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Abstract: Aging is accompanied by a decrease in physical capabilities (e.g., strength loss) and
cognitive decline. The observed bidirectional relationship between physical activity and brain health
suggests that physical activities could be beneficial to maintain and improve brain functioning
(e.g., cognitive performance). However, the exercise type (e.g., resistance training, endurance
training) and their exercise variables (e.g., load, duration, frequency) for an effective physical
activity that optimally enhance cognitive performance are still unknown. There is growing evidence
that resistance training induces substantial brain changes which contribute to improved cognitive
functions. A relative new method in the field of resistance training is blood flow restriction
training (BFR). While resistance training with BFR is widely studied in the context of muscular
performance, this training strategy also induces an activation of signaling pathways associated with
neuroplasticity and cognitive functions. Based on this, it seems reasonable to hypothesize that
resistance training with BFR is a promising new strategy to boost the effectiveness of resistance
training interventions regarding cognitive performance. To support our hypothesis, we provide
rationales of possible adaptation processes induced by resistance training with BFR. Furthermore,
we outline recommendations for future studies planning to investigate the effects of resistance
training with BFR on cognition.
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1. Introduction

From the third decade of life, degenerative changes of the human organism increase which leads
on the one hand to a reduced physical performance and on the other hand to a decline of cognitive
functions. In terms of physical performance, especially the loss of muscle mass [1–4] contributes to
a decrease in muscular strength which, in turn, impairs activities of daily living (e.g., walking) [5,6].
However, musculature is the main effector organ for developing muscular strength which is important
to ensure motion respectively locomotion (e.g., walking safely) [7–9]. Therefore, the integrity of
the musculature and the muscle strength is of great importance throughout the entire life span.
Moreover, the mentioned age-related decreases in muscle mass and strength (because of aging) are also
associated with morphological losses in the brain and decreased cognitive functions [10–13]. Because
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of those changes, especially cognitive functions such as memory and processing speed are negatively
affected [14–18]. Furthermore, aging-related changes of the brain are considered risk factors for the
development of neurological diseases (e.g., dementia) [19,20]. Dementia is associated with cognitive
impairments negatively affecting quality of life and independent living [19,21]. Based on the limited
ability of individuals with neurological diseases (e.g., dementia) to live independently, an intensive
medical care is needed which, in turn, consumes a large amount of resources of the welfare systems of
industrialized nations [22–25].

So far, no pharmacological interventions are sufficient to treat the mentioned age-associated
declines [26–30]. But, there is growing evidence with respect to positive effects of physical activity
preventing and treating morphological and functional losses in muscles [31] and the brain [32,33].
In recent years, evidence has emerged emphasizing the existence of a bidirectional relationship
between physical performance and brain health [34,35]. For instance, as mentioned above, a decrease
in muscular performance is associated with a decrease in cognitive functioning [36–38]. Consequently,
the bidirectional relationship suggests that physical training (means a structured, planned, dosed,
and systematic form of physical activity with the focused aim to increase physical performance and/or
health; e.g., through resistance training) may be a valuable intervention strategy to deaccelerate not
only physical but also cognitive decline in old age. However, the exercise type (e.g., resistance training,
endurance training) and exercise variables (e.g., load, duration, frequency), which would be optimal to
efficiently enhance cognitive performance are largely unknown [39–49].

A promising and cost-effective physical intervention strategy [50–52] which preserves and
enhances both, physical performance (especially with regard to the musculature) [53–60] and
cognitive functions [61–65], is resistance training (also known as strength training). The underlying
neurobiological mechanisms and effects of resistance training on cognition are described in the
following section.

2. Effects and Mechanisms of Resistance Training on Cognition

The underlying neurobiological processes which are triggered by resistance exercises and have
been related to cognitive performance improvements, are not fully understood, yet [61,65,66]. Based on
the promising framework of Stillman et al. [67] about mediators of physical activity (in this case
resistance exercises) influencing cognitive performance on different levels (cellular and molecular
level, structural and functional level and behavioral/socioemotional level) [67], the current knowledge
of possible neurobiological mechanisms contributing to the improvement of cognitive functions in
response to resistance training are summarized in the following.

On the cellular and molecular level, a possible key mechanism of resistance training that
contributes to cognitive improvements is the pronounced release of the multifaceted acting insulin-like
growth factor 1 (IGF-1) [61,62,66,68–70]. In response to resistance training, IGF-1 is mainly
expressed by the liver (global output, ~70% of total circulating IGF-1), musculature (local output)
and the brain (local output) itself [71,72]. Circulating IGF-1 can cross the blood-brain barrier
(BBB) which is therefore also available to the brain [71,72]. While an increased IGF-1 level is
associated with proliferation, differentiation, survival, and migration of neuronal progenitors [73,74],
synaptic processes (e.g., Long-Term Potentiation) [74,75], angiogenesis in the brain, neuroprotection,
axon outgrowth, dendritic maturation, and synaptogenesis [72,76], a deficiency of IGF-1 is associated
with the risk of harmful cerebrovascular events (e.g., ischemic stroke or impaired neurovascular
coupling) [77,78]. Consequently, it is not surprising that a relationship between cognitive functions
and IGF-1 level in older individuals [79] and in individuals with mild cognitive impairments was
observed [80]. Furthermore, it is assumed that there is a potential relationship between diminished
IGF-1 levels and neurodegenerative diseases [73,80,81], which suggests that influencing IGF-1 levels is
a promising target for efficient treatments.

In fact, serum IGF-1 concentration levels are increased after a single bout of resistance activities
(short-term) [82] and long-term (also known as “chronic”; >2 exercise sessions) resistance training in
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humans [83,84]. However, currently there is only low evidence postulating a solid relationship between
physical exercise-induced modulation of IGF-1 release and cognitive functions [85]. Nevertheless,
one study reveals that basal changes of IGF-1 concentrations after a long-term resistance exercise
intervention are associated with cognitive performance improvements [83]. Hence, further studies
are needed to get a deeper understanding of the relationship of exercise-induced modulation of IGF-1
release and cognition [85].

On the structural level, Fontes et al. [86] observed that in older individuals, the grey matter
density increases in the posterior and anterior lobe of the cerebellum, superior frontal gyrus in the
frontal lobe and anterior cingulate cortex in the limbic lobe in response to a 12 weeks resistance
training [86]. After a 6 months resistance exercise training program, an increase in cortical thickness in
posterior cingulate cortex was observed which correlated with improvements in an overall cognition
score [87]. Furthermore, in the study of Liu-Ambrose et al. [88], a reduced whole-brain volume after
the end of 12 months resistance intervention as compared to control groups (balance and tone group)
was noticed [88]. The reduced brain volume might be the consequence of dissolve degenerative
changes of the brain such as amyloid plaques [46,88,89]. However, the distinct neuronal adaptions in
response to resistance exercise interventions with different exercise variables suggest that a certain
dose-response relationship between physical exercise variables and neural adaptations exists, although
this dose-response relationship is currently poorly understood and has to be investigated in further
studies [42,64,90–93].

In addition, long-term resistance training is associated with decreased white matter atrophy at
follow-up measurements [94] and lower white matter lesions volume was observed after 52 weeks
of a resistance training exercise regime [95]. White matter changes are known to influence cognitive
performance especially in processing-speed-dependent cognitive tasks [96–99].

On the functional level, changes can be quantified either by measuring the activity of brain
regions (for instance with electroencephalography [EEG], functional near-infrared spectroscopy
[fNIRS], or functional magnetic resonance imaging [fMRI]) and/or by testing cognitive functions.
Both, brain activity and cognitive functions were investigated after short-term and long-term
resistance training to identify beneficial effects of this type of exercise on brain as well as cognitive
performance [64]. In response to an acute bout of moderate-load [100] and high-load resistance
training, an improvement in cognitive functions (higher number of solved items and lower reaction
times in neutral Stroop task condition compared to non-exercising control group) and a decrease in the
tissue oxygenation index in left and right prefrontal cortex was observed [101]. In the same manner,
it has been shown that resistance training lasting several months can lead to a substantial increase
in cognitive functions [62–64,83,88,94,102,103]. Furthermore, after a long-term resistance training
intervention, a decreased cortical activation in prefrontal areas (lower concentration of oxygenated
hemoglobin and total hemoglobin index values measured by fNIRS) during a standardized cognitive
test (e.g., Stroop-test) was noticed [104]. A decreased activation in prefrontal areas and a simultaneous
increase in cognitive functions may point towards a higher automatization in behavioral tasks or
the redistribution of resources in other task-relevant cortical areas. The notion that higher levels of
strengths are beneficial for cognitive performance is further supported by numerous cross-sectional
studies observing that an improvement of hand grip strength [38,105,106], quadriceps strength [37],
leg power [107], or whole body muscle strength [36] are linked to higher cognitive performance.
Regarding the longitudinal and cross-sectional studies, the question arises whether (baseline) strength
level per se [108] or adaptation processes evoked by regularly conducted resistance training (see above
mentioned adaptations on cellular, molecular and structural level) are more beneficial for cognitive
performance. Based on the current available scientific literature, we cannot unequivocally answer
this question. As shown, there is evidence for both approaches (baseline strength vs. adaptation
processes evoked by regularly conducted resistance training). But maybe just the combination of both
has positive effects on cognitive functions.
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On the behavioral/socioemotional level, the improvements in cognitive functions (e.g., executive
functions) and the reduced activity of the prefrontal cortex are, for instance, linked to the functioning
of the motor control of activities of daily living such as walking safely [109–113]. This phenomenon
underpins the need to persevere the capacity of executive functions especially in older individuals in
order to ensure mobility and independent living. Furthermore, because of the relationship between
cognitive functions and quality of life [114], improvements in cognitive functions might be associated
with an enhanced socioemotional status (e.g., decreased symptoms of depression and anxiety, increased
joyful activities of daily living). Here, positive effects of resistance training on quality of life have been
noticed [115].

However, concerning the effectiveness of the type of exercise, it was reported that resistance
training is less effective than aerobic exercises regarding the improvement of cognitive performance on
behavioral/socioemotional level [116] or on functional level regarding the task-related oxygenation
of brain regions [101,104]. Nevertheless, there are several strategies to increase the effectiveness
of resistance exercise regimes. A potential strategy which is likely to be beneficial to increase the
efficiency of resistance training is the application of devices (e.g., cuffs) modulating the blood flow
to and away from the muscles. This type of training is known as blood flow restriction training
(BFR). So far, the higher effectiveness of resistance training with BFR compared to resistance training
without BFR has only been investigated in the context of muscle physiological adaptions and strength
improvements [117–119]. Whether resistance training with BFR provides also positive neurocognitive
effects that are potentially greater than those effects observed after “traditional” resistance training
interventions (resistance training without BFR) will be discussed in detail in the following section.

3. Resistance Training with Blood Flow Restriction—An Added Value for Cognition?

A way to increase the efficiency of resistance training is the specific manipulation of different
exercise variables such as load, volume (repetitions, sets), rest periods, repetition velocity, choice
of exercise, order of exercise, frequency or muscle action. [120]. Here, a certain dose-response
relationship regarding certain exercise variables (e.g., load) can be observed [61,121,122]. Another,
newer “manipulation strategy” to increase the efficiency of resistance training includes the application
of hypoxic stimuli [123–126]. Hypoxic stimulation during resistance exercises could be achieved by
applying (i) localized hypoxia or (ii) systemic hypoxia [125]. Localized hypoxia can be achieved with
applying BFR which is in the literature also referred to as occlusion training. The training method
BFR is characterized by the restriction / manipulation of the blood flow to and away from the limbs
due to the application of elastic straps or inflatable pressure cuffs (e.g., blood pressure cuffs) to the
proximal portion of the limbs (see Figure 1A,B) [117,125,127–130]. The manipulation of the blood
flow especially decreases the venous return, which increases the accumulation of metabolites in the
muscle triggering pronounced adaptational processes [117,125,127–130]. A particular type of BFR is
KAATSU where special inflatable cuffs with pressure sensors are used [131]. Even though KAATSU
is considered a type of BFR, this term is in a strict sense only applicable if KAATSU-equipment in
BFR training is used. As consequence of the special construction of KAATSU-cuffs and their distinct
application protocol, it is likely that differences between KAATSU and other BFR methods regarding
the physiological stimuli occur. So far, these possible physiological differences between KAATSU and
other BFR methods have not been directly and systematically compared. In this manuscript, the term
BFR will therefore also include KAATSU training studies.

In general, systemic hypoxia is provided by breathing oxygen-reduced air [125]. Here, the
oxygen-reduced air can be applied, for instance, with mask-system hypoxicators or via a stay in
special rooms where the fraction of inspired oxygen is decreased (also known as normobaric altitude
chambers) [132].
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Both, localized hypoxia (induced by BFR) and systemic hypoxia are harmless (when conducted 
appropriately) and well feasible [133–135]. However, due to the cuffs on the limbs during the BFR, 
petechial haemorrhage beneath the skin and/or numbness of extremities can appear in few cases 
[125,134,136]. Compared to localized hypoxia (e.g., BFR), systemic hypoxia has the advantage that it 

Figure 1. Schematic illustration of (A) the basic principles of blood flow restriction, (B) the application
places of the cuffs for blood flow restriction and (C) the possible neurobiological mechanisms of
resistance training with blood flow restriction that are likely to contribute to improved cognitive
functions; blood flow restriction (BFR), growth hormone (GH), hypoxia-inducible factor (HIF),
insulin-like growth factor 1 (IGF-1), resistance training (RE), vascular endothelial growth factor (VEGF).

Both, localized hypoxia (induced by BFR) and systemic hypoxia are harmless (when conducted
appropriately) and well feasible [133–135]. However, due to the cuffs on the limbs during the
BFR, petechial haemorrhage beneath the skin and/or numbness of extremities can appear in few
cases [125,134,136]. Compared to localized hypoxia (e.g., BFR), systemic hypoxia has the advantage that
it is not limited to the limbs [125]. Remarkably, cross-transfer effects in muscles that were not directly
affected by the application of blood flow manipulation cuffs were observed in response to resistance
exercises with BFR. Both, muscles proximal to the restricted extremities and muscles distal to the
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restricted extremities experience beneficial effects [137,138]. Systemic-endocrinological (e.g., expression
of growth factors) as well as neuronal adaptations (e.g., higher recruitment of supportive muscles
because of the increased fatigued muscles under BFR) are discussed for this phenomenon. However,
regarding brain adaptions, systemic hypoxia leads to an oxygen deficit directly in the brain which is to
a certain extent the decisive stimulus triggering positive neurophysiological adaptations [135,139,140].
In this regard, first studies have shown improved cognitive functions following interventions with
systemic, normobaric hypoxia [141,142].

Also, for resistance training with BFR, a first investigation by Sardeli et al. [143] had observed
positive effects on cognitive functions (Stroop-test) immediately after a low-load resistance training
with BFR (30% of 1RM) [143]. Except for this first investigation of Sardeli et al. [143], there are to
our knowledge currently no further studies available (neither short-term nor long-term study) which
directly examine the effects of localized hypoxic exposure on cognitive performance. Based on the
first hint that localized hypoxia is beneficial for cognition, we want to outline several reasons why
localized hypoxia during a resistance training (e.g., trough BFR) might be a promising intervention
strategy which is likely to increase the efficiency of resistance training regarding the enhancement of
cognitive functions in the following:

(i) On the cellular and molecular level: Some investigations showed a significant higher
release of hormones which is associated with positive neurophysiological adaptations, such as
serum IGF-1 [144,145], growth hormone (GH) [146–149] and vascular endothelial growth factor
(VEGF) [145,147,150,151], in response to acute resistance activities with BFR when compared to
resistance training without BFR. Regarding the IGF-1, also a long-term intervention (two weeks)
of low-intensity BFR training which was provided twice a day led to a higher basal level of IGF-1 in
comparison to the same resistance training without BFR [152]. As mentioned in the previous section,
IGF-1 plays an important role in synaptic functioning and cognitive processes [75]. Because of the link
between a deficiency in serum GH level and a cognitive impairment, increases in GH are associated
with benefits for cognitive performance [153,154]. Furthermore, in older adults who regularly perform
physical exercises, a higher level of GH and better cognitive performance was noticed compared to
sedentary older adults [155]. VEGF is involved in angiogenesis [39,156–161] and it is speculated that a
decrease in angiogenic factors (e.g., serum VEGF) might be associated with cognitive impairments
(e.g., in Alzheimer disease) [162,163]. Notably, the increases in neurochemical substances (e.g., IGF-1)
was predominantly observed after an acute bout of resistances activities with BFR, thus long-term
studies are needed to investigate whether a pronounced release of those neurochemicals would be
persistent after longer time intervals (e.g., 6 months).

Furthermore, there is a robust body of evidence suggesting that the blood lactate concentrations are
higher after an acute bout of resistance activities with BFR as compared to a resistance exercise without
BFR [145,148,149,164–170]. The levels of post-exercise blood lactate concentration are associated
with acute improvements in cognitive functions such as short-term memory [171] and executive
functions [172,173]. This phenomenon occurs because peripherally expressed lactate can cross the BBB
by monocarboxylate transporters (MCTs) and will be utilized as fuel for cognitive processes due to
oxygenation [174–178]. Moreover, lactate is associated with changes in peripheral brain-derived
neutrophic factor (BDNF). Here, Ferris et al. [179] showed a correlation between blood lactate
concentrations and BDNF [179]. Besides, Schiffer et al. [180] observed an increase in BDNF after
a lactate infusion in rest [180]. These insights suggest a potential neurobiological relationship between
both neurochemical substances. BDNF is a member of neurotrophins and contributes to neuroplasticity
which, in turn, facilitates cognitive performance [181,182].

In addition, systemic hypoxia [183,184] as well as local hypoxia [185] increase the
hypoxia-inducible factor 1α (HIF-1α) which is the master regulator for adaptions of oxygen
homeostasis. An increase of HIF-1α in response to systemic and/or localized hypoxia (e.g., induced by
BFR) might be meaningful for cognition or the integrity of the brain considering the following two
aspects: Firstly, the HIF-1α has a neuroprotective effect [186] and secondly, this transcription factor
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triggers the increase of neurotrophic factors such as the VEGF and IGF-1 [187,188]. Therefore, the
HIF-1α may be also a crucial factor for neurocognitive adaptations following a resistance training
with BFR.

(ii) On the functional level: After a resistance training with BFR, increases in the cortical
excitability [189] and higher levels of oxygenated hemoglobin were observed in cortical motor areas
(compared to same resistance exercises without BFR) [190]. Furthermore, in prefrontal areas, a higher
concentration of deoxygenated hemoglobin was observed during knee extension with BFR whereas
the increase in oxygenated hemoglobin was diminished when compared to knee extensions without
BFR [191]. In general, decreased levels of deoxygenated hemoglobin and increased levels of oxygenated
hemoglobin are associated with increased cortical activity [192–195]. Since deoxygenated hemoglobin
is assumed to be less affected by physiological artefacts than oxygenated hemoglobin [192,196–201],
it is perhaps a better proxy of cortical activity (in this particular case) and it could therefore be
speculated that a pronounced decrease of deoxygenated hemoglobin may point towards a higher
cortical activation during knee extensions with BFR. Nevertheless, further research is necessary to
verify or falsify these assumptions.

In general, higher levels of cortical activity (e.g., shown by higher concentration of
oxygenated hemoglobin in the brain) after physical exercises are associated with improved cognitive
performance [202,203]. It was observed that participants with an improved cognitive performance
after exercise showed a higher cortical activity in prefrontal areas during the exercise sessions
(termed as responders) in comparison to participants with no cognitive improvements (termed as
non-responders) [204]. In consideration of these insights, the enhanced performance in the Stroop test
after a low-load resistance training with BFR observed in the investigation of Sardeli et al. [143] may
have been caused by higher levels of oxygenated hemoglobin in the prefrontal cortex [143].

3.1. Hypothesis

According to the potential neurobiological advantages of a resistance training with BFR compared
to a resistance training without BFR on cellular and molecular level as well as on functional level of
the brain (see Figure 1C), we hypothesize that a short-term and long-term resistance training with
BFR is more efficient regarding the enhancement of cognitive functions than a “traditional” resistance
exercise regime without BFR.

3.2. Considerations to Evaluate the Hypothesis

To test the hypothesis stated in the previous section, there are a number of general aspects that
should be considered regarding (i) the participants’ characteristics, (ii) designing the resistance training
program and (iii) the outcome measures.

(i) Regarding the selection of participants, it should be considered that individual characteristics
moderate the outcomes and underlying neurobiological processes. Exemplarily, sex is a key moderator
for the effect of physical exercise interventions on cognitive performance which is perhaps related to
underlying neurobiological processes [116,205,206]. Here, it is assumed that women may benefit more
from exercise than men with respect to cognitive functions like executive functions [116]. While the
reason for this sex-phenomenon is not fully understood, it is assumed that those findings are related to
sex-dependent neurobiological mechanisms (e.g., exercise-induced release of BDNF) and the higher
level of habitual physical inactivity in older women (compared to older men) [68,116,205,206]. Another
moderator which potentially influences the exercise-cognition interaction is the genotype of the
participant [68,116] and through matching the individuals’ genotypes to an appropriate resistance
training program, a greater outcome regarding muscular strength can be evoked [207]. However,
currently there is not enough evidence available which would allow validly designing resistance
training regimes/programs with or without BFR as a function of individual genotypes. Hence, further
investigations in this field are needed. Here, moderator and mediator variables should be carefully
assessed and their influence on outcomes measures as well as neurobiological processes evaluated.
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A deeper understanding of moderator and mediator variables would assist the development of more
personalized training regimes which may provide greater intervention efficiency [68].

Additionally, further studies should consider and test the “human baseline hypothesis” which
proposes that the baseline values of strength (e.g., grip strength and/or knee extensor strength)
assessed prior to resistance training or after a detraining period are more appropriate markers of
long-term health outcomes compared to training-related strength gains [108]. Therefore, in relation
to brain-health gains (brain volume, cognitive functions), the baselines of strength as well as muscle
mass should be taken into account.

(ii) For designing resistance training programs, in general, the following exercise variables should
be considered [120,208,209]:

Variables of a resistance training session:

(1) load (amount of weight that is used for an exercise; usually given as a percentage of the one
repetition maximum [1RM]);

(2) number of repetitions;
(3) number of sets;
(4) inter-set rest periods;
(5) inter-exercise rest periods;
(6) number of exercises (for the whole training session or for a muscle or a muscle group with the same

function);
(7) repetition velocity (temporal details should be given for: concentric phase–inter-repetition rest

periods–eccentric phase rest period up to the start of the next repetition, e.g., 2–0–2–1 s);
(8) muscle action (concentric, eccentric, isometric);
(9) exercise selection (e.g., multi-joint or single joint exercises);
(10) exercise order (e.g., squat, leg extension, biceps curl and concentration curl or squat, biceps curl,

leg extension and concentration curl);
(11) volitional muscle failure
(12) range of motion.

Variables for structuring resistance training:

(13) frequency (number of training sessions per week);
(14) density (distribution of training sessions across a week with regard to recovery time in-between

training sessions) and
(15) duration (duration over which a training program is carried out before exercise variables are

changed).

It should be noted that some exercise variables are usually summarized into variables with a
different designation: e.g., volume (exercise variables 2, 3 and 6) or time under tension (TUT, sum of
the exercise variables 2 and 7) [120,209]. Additionally, the cuff pressure is of particular importance in
resistance exercises with BFR, as it is intended to induce an appropriate level of localized hypoxia as
physiological stimuli [210–217]. Here, the cuff pressure should be applied in such a way that venous
pooling without an arterial occlusion would occur. To achieve this, the cuff pressure must be below
the arterial occlusion pressure [124]. However, various moderator variables can influence the cuff
pressure:

(1) Cuff width: wide BFR-cuffs restrict arterial blood flow more than narrow BFR-cuffs using
the same cuff pressure. Therefore, the cuff pressure should be applied relative to the cuff
width [214,215,218–222].

(2) Cuff material: it might be that the cuff material has an impact on the arterial blood flow
restriction [211]. However, current investigations comparing different cuff materials (5 cm
nylon vs. 3 cm elastic cuffs) do not consider the cuff width [223]. In contrast, Loenneke et al. [224]
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compared nylon and elastic cuffs with the same width (5 cm) and observed no differences in the
arterial occlusion pressure [224].

(3) Restricted extremity (upper or lower limbs): cuff pressures should be determined individually for
the upper and lower limbs [225].

(4) Systolic / arterial blood pressure: the cuff pressure depends on the systolic / arterial blood
pressure [213,218,226–232].

(5) Body composition / anthropometry: the circumference of the limbs is the biggest predictor for the
cuff pressure to reach arterial blood flow restriction and should be considered [218,225,233–235].

(6) Body position: the cuff pressure to reach arterial blood flow restriction must be lower in the supine
position compared to the seated position and standing position [210,212].

(7) Exercise protocol: applying intermittent or continuous pressure; it might be that a BFR applied with
a continuous pressure on the cuffs during the exercise leads to another physiological stimulus as
compared to a BFR applied in an intermittent fashion [124,226,236–238].

(8) Blood flow restriction system: different blood flow restriction systems (automatic pressure control
vs. manual handheld pressure control) lead to diverging pressure on the limbs at rest and during
exercise. However, one first investigation by Hughes et al. [239] compared several blood flow
restriction systems with different cuff widths. Therefore, the influence of blood flow restriction
systems for inducing effective BFR-stimuli needs further investigations [239].

Since those mentioned moderator variables are crucial for an effective BFR-stimulus and the
physiological response, as well as the psychological response, it is likely that those also alter
neurocognitive adaptations, which, in turn, influence the changes in cognitive functions. To evoke
the above mentioned cognition-related neurobiological adaptations through a resistance training
with BFR, it is strongly recommended to determine a personalized cuff pressure be chosen [217,240]
which takes the above mentioned relationships of the moderator variables and the cuff pressure
into account. From a practitioner’s view, the optimal solution(s) to determine the cuff pressure
ensuring an appropriate stimulus would be using a pressure that is relative to the used cuffs
and individual’s characteristics [117,241] or to use a BFR system that automatically adjust the cuff
pressure [239,240]. Furthermore, even moderate cuff pressures induce adaptions comparable to
high cuff pressures [227,242]. Hence, moderate cuff pressures are recommended because higher cuff
pressures increase the risk of full arterial occlusion and in turn of adverse effects [131,243,244].

In resistance training without BFR, only the following exercise variables are considered and
recommended to enhance cognitive functions, by now (to 1.) load: 60 to 80% of 1RM; (to 2.) number of
repetitions: 7; (to 3.) number of sets: 2; (to 4.) inter-set rest periods: 2 min; (to 13.) frequency: at least
twice per week; (to 15.) duration of a training period 2 to 12 months [61]. However, in short-term
and long-term resistance training interventions with (and even without) BFR, the optimal selection
of exercise variables to efficiently enhance cognitive functions are largely unknown, and should be
investigated in future studies. Nevertheless, we would like to recommend the following exercise
variables for a resistance training with BFR aiming to induce neurocognitive adaptations (Table 1).
We chose these exercise variables because of their effectiveness to increase muscular strength as well
as muscular hypotrophy [124,130,137,144,216,245–248]. As described above, functional and structural
adaptations of the musculature are moderating factors for the neurocognitive status. Furthermore,
based on our above mentioned deliberations, it can be assumed that these exercise variables are
efficient to trigger adaptations on the above mentioned neurocognitive levels (cellular, molecular,
structural and functional level).



J. Clin. Med. 2018, 7, 337 10 of 25

Table 1. Recommendations for exercises variables for a resistance training with blood flow restriction
(BFR); n.a.: not available; reps: repetitions; 1RM: one repetition maximum; s: seconds; min: minute.

Exercise Variables Recommendations for Resistance Training with BFR

(1.) load 20 to 50% of 1RM
(2.) number of repetitions 15 to 30 per set, 50 to 80 repetitions per exercise (e.g., 30–15–15–15 reps)
(3.) number of sets 3 to 5 sets per exercise
(4.) inter-set rest periods 30 to 60 s
(5.) inter-exercise rest periods 5 min (without BFR)
(6.) number of exercises n.a.
(7.) repetition velocity 1 (to 2)–0–1 (to 2)–1 s
(8.) muscle action dynamic muscle action, eccentric is more effective than concentric
(9.) exercise selection single- and multi-joint exercise
(10.) exercise order n.a., depending on the training goal
(11.) volitional muscle failure until volitional fatigue/repetition failure/technical failure
(12.) range of motion full range of motion
(13.) frequency 2 to 3 sessions per week
(14.) density n.a., depending on the performance level

(15.) duration n.a., but according to the general physiological view, exercise variables
or exercises should be changed after a mesocycle of 8 to 12 weeks

Furthermore, so far, there have been no consistent recommendations for the cuff pressure.
However, the following criteria are often used to apply an optimal cuff pressure: 130% of the systolic
blood pressure [226,237]; 10 mm Hg below the arterial occlusion pressure [225]; ~50% arterial occlusion
pressure [243]. The most effective cuff pressure has still to be identified [124].

In general, resistance training with BFR is a harmless treatment strategy when applied
appropriately [117,133,136,222,241,249–251], but in order to minimize the occurrence and/or to
avoid adverse health effects, safety recommendations should be considered [134] and available risk
assessment tools should be used [252]. Furthermore, we want to point out that during the practical
implementation of a resistance training with BFR, the following general safety recommendations
should be strictly adhered to minimize the occurrence of adverse events: We strongly recommend
that an individual and adequate cuff pressure should be applied. Furthermore, based on the currently
available recommendations the maximal duration for continuous BFR should in general not exceed a
time period of circa 10 to 15 min for the upper limbs and circa 15 to 20 min for the lower limbs because
longer time periods may increase the risk of adverse events [134].

(iii) Physical exercises influence cognitive performance on multiple levels: (1) cellular and
molecular level; (2) structural and functional level and (3) behavioral/socioemotional level [67].
Based on these mentioned levels, multiple outcome measures should be considered in the study design
and analysis in order to understand the complex interaction of physical exercises (e.g., resistance
training with BFR) and cognition:

(1) On the cellular and molecular level, neurochemical markers such as IGF-1, GH, VEGF, blood
lactate concentrations and BDNF might be used since the exhibited associations with cognitive
performance (see the previous sections).

(2) On the structural and functional level, different neuroimaging modalities such as fNIRS,
EEG, fMRI or a combination of those should be applied in order to understand physical exercise
induced structural and functional brain changes [49,253]. Since fNIRS and EEG can in particular be
used during physical exercises [254–256], both measuring systems are suitable for the evaluation of
cognitive activity while performing resistance training with BFR. Here, short-term and long-term
effects of this intervention strategy could be objectified. Regarding functional brain changes, it seems
recommendable (a) to use standardized and established cognitive test (e.g., Stroop test [101,104],
Sternberg test [257–259], Eriksen Flanker test [102]) to ensure comparability with existing studies and
(b) to consider attention and perceptual tasks which were currently not in the focus of exercise-cognition
research [260] but could be important for special cohorts (e.g., individuals with dementia) [48].
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(3) On the behavioral/socioemotional level, established questionnaires such as “Felt Arousal
Scale” [261], “Ratings of perceived exertion” [262], “Visual Analogue Scales” (e.g., to assess
motivation or mental fatigue) [172,263–265], “SF-36” (to assess physical and mental components
of the quality of life) [266] and “Pittsburgh Sleep Quality Index” (to assess various components
of the sleep quality) [267] which are widely used in exercise–research with a neuropsychological
and behavioral/socioemotional focus [141,172,263–265,268,269], should be used to elucidate the
(moderating) effects of socioemotional states.

4. Conclusions

The type of physical exercise (e.g., resistance training) in combination with related exercise
variables (e.g., load, number of repetitions and sets) which efficiently enhance cognitive performance
are largely unknown [39–49]. A promising physical exercise intervention which fends off physical and
cognitive decline (e.g., due to the aging process) is resistance training. Hypothetically, the efficiency of
resistance training interventions on cognition could be increased due to the application of BFR.

Resistance training with BFR is more efficient to increase muscle hypertrophy and strength
as compared to the same resistance training without BFR [247,270] and for a resistance training
with BFR, lower exercise loads are needed to achieve comparable muscular adaptions (e.g., increase
in muscle mass) as compared to high-load resistance training [271,272]. The lower exercise load
during a resistance training with BFR could be beneficial for special cohorts since those lower
exercise loads pose lower mechanical stress to the joints and the risk of adverse cardiovascular
effects is decreased [124,217,244,273]. The currently available evidence suggests (i) that strength
gains in response to a resistance training mediate, at least partly, the cognitive improvements [274]
or (ii) that strength performance per se is a more appropriate indicator regarding health outcomes
(e.g., cognition) [108]. Hence, at the moment no reliable assumptions can be made whether (i) a regular
participation in resistance training, (ii) a relative high individual (baseline) strength level or (iii) the
combination of both (high muscular strength level and regular resistance training) are most beneficial
for cognitive functions. Notably, since an optimal level of neurochemical substances (e.g., IGF-1)
is beneficial for cognitive performance [275], it could be speculated that, in turn, also an optimal
level of muscular strength and/or continuously performed effective resistance activities, which may
contribute substantially to the maintenance of an optimal level of neurochemical substances, exists.
In this manner, a low-load resistance training with BFR could be a promising strategy especially for
special cohorts (e.g., older adults unable to tolerate high loads) to ensure an adequate level of strength
and profit from biological mechanisms which would without BFR only be possible when (not well
tolerated) high loads are applied. Furthermore, relative low muscle damage is induced by low-load
resistance training with BFR [148,168,276,277], which may allow a higher training frequency than in
high load-resistance training [124,125,246].

However, testing the hypothesis suggesting that short-term and long-term resistance training
with BFR improve cognitive performance as well as brain health to a greater extent than resistance
training without BFR may provide deeper insights into the interplay between neurobiological
mechanisms and cognitive processes. A deeper understanding of underlying exercise-induced and
cognition-related neurobiological mechanisms is urgently needed to develop efficient prevention
strategies (e.g., decelerate cognitive decline due to aging process) and to optimize rehabilitation
strategies for individuals with worsened cognitive functions (e.g., older individuals with dementia).
Here, the resistance training with BFR might be a promising strategy of exercise intervention.
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