Supplementary Material

- 1. Experimental Section
- 1.2 Magnetic Resonance Imaging
- 1.2.1 Voxel-based morphometry

Data preprocessing consisted of tissue classification and segmentation into gray and white matter, image registration, as well as bias correction for magnetic field inhomogeneities. Additionally, Hidden Markov Random Fields (HMRF) were applied to increase the signal-to-noise ratio of the final tissue maps. HMRF provide spatial constraints on tissue segmentation based on the intensities of neighboring voxels. Specifically voxels which are isolated and unlikely to be associated with a certain tissue class are removed from the final tissue maps [1]. All resulting gray and white matter images were registered to a template provided by the International Consortium of Brain Mapping, and a diffeomorphic image registration algorithm (DARTEL) [2] was used for spatially normalizing tissue maps into stereotactic Montreal Neurological Institute (MNI) space. Finally, normalized gray matter maps (m0wrp1*), depicting the absolute amount of regional gray matter (GM) volume corrected for individual brain sizes, were smoothed with a standard 8 mm full-width-at-half-maximum (FWHM) [3] isotropic Gaussian kernel and used for further statistical analyses.

1.2.2 Tract-based spatial statistics and probabilistic tractography

Several processing steps were conducted: 1) Nonlinear alignment of all subjects' FA data into the FMRIB58_FA standard space, 2) Affine-transformation of these aligned images into MNI152 standard space (1 x 1 x 1 mm), 3) Creating a 4D image by merging all of these subjects' FA images, 4) Skeletonisation of mean FA images and creating a mean FA skeleton and 5) Re-alignment of subjects' FA data onto this skeleton and voxel-wise cross-subject comparison using "Randomise" with threshold-free cluster enhancement and 5000 permutations.

1.2.3 Analysis of RSFC data

During preprocessing, images were first corrected for acquisition time difference between the slices, and then realigned to the first volume to correct for head motion between volumes. Physiological noise was reduced by regressing out signals from white matter, cerebrospinal fluid and the six head movement parameters and by removing a linear tread and band-pass filtering the data to (0.01–0.08 Hz) to reduce the effects of very low and high frequency physiological noise.

2. Results

Figure 1. Cognitive profiles of all (young + older) participants with recurrent mTBI. Mean Z-scores (+1 standard deviation) of cognitive tests for participants with mTBI. mTBI = mild traumatic brain injury, AVLT = Auditory Verbal Learning Test; TMT-score = Trail Making Test score; RWT = Regensburg Verbal Fluency Test.

		Young				Old				All		
		(N=38)				(N=33)				(N=71)		
	mTBI	Healthy	Т	р	mTBI	Healthy	Т	р	mTBI	Healthy	Т	р
					Ve	erbal memol	У					
AVLT, sum 1-5	0.26 ± 0.71	0 ± 1	0.87	0.39	-0.50 ± 1.05	0 ± 1	-1.40	0.17	-0.15 ± 0.98	0 ± 1	-0.61	0.55
AVLT, 6-5	-0.38 ± 1.76	0 ± 1	-0.80	0.43	-0.50 ± 1.18	0 ± 1	-1.30	0.20	-0.44 ± 1.38	0 ± 1	-1.48	0.14
AVLT, 7-5	-0.31 ± 0.93	0 ± 1	-0.95	0.35	-0.60 ± 1.89	0 ± 1	-1.12	0.27	-0.42 ± 1.34	0 ± 1	-1.47	0.15
(delayed recall)												
AVLT,	-0.29 ± 1.06	0 ± 1	-0.77	0.45	-0.20 ± 0.79	0 ± 1	-0.61	0.55	-0.21 ± 0.90	0 ± 1	-0.86	0.39
Recognition												
					Vis	uospatial sk	ills					
Rey figure,	0.44 ± 0.15	0 ± 1	1.79	0.08	-0.35 ± 1.21	0 ± 1	-0.89	0.38	0.05 ± 0.92	0 ± 1	0.25	0.81
сору												
Rey figure,	-0.14 ± 1.25	0 ± 1	-0.36	0.73	-0.08 ± 0.75	0 ± 1	-0.26	0.79	-0.11 ± 0.92	0 ± 1	-0.48	0.63
recall												
					Pro	cessing spe	ed					
TMT-A/B score	0.36 ± 1.11	0 ± 1	0.72	0.32	0.37 ± 0.73	0 ± 1	1.17	0.25	0.37 ± 9.5	0 ± 1	1.56	0.12
					Wa	orking memo	ory					
Digit Span,	0.13 ± 1.03	0 ± 1	0.39	0.70	-0.40 ± 0.81	0 ± 1	-1.24	0.22	-0.14 ± 1.04	0 ± 1	-0.58	0.56
forward												
Digit Span,	-0.05 ± 0.83	0 ± 1	-0.17	0.87	-0.18 ± 0.69	0 ± 1	-0.62	0.54	-0.14 ± 0.79	0 ± 1	-0.63	0.53
backward												

Table 1. Results of the post hoc Student's t-tests for the cognitive testing.

Note. Cognitive test scores reflect mean Z-scores. Groups were compared using Student's t-test for independent samples [uncorrected p-values]. mTBI= mild traumatic brain injury.

MMSE = Mini Mental Status Examination, BDI = Beck Depression Inventory, TMT-A/B score = Trail Making Test, AVLT = Auditory Verbal Learning Test.

Supplementary Table 2 Results of the whole-brain voxel-based analysis comparing local gray matter volume between the different groups split with regards to: A) Group (participants with mTBI vs. healthy controls), B) Age (young vs. older subjects), and C) interaction between age and group.

Anatomical region	L/R	Number of	Z score of		MNI	
		voxels in	local		peak vo	kel
		cluster	maximum		coordina	tes
				x	У	z
A) Group						
Healthy controls > participants						
with mTBI	R	30	3.59	16	-64	40
Precuneus ^a	L	21	3.53	-14	64	-5
Medial OFC ^a						
Participants with mTBI > healthy		No supra	threshold clus	sters		
controls						
B) Age						
Young > older subjects						
Cerebellum	L	1050690	Inf	-4	-60	-8
Inferior parietal lobe	L	1290	6.43	-45	-37	48
Precentral gyrus	L	42	6.27	-33	-27	54
Supplementary motor cortex	R	63	6.03	3	-18	63
Postcentral gyrus	L	17	5.91	-28	-36	57
Precentral gyrus	R	16	5.86	34	-24	51
Supplementary motor cortex	L	3	5.51	-3	-15	61
Postcentral gyrus	R	3	4.77	24	-39	64
Hippocampus	L	68	4.70	-16	-15	-20
Superior parietal lobe	L	3	4.64	-20	-43	64
No ROI/Temporal pole	L	47	4.63	-40	11	-44
Superior parietal lobe	L	13	4.56	-21	-69	51
Superior parietal lobe	L	1	4.56	-34	-64	49
Superior parietal lobe	L	2	4.51	-34	-67	48

No ROI/Temporal pole	L	4	4.50	-45	2	-45	
Superior occipital lobe	R	1	4.46	27	-82	28	
Superior occipital lobe	R	1	4.43	30	-84	27	
Older > young subjects	s No suprathreshold clusters						
C) Group x Age interactions							
C) Group x Age interactions Participants with mTBI ^{young > old}	^{er} > healthy contro	 S ^{young > eldely}					
C) Group x Age interactions <i>Participants with mTBI</i> ^{young > old} Hippocampus ^a	^{er} > <i>healthy contro</i> R	ls ^{young > eldely} 5	3.16	38	-18	-23	
C) Group x Age interactions <i>Participants with mTBI</i> ^{young > old} Hippocampus ^a <i>Participants with mTBI</i> ^{older >yound}	^{er} > healthy contro R ^g > healthy	ls ^{young > eldely} 5 No su	3.16 prathreshold	38 clusters	-18	-23	

L, left hemisphere; R, right hemisphere.

^aVoxel-wise small-volume corrected (SVC).

Supplementary Table 3 Results of the whole-brain analysis comparing RSFC of the A) right and B) left medial OFC, the C) right and D) left precuneus, the E) right and F) left putamen, and the G) right and H) left hippocampus between the different groups split with regards to: group (patients with mTBI vs. healthy controls), age (young vs. older subjects), and interaction between age and group (mTBI patients ^{young > older} > healthy controls ^{young > older}).

Anatomical region	L/R	Number of	Z score of		MNI	
		voxels in	local	pe	eak vox	el
		cluster	maximum	со	ordinat	es
				x	У	z
A) Right medial OFC						
Healthy controls > mTBI patients		No supra	threshold clust	ters		
mTBI patients > healthy controls		No supra	threshold clust	ters		
Young > older subjects						
Middle temporal gyrus	L	97	5.02	-60	-15	-18
Medial superior frontal gyrus/orbital	R	124	4.90	3	54	-9
part	L	159	4.63	0	-63	21
Precuneus	R	65	4.19	15	39	48
Dorsolateral superior frontal gyrus						
Older > younger subjects						
Inferior frontal gyrus	R	137	4.79	54	9	9
Supplementary motor cortex	L	139	4.62	0	3	45
Middle frontal gyrus	L	38	4.52	-24	-6	48
Insula	L	110	4.30	-39	0	12
Age x Group interaction		No supra	threshold clus	ters		
B) Left medial OFC						
Healthy controls > mTBI patients		No supra	threshold clust	ters		
mTBI patients > healthy controls						
Temporal pole	L	61	4.45	-30	6	39
Young > older subjects						
Medial superior frontal gyrus/orbital	L	63	4.46	0	54	-9

part	L	40	4.33	-30	-39	0	
Hippocampus	L	58	4.18	-57	-15	-18	
Middle temporal gyrus							
Older > young subjects							
Inferior frontal gyrus	R	70	4.90	54	9	18	
Inferior frontal gyrus	L	74	4.31	51	6	9	
Middle frontal gyrus	L	68	4.25	-24	3	54	
Middle frontal gyrus	L	46	4.11	-45	33	30	
Supplementary motor cortex	R	54	3.91	3	6	57	
Age x Group interaction		No supra	athreshold clu	sters			
C) Right precuneus							-
Healthy controls > mTBI patients		No supra	athreshold clu	sters			
mTBI patients > healthy controls		No supra	athreshold clu	sters			
Young > older subjects							
Thalamus	R	76	4.81	12	-24	12	
No ROI/Paracingulate gyrus	L	47	4.04	-9	-30	30	
Older > young subjects							
Postcentral gyrus	L	40	4.50	-27	-36	69	
Postcentral gyrus	R	45	4.14	18	-33	72	
Supplementary motor cortex	R	43	3.87	12	-24	51	
Age x Group interaction		No supra	athreshold clu	sters			
D) Left precuneus							-
Healthy controls > mTBI patients		No supra	athreshold clu	sters			
mTBI patients > healthy controls		No supra	athreshold clu	sters			
Young > older subjects							
No ROI/Thalamus	L	83	5.14	-15	-33	9	
No ROI	L	100	4.59	9	-30	21	
No ROI/Hippocampus	L	36	4.44	-39	-9	-21	
Older > young subjects							
No ROI/Inferior frontal gyrus	L	53	3.83	-54	21	-6	
Age x Group interaction		No supra	athreshold clu	sters			

E) Right	putamen
----------	---------

Healthy controls > mTBI patients	No suprathreshold clusters								
mTBI patients > healthy controls		No supra	No suprathreshold clusters						
Young > older subjects		No supra	No suprathreshold clusters						
Older > young subjetcs									
Hippocampus	L	63	4.98	21	-6	-27			
Age x Group interaction		No supra	athreshold clu	sters					
F) Left putamen									
Healthy controls > mTBI patients		No supra	athreshold clu	sters					
mTBI patients > healthy controls		No supra	athreshold clu	sters					
Young > older subjects		No supra	athreshold clu	sters					
Older > young subjects									
Hippocampus/Parahippocampal	R	77	4.93	21	-6	-27			
gyrus									
Age x Group interaction		No supra	athreshold clu	sters					
G) Right hippocampus									
Healthy controls > mTBI patients		No supra	athreshold clu	sters					
mTBI patients > healthy controls		No supra	athreshold clu	sters					
Young > older subjects		No supra	athreshold clu	sters					
Older > young subjects									
Inferior temporal gyrus	L	55	4.35	-39	-9	-42			
Temporal pole	R	46	4.18	27	9	-39			
Age x Group interaction		No supra	athreshold clu	sters					
H) Left hippocampus									
Healthy controls > mTBI patients		No supra	athreshold clu	sters					
mTBI patients > healthy controls		No supra	athreshold clu	sters					
Young > older subjects									
Medial superior frontal gyrus/orbital	L	105	4.20	-9	39	-12			
part	L	44	3.88	-15	-33	63			
Medial frontal lobe/paracentral lobule	L	53	3.79	-24	39	51			

No ROI/Dorsolateral superior frontal

gyrus

Older > young subjects

Age x Group interaction

No suprathreshold clusters

No suprathreshold clusters

Reported clusters survived a voxel-wise family-wise error (FWE) correction using an uncorrected

cluster-defining threshold of p < 0.001.

L, left hemisphere; R, right hemisphere.

3. References

- 1. Zhang, Y.; Brady, M.; Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 2001, 20, 45–57, doi:10.1109/42.906424.
- 2. Ashburner, J. A fast diffeomorphic image registration algorithm. Neuroimage 2007, 38, 95–113, doi:10.1016/j.neuroimage.2007.07.007.
- 3. Silver, M.; Montana, G.; Nichols, T.E. False positives in neuroimaging genetics using voxel-based morphometry data. Neuroimage 2011, 54, 992–1000, doi:10.1016/j.neuroimage.2010.08.049.