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Abstract: Background: Successful weaning from mechanical ventilation is important for patients
in intensive care units (ICUs). The aim was to construct neural networks to predict successful
extubation in ventilated patients in ICUs. Methods: Data from 1 December 2009 through 31 December
2011 of 3602 patients with planned extubation in Chi-Mei Medical Center’s ICUs was used to train
and test an artificial neural network (ANN). The input was 37 clinical risk factors, and the output
was a failed extubation prediction. Results: One hundred eighty-five patients (5.1%) had a failed
extubation. Multivariate analyses revealed that failure was positively associated with therapeutic
intervention scoring system (TISS) scores (odds ratio [OR]: 1.814; 95% Confidence Interval [CI]:
1.283–2.563), chronic hemodialysis (OR: 12.264; 95% CI: 8.556–17.580), rapid shallow breathing
(RSI) (OR: 2.003; 95% CI: 1.378–2.910), and pre-extubation heart rate (OR: 1.705; 95% CI: 1.173–2.480),
but negatively associated with pre-extubation PaO2/FiO2 (OR: 0.529; 95%: 0.370–0.750) and maximum
expiratory pressure (MEP) (OR: 0.610; 95% CI: 0.413–0.899). A multilayer perceptron ANN model
with 19 neurons in a hidden layer was developed. The overall performance of this model was F1:
0.867, precision: 0.939, and recall: 0.822. The area under the receiver operating characteristic curve
(AUC) was 0.85, which is better than any one of the following predictors: TISS: 0.58 (95% CI: 0.54–0.62;
p < 0.001); 0.58 (95% CI: 0.53–0.62; p < 0.001); and RSI: 0.54 (95% CI: 0.49–0.58; p = 0.097). Conclusions:
The ANN performed well when predicting failed extubation, and it will help predict successful
planned extubation.

Keywords: predictor; successful extubation; artificial neural network

1. Introduction

A significant percentage of intensive care unit (ICU) patients require endotracheal intubation [1].
Prolonged ventilatory support increases the risk of complications, such as ventilation-associated
pneumonia, and could be associated with higher in-hospital mortality and greater post-discharge
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mortality, healthcare utilization, and healthcare costs [2]. Thus, extubation of ventilated patients as early
as possible after respiratory stabilization is desirable [3]. To reduce the risk of prolonged ventilatory
support, it is crucial to determine the appropriate time for weaning a patient from mechanical
ventilation [4] because extubation failure might occur in premature extubation. Standard clinical
practice is to extubate based on a comprehensive assessment that considers a patient’s clinical condition,
arterial blood gas results, ventilator settings, and weaning profiles [5]. However, extubation failure
often occurs (~19% reintubation required) even after the comprehensive assessment [6]. This suggests
that the ability of clinicians to predict successful extubation is limited; a more powerful tool is required
to help determine the optimal time to extubate [7].

Outcome prediction models using artificial neural networks (ANNs) and multivariable logistic
regression analyses have recently been developed in many areas of healthcare research [8,9].
Artificial neural networks are computer-based algorithms that mimic the habits and structures of
neurons. They have also been successfully used to predict mortality in trauma patients [10]. Recently,
ANNs have been introduced to predict extubation outcomes, but findings vary by study [11,12].
The main reasons for poor outcome predictions might be because of differences in clinical input data.
It was aimed to construct an ANN model for clinicians making extubation decisions.

2. Materials and Methods

2.1. Patients and Setting

This study retrospectively analyzed 3602 adult patients with planned extubation in eight ICUs
of Chi-Mei Medical Center from December 2009 through December 2011. All of them were enrolled
in a prospective observational study [13]. All patients were separated into two groups: a successful
extubation group and a failed extubation group. Patients who remained extubated after 72 h were
classified as having a successful extubation, even if they required reintubation later during the same
hospitalization [14,15]. In contrast, patients who needed reintubation within 72 h after a planned
extubation were classified as having a failed extubation. Patients who died within 72 h of extubation
are also considered as going through an extubation failure. Noninvasive ventilation (NIV) may be
considered to rescue extubation failure [16,17]. Patients who withstood NIV without reintubation for
more than 72 h after extubation were classified as having a successful extubation. There were 161 patients
treated with NIV, and 29 patients needed reintubation within 72 h. Demographic and clinical information,
laboratory results, comorbidities, and the severity scores of all patients were collected. Chi-Mei Medical
Center’s Institutional Review Board approved the study protocol (IRB no. 10706-009).

2.2. Constructing Training Data Set

All features were extracted from the original dataset. The data of all patients was normalized to
have an overall mean of 0 and a standard deviation of 1. After data processing, there were 37 input
features, each of which were chosen for their wide availability in ICUs, and two outputs, each of which
represented a prediction of successful or failed extubation.

2.3. Data Description

The entire data set was comprised of 3602 data points. In both the training and test data sets,
the positive class was dominant: 3416 of 3602 (94.8%) patients had a successful extubation. The ratio
between successfully and unsuccessfully extubated patients was 1:18.47. The data were split into
training and test sets at approximately a 9:1 ratio, which was chosen in accordance with other ANN
research [18]. The 3242 data points were randomly allocated to the train set and 360 data points were
randomly allocated to the test set.
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2.4. Algorithm and Training

A multilayer perceptron (MLP) neural network was used to train the data. K-fold cross-validation
with a k value of 10 was used over 10 epochs to select the best-performing hyperparameters, optimizers,
and loss function. The three-layered model consists of one input layer with 37 dimensions, a hidden
layer of 19 dimensions, and an output layer of 2 dimensions. The network was trained using stochastic
gradient descent with a mini-batch size of 1. The network was optimized using Adam with default
parameters as described by Kingma et al. [9]. The neural network was trained for 60 epochs. The Scaled
Exponential Linear Unit (SeLU) activation function was used at each layer, and Softmax was used at
the output layer [15]. A 20% dropout rate (a simple way to prevent neural networks from overfitting)
was applied to the input layer and a 50% dropout rate was applied to output layer [19]. The categorical
cross-entropy error function for binary classifiers was used as the loss function. Each data point was
weighted based on its outcome ratio; this was done to ensure that the output of the neural network
was not heavily skewed toward the dominant class.

The software was implemented using Python 3.6.5 [20] with the scikit-learn library (version
0.19.1) [21] and the Tensorflow framework (version 1.8.0) [22].

2.5. Statistical Analyses

Mean values, standard deviations, and group sizes were used to summarize the results for
continuous variables. The differences between the successful and failed extubation groups at hospital
discharge were examined using univariate analysis with a Student’s t test and a χ2 test. Significance was
set at p < 0.05. Predetermined variables, or those significantly associated with successful extubation in
univariate analysis (p < 0.05), were tested for interaction using multivariate logistic regression analysis.
Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated. SPSS 24.0 for Windows (SPSS,
Inc., Chicago, IL, USA) was used for all statistical analyses.

Because the data distribution was unbalanced, accuracy was not a reliable measurement of
predictor performance [23]. Instead, the weighted averaged recall (sensitivity), precision (positive
predictive value [PPV]), and F1 scores (harmonic mean of sensitivity and precision) were used to
measure ANN performance. The value of ideal recall, precision, and F1 scores = 1 [24]. All three scores
were calculated for the test set and for all data.

The ANN performance was also measured using the area under the receiving operating
characteristic (ROC) curve. The area under the ROC curve (AUC) of the neural network was compared
against the AUC of variables that had significantly different outcomes. The AUC was also compared
against the ideal value of 1 [25].

To ensure that it is the ANN and not the individual variables that improve the prediction, the ROC
of the ANN was compared with that of a composite score created from relevant variables. To create a
composite score that was representative of individual variables, principal component analysis (PCA)
was first performed on the significant variables. A composite score was then created by the results of
the multivariate analysis. The variable weightings in the composite score were based on its correlation
with the first principal component.

3. Results

3.1. Demographic Features of Patients

Table 1 shows the demographic and clinical characteristics of the sample of ICU patients with
planned extubation. Of the 3602 patients included in the study, 50.9% were male and 49.1% were
female. Patients with extubation failure were older than the successful extubation group (p < 0.001).
In addition, patients with extubation failure had higher Acute Physiology and Chronic Health
Evaluation (APACHE) II scores (18.9 ± 7.0 vs. 16.2 ± 7.4) and therapeutic intervention scoring
system (TISS) scores (29.3 ± 7.5 vs. 27.1 ± 7.8) than the successful extubation group (both p < 0.001).
Regarding weaning parameters, there is a significant difference in the TISS score, maximum expiratory
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pressure (MEP), and rapid shallow-breathing index (RSI) between the patients in the failed and
successful extubation groups (all p < 0.05). Overall, failed extubation patients had longer duration
of mechanical ventilation (MV) uses (140.8 ± 145.8 h vs 106 ± 126.9 h) than patients with successful
extubation (p = 0.002).

Table 1. Demographic and clinical characteristics of 3602 intensive care unit (ICU) patients with
planned extubation.

Variable Successful Extubation Failed Extubation p

n = 3417 (94.9%) n = 185 (5.1%)

Age (years) 63.9 ± 16.5 68.1 ± 14.6 <0.001
Male 1729 (50.6%) 106 (57.3%) 0.426

BMI (kg/m2) 23.7 ± 4.5 23.2 ± 4.5 0.144
APACHE II 16.2 ± 7.4 18.9 ± 7.0 <0.001
TISS Scale 27.1 ± 7.8 29.3 ± 7.5 <0.001

Glasgow coma scale 12.1 ± 3.5 11.1 ± 3.8 0.001

Comorbidities
Cardiovascular accident 635 (18.6%) 45 (24.3%) 0.052

Chronic lung disease 264 (7.7%) 21 (11.4%) 0.075
Chronic hemodialysis 314 (9.2%) 105 (56.8%) <0.001
Chronic liver disease 76 (2.2%) 3 (1.6%) 0.586

Diabetes 999 (29.2%) 71 (38.4%) 0.008
Old stroke 866 (25.3%) 56 (30.3%) 0.135

Active cancer 755 (22.1%) 28 (15.1%) 0.025

Pre-extubation data
FiO2 27.4 ± 3.5 28.0 ± 3.7 0.029

Pressure support level 9.2 ± 1.5 9.2 ± 1.6 0.840
PEEP 5.1 ± 0.5 5.2 ± 0.6 0.028

Minute ventilation 7.8 ± 2.6 7.5 ± 2.4 0.075
Pulse rate 86.6 ± 16.2 87.9 ± 17.3 0.236

Mean arterial pressure 96.5 ± 16.2 94.7 ± 18.1 0.184
Respiratory rate 16.7 ± 5.1 18.0 ± 5.3 0.001

pH 7.441 ± 0.054 7.446 ± 0.051 0.279
PaCO2 37.6 ± 6.2 38.5 ± 6.0 0.057
PaO2 105.9 ± 41.6 94.9 ± 27.4 <0.001

PaO2/FiO2 361.0 ± 101.0 329.3 ± 94.1 <0.001
Hemoglobin 11.3 ± 1.9 10.7 ± 1.8 <0.001

Hematocrit (%) 34.2 ± 6.7 32.4 ± 6.7 0.001
Blood urea nitrogen 25.1 ± 21.3 32.9 ± 31.8 0.002

Creatinine 1.7 ± 2.1 1.9 ± 2.1 0.200
Sodium 139.1 ± 4.6 138.8 ± 5.1 0.370

Potassium 3.8 ± 0.5 3.9 ± 0.5 0.398
Calcium 7.9 ± 0.9 8.0 ± 0.9 0.598

Phosphate 3.4 ± 1.5 3.3 ± 1.7 0.812
Albumin 2.8 ± 0.6 2.7 ± 0.6 0.074

Weaning parameters
RSI 52.8 ± 29.9 62.8 ± 33.2 <0.001
MIP 37.9 ± 14.1 34.9 ± 13.0 0.008
MEP 61.0 ± 29.4 52.6 ± 26.7 <0.001

Ventilator use duration (h) 106.0 ± 126.9 140.8 ± 145.8 0.002

χ2 test, and t-test comparing survivors and non-survivors overall; Data are presented as mean ± standard deviation
or n (%); APACHE = Acute Physiology and Chronic Health Evaluation; BMI = body mass index; TISS = Therapeutic
Intervention Scoring System; ICU = intensive care unit; RSI = Rapid Sallow-breathing Index; MIP = Maximum
negative Inspiratory Pressure; MEP = Maximum Expiratory Pressure.
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Multivariate analyses showed that failed extubations were positively associated with TISS scores,
chronic hemodialysis, RSI, and pre-extubation heart rate, but negatively associated with pre-extubation
PaO2/FiO2 and MEP (Table 2).

Table 2. Significant predictors of the failed extubation of all planned extubation patients.

Variable OR 95% CI P * OR 95% CI P **

Age (years) 1.107 1.007–1.027 0.001
APACHE II 1.046 1.027–1.066 <0.001
TISS Scale 1.036 1.017–1.055 <0.001 1.814 # 1.283–2.563 0.001

Glasgow coma scale 0.930 0.894–0.967 <0.001
Comorbidities

Chronic hemodialysis 12.970 9.483–17.740 <0.001 12.264 8.556–17.580 <0.001
Diabetes 1.507 1.110–2.045 0.008

Active cancer 0.629 0.417–0.948 0.027
Ventilator use duration (h) 1.002 1.001–1.003 <0.001

Weaning parameter
RSI 1.008 1.004–1.012 <0.001 2.003 % 1.378–2.910 <0.001
MIP 0.983 0.970–0.995 0.008
MEP 0.989 0.983–0.995 <0.001 0.610 @ 0.413–0.899 0.013

Pre-extubation data
Pulse rate 1.014 1.005–1.023 0.003 1.705 * 1.173–2.480 0.005

PaO2/FiO2 0.997 0.995–0.998 <0.001 0.529 & 0.373–0.750 <0.001
Hemoglobin 0.832 0.765–0.904 <0.001

Hematocrit (%) 0.961 0.939–0.984 0.001
BUN 1.012 1.007–1.017 <0.001

#: TISS ≥ 28.5, AUC ≈ 0.6, p < 0.001; %: RSI ≥ 49.95, AUC ≈ 0.6, p < 0.001; @: MEP < 39 cm H2O, AUC ≈ 0.6,
p < 0.001; Pulse rate ≥ 102.5 /min, AUC ≈ 0.6, p = 0.026; &: PaO2/FiO2 ≤ 323.25, AUC ≈ 0.6, p < 0.001; * Value for
univariate analysis; ** Value for multivariate analysis;

3.2. Results of Artificial Neural Networks (ANN)

The overall performance of the ANN model was shown in Table 3. The weighted k-fold accuracy
of the ANN (k = 10) was 0.94.

Table 3. Weighted average F1, precision, and recall values for all data sets.

Test Set (n = 37) All Patients (n = 307)

F1 0.871 0.867
Precision 0.957 0.939

Recall 0.808 0.822

Figure 1 shows the ROC curve of the ANN, TISS, MEP, and RSI on all patient data. The AUC in
the test set of the ANN model was 0.85 (95% CI: 0.82–0.87, p < 0.001), which was better than any one of
the following predictors: 0.58 (95% CI: 0.54–0.62, p < 0.001) for TISS, 0.58 (95% CI: 0.53–0.62, p < 0.001)
for MEP, and 0.54 (95% CI: 0.49–0.58, p = 0.097) for RSI. Whether there was a significant difference
between the ANN and other variables was determined using the DeLong test on the AUC [26]. There is
a significant difference between the AUC for the ANN and the AUC for TISS (z = 10.71, p < 0.0001),
MEP (z = 10.95, p < 0.0001), and RSI (z = 12.52, p < 0.0001).

The weight of each variable in the composite score used as a point-of-comparison are summarized
in Table 4.
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Figure 1. Receiver operating characteristic curve of artificial neural network (ANN), Therapeutic
Intervention Scoring System (TISS), maximum expiratory pressure (MEP), and rapid shallow breathing
index (RSI) for predicting successful weaning in ICU patients.

Table 4. Weighing of each variable in the composite score.

Variable Weighting

Age (years) −0.474
APACHE II −0.75
TISS Scale −0.286

Glasgow coma scale 0.566

Comorbidities
Chronic hemodialysis −0.289

Diabetes −0.022
Active cancer 0.027

Ventilator use duration (h) −0.611

Weaning parameter
RSI −0.005
MIP 0.238
MEP 0.353

Pre-extubation data
Pulse rate 0.066

PaO2/FiO2 0.097
Hemoglobin 0.692

Hematocrit (%) 0.643
BUN −0.033

Figure 2 shows the ROC curve of the ANN and the composite score. The AUC of the combined
score was 0.64 (95% CI 0.60–0.68, p < 0.001). The AUC of the ANN was significantly better than the
AUC of the combined score (z = 8.79, p < 0.0001).
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Figure 2. Receiver operating characteristic curve of artificial neural network (ANN) and the composite
score created from significant variables.

4. Discussion

It was found that a neural network model is a good predictor for successful extubation.
While other weaning parameters, such as tidal volume, frequency, minute ventilation, MEP, and RSI,
are used to help assess the weaning process, they did not yield a high degree of accuracy in predicting
extubation outcomes [27–30]. It was also found that the predictive performance of ANN was better
than those of RSI and MEP. This is consistent with a previous study [11] which reported that the
proposed ANN yielded better discrimination for predicting successful extubation than did the RSI and
PI max. Also, it was found that the ANN yielded a better performance than a composite score based
on significant variables created using PCA. Moreover, the ANN in this study was created and trained
based on the data of 3602 ready-to-wean patients, far more than in Kuo et al. [11]. Finally, the ANN
algorithm provided useful information about the optimal time to extubate.

Several other studies have tried to find appropriate predictors of successful weaning and presented
different findings. In other studies, the factors that predicted failed weaning were older age, pulmonary
cause of intubation, and lower mean arterial pressure [13,31]. The prediction of successful extubation
have also been reported: being female and low blood urea creatinine [32]; MIP and arterial carbon
dioxide tension (PaCO2) [33]; and respiratory rate, RSI, MIP, and APACHE II scores [27]. All these
factors were included in the current ANN algorithm; thus, it should provide an accurate prediction
based on comprehensive information.

Previous ANNs were usually developed using proprietary software such as Statistica (TIBCO
Software Inc., San Francisco, CA, USA) and SPSS. The free and open source Tensorflow framework
was used to create our ANN. Tensorflow has a fast update cycle and frequently incorporates newer
neural network configurations. In contrast, SPSS has a slow update cycle and fewer configurations.
For instance, SPSS 25 does not have the Adam optimizer, which was used in the present ANN.

This study has some limitations. First, the rate of extubation failure was particularly low in this
study (5%) compared with rates in the literature (about 15%). In the present study, the final decision to
extubate was made by the intensivists treating the intubated patients. Thus, it was possible that they
did not follow the weaning and extubation protocol. Second, delayed extubation might have occurred
in this study. Third, the dataset used for this project was from December 2009 through December 2011;
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thus, the rapid advancements in sedation practices, delirium awareness, early mobility, anesthesia and
pain management, and ventilator capacity over the last decade might be a significant confounder
to the utility of this work. Fourth, the selection of variables for the model was based only on the
widespread availability of these data. This “availability” may depend from the type and habits of each
ICU. The findings may not be generalized to other ICUs. Finally, patients who needed reintubation or
died within 72 h after a planned extubation were classified as having a failed extubation. As NIV can
postpone the need for reintubation, a period of 7 days after extubation is required for a more accurate
definition of extubation failure when NIV is of broad use [34].

5. Conclusions

An extubation strategy for all ventilated ICU patients should be thoroughly planned. The present
study shows the parameters used to predict a successful planned extubation using an ANN.
Failed extubations were positively associated with TISS, RSI, pre-extubation heart rate, and chronic
hemodialysis, but negatively associated with MEP and pre-extubation PaO2/FiO2. Furthermore, this
present ANN model efficaciously predicted successful planned extubations in ICU patients.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0383/7/9/240/
s1, Supplementary 1: The artificial neural network model used in this study and a spreadsheet document
that describes the variables for each input feature are attached. Supplementary 2: The neuron weights of the
neural network are provided in the HDF5 format and can be imported into a Keras/Tensorflow model with the
configuration described in the method section of this study. The neural network is trained on standardized and
unity-based normalized data.
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