET1 or INSIG1 mitigates the expression of a set of hypoxia-induced genes
involved in glucose metabolism and EMT. Interestingly, TET1 not only increases 5hmC peaks in the
INSIG1 promoter, but also serves as a transcription co-activator independent of its enzymatic activity
to modulate the transactivation activity of HIF-1α [87]. TET1 may form a complex with HIF-1α/CBP,
or with OGT, to facilitate hypoxia-mediated gene expressions [87] (Figure 5c). This line of evidence
first connects hypoxia-regulated TET1/5hmC to metabolism and EMT. TET2 also recruits Hdac2 to
repress IL-6 gene expression independent of its DNA demethylating activity [88]. In line with this
investigation, Wu et al. have also demonstrated that in breast cancer, hypoxia/HIF causes genome-wide
changes in DNA demethylation by upregulating TET1 and TET3, which, in turn, mediate the activation
of TNFα-p38-MAPK [89]. This pathway is essential for breast tumor initiating cell (BTIC) capabilities
as well as EMT promotion in breast cancer, suggesting a linkage between hypoxia-induced EMT and
TET proteins. Other example shows that TET1 knockdown suppresses their proliferation and blocks
cell-cycle progression at the G1 phase in human 786-O renal cells [90]. Further investigation is required
to determine the impact of hypoxia-regulated TET1 and its possible role in EMT/metabolism in cancer.

Figure 5. Mechanisms of TET-mediated transcription. (a) The canonical regulation of TET-mediated
transcription relies on its dioxygenase activity, which turns 5mC into 5hmC; (b) A subset of TET
proteins can recruit repressor complexes, such as PRC and Sin3A/HDAC, whereas a great proportion
of TET proteins are found to bind to the CpG islands of TSS. As in the case of ES cells, TET enacts
the dual functions by facilitating transcription of pluripotency factors via DNA demethylation and
transcriptionally repressing developmental regulators; (c) TET proteins also act as a co-activator
under hypoxia. TET proteins are associated with HIF-1α and CBP proteins at the HRE of a set of
metabolic genes, e.g., INSIG1. TET can also interact with OGT at TSS. This leads to histone 2B Ser112
GlcNAc, and it further facilitates its monoubiquitination [91], presumably activating transcription.
PRC: Polycomb repressive complex; HDAC: histone deacetylase; HRE: hypoxia-response element;
OGT: O-GlcNAc transferase.
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Undoubtedly, TET proteins shall participate in hypoxia-mediated hypomethylation and lead to
enhanced malignancy. Cancer-associated genome-wide maps of methylation must be systemically
established to evaluate the correlation between TET proteins and cancer progression.

7. Hypoxia-Activated Prodrugs (HAPs) as a Potential Therapeutic Approach

TET2 mutation or inactivation suggest that perturbation of DNA methylation may cause
hematopoietic malignancy. Targeting TET proteins as a therapeutic method is thus less favorable due
to their inactivation status in most cancers. Imbalance in DNA methylation, i.e., hypermethylation of
tumor suppressor genes in cancers, can be corrected by hypomethylating agents, such as 5-azacitidine
and decitabine [92,93], and their applicability has already been tested in clinical studies. However,
these drugs are non-specific and their long-term effect is still unknown [94]. Although TET1 is
upregulated by hypoxia, its clinical implication has not been reported yet. On the contrary, hypoxia
itself is a common and persistent feature within solid tumors, either chronically or acutely, and it serves
as a negative prognostic factor in numerous clinical studies [95]. Its prevalence impedes treatment
failure due to inaccessibility by most anti-cancer agents to these chronic hypoxic regions [96]. Moreover,
hypoxic cells tend to be more quiescent in the cell cycle, reducing the efficacy of most anti-cancer drugs,
which target proliferating cells [97]. They are less sensitive to apoptosis and can upregulate drug
resistance proteins as well [98]. In radiation-resistant cancer cells, lowered oxygen levels reduce the
formation of peroxide radicals, undermining the effectiveness of radiation [99]. Numerous attempts
have been made to tackle hypoxic tumor cells with respect to therapeutic agent development. Among
them, hypoxia-activated prodrugs (HAPs) are rising candidates in cancer therapy. Mechanistically,
HAPs remain reduced and active drugs can be produced by further reduction in hypoxic cells whereas
sufficient oxygen in normal cells oxidizes the chemicals back to the prodrug state. Five chemical
moieties, i.e., nitro groups, quinones, aromatic and aliphatic N-oxides, and transition metals, can be
designed to be chemically reduced under hypoxia [100]. These backbones give diverse sensitivity to
oxygen concentrations and those activated under extremely hypoxic conditions have been designed to
possess greater local diffusion ability to neighboring cells, causing the bystander effect and killing cells
at higher oxygen concentration [101]. A detailed review on these HAPs can be found in [101]. Given
the fact that TET proteins are upregulated under hypoxia, HAPs may possibly alter aberrant DNA
demethylation, relieving pro-tumorigenic effects induced by hypoxia, including metabolic adaptation,
immune suppression, and promotion of EMT.

One should notice, however, that enzymes are required to catalyze one-electron transfer to
prodrugs. Therefore, profiling and identification of these enzymes in individual tumors are of top
priority if HAPs are to be used [101]. Moreover, sometimes there is poor correlation between different
hypoxia markers in preclinical and clinical cases. Selecting suitable patients for a specific HAP requires
adequate diagnostic tools.

8. Perspectives

DNA methylation is a critical modulator in gene silencing and its presence propagates hereditary
messages during development. This epigenetic mark is reversible and can be actively processed
by a class of dioxygenase, TET family proteins. TET proteins generate 5hmC, a hallmark of DNA
demethylation. Aberrant epigenetic modification occurs in cancer cells. Loss or repression of TET
protein functions and 5hmC can be found in leukemia and certain solid tumors. Recent studies have
identified TET proteins as the mediators that modulate hypoxia-induced 5hmC contents. Global
demethylation facilitates expressions of pro-tumorigenic genes, especially those in the metabolic
pathways, e.g., INSIG1, which, in turn, enhances hypoxia-induced EMT. Hypoxia poses an impediment
against most anti-cancer drugs for several reasons (see Section 7). HAPs can specifically target hypoxic
cells yet diffuse to the neighboring cells to eradicate cancer cells. Preclinical as well as clinical trials of
HAPs have been conducted in combination with other chemotherapy. Hopefully, these therapeutic
strategies may eliminate tumor cells and serve as a standard treatment in clinical care options.
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