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Abstract: Given increasing longevity worldwide, older adults and caregivers are seeking ways to curb
cognitive decline especially for those with mild cognitive impairment (MCI, now mild neurocognitive
disorder, mNCD, Diagnostic and Statistical Manual of Mental Disorders, 5th ed. (DSM-V). This
quasi-experimental, within-subjects pilot clinical trial was designed to replicate and extend the study
of cognitive benefits for MCI by improving upon our prior interactive Physical and Cognitive Exercise
Study (iPACES™ v1.0) by increasing the usability of the neuro-exergame and exploring possible
underlying neurobiological mechanisms. Older adults were enrolled in a three-month, in-home
trial of a portable neuro-exergame (iPACES™ v2.0) where participants pedaled and steered along
a virtual bike path (Memory Lane™). Neuropsychological function was assessed at baseline after
component familiarization intervals (e.g., two weeks of exercise-only, game-only, etc.) and after
three months of interactive neuro-exergame intervention. Fourteen participants were enrolled in
the study and seven completed the final evaluation. Intent-to-treat analyses were conducted with
imputed missing data (total n = 14). Significant improvement in executive function (Stroop) was
found (d = 0.68, p = 0.02) only. Changes in salivary biomarkers (cortisol and insulin-like growth factor
1; IGF-1) were significantly associated with improved cognition. Further research is needed, but pilot
data suggest that a portable in-home neuro-exergame may be an additional, practical tool to fight
back against cognitive decline and dementia.

Keywords: exercise; exergame; mild cognitive impairment; neurocognitive disorder; dementia;
Alzheimer’s; executive function; IGF-1; cortisol; older adult

1. Introduction

Aging may be accompanied by impactful cognitive changes such as executive function decline,
which is often seen in Alzheimer’s disease and related dementias (ADRDs) [1]. There has been growing
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concern worldwide regarding the increasing prevalence of cognitive decline in our aging population [2].
Dementia (DSM-1V) [3], which is now a major neurocognitive disorder (MND, DSM-V) [4], has been
an umbrella term for the general loss of cognitive functions. This often includes impaired performance
in domains of intelligence, memory, language, visuo-spatial, and/or executive function. Dementia
may also include significant changes in personality or activities of daily living [4]. A mere 15 years
ago, 3.8 million older adults (65+) in the United States were diagnosed with dementia [5]. In the
United States alone, dementia cases have nearly doubled, reaching more than five million cases [6]
and it is projected that worldwide incidence will surpass 115 million by 2050 [7]. Since ADRDs are
often marked by declines in executive function that often lead to a loss of independence [8]. Research
strives to identify preventative measures to delay the onset of or ameliorate cognitive decline often
first presenting as mild cognitive impairment (MCI; DSM-IV [3]). Exercise has shown promising
results in slowing the decline in cognition [9]. However, many older adults do not engage in adequate
exercise [10]. The present pilot study was concerned with replicating and extending a prior finding
than a more engaging neuro-exergame in which physical and mental exercise were intertwined
interactively could benefit cognitive performance, specifically executive functioning [11], and also
exploring whether changes in biomarkers might correspond with improvements.

1.1. Physical Exercise and Aging

Recent and prior meta-analytic reviews [9,12,13] have found that numerous well-controlled
studies have strengthened the claim that physical exercise can positively impact cognitive functioning
in later life. Reviews continue to call for more well-controlled clinical trials to incorporate innovations
that will reach and engage pre-clinical cases such as MCI where cognitive decline might go undetected
yet harbor underlying neuropathology that could potentially be ameliorated with intervention [14,15].

1.2. Physical Exercise and Cognitive Decline (MCI)

A number of meta-analytic reviews have explored the effect of physical exercise on cognition
specifically in the MCI population [16-18]. Results revealed that physical exercise was positively
associated with global cognition. Of all the types of physical exercise interventions, aerobic exercise
consistently had a medium effect size on global cognition in the MCI population [17] and an executive
function in older adults [19]. Recent work assessing older adult participants also revealed that a
physical weakness was associated with an increased amount of amyloid beta in the brain, which
is an indicator of Alzheimer’s disease (AD) [20]. Physical exercise and its effect on cognition in
the AD population specifically has indicated that physical exercise is among the most impactful of
interventions for improving cognition [21].

Despite the preponderance of research supporting physical exercise as a useful intervention in
cognitive aging and MCI, most older adults do not get the recommended amount of exercise each
week [10]. Research from our own lab chose exergaming as a way to motivate increased exercise
compliance and adequate dosing with the intent of maximizing cognitive benefit [22]. We found
that older adults pedaling along a virtual reality pathway on a stationary bike (aka “cybercycle”)
accrued greater cognitive benefit after three months than those who pedaled a traditional stationary
bike. Yet, in the end, motivation and the dose were not the differentiating factors. Instead it appeared
that the combination of physical and mental exercise yielded additive and synergistic effects [22].
Recent research has also shown that other technological motivations such as smart watches may
encourage exercise [23]. Animal research has also contributed to our understanding by revealing that
physical and mental exercise have different neurobiological impacts. Physical exercise leads to neuronal
proliferation and mental exercise (aka “environmental enrichment”) leads to neuronal survival [24-26].
Similarly, human research has reported that physical and mental exercise are associated with different
structural and functional differences in the brain [27]. This research aimed to maximize a cognitive
benefit by combining interactive cognitive and physical exercise (herein iPACES™), and tried to
identify markers of underlying neurobiological mechanisms.
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1.3. Mental Exercise (Cognitive Training) and Cognitive Decline (MCI)

The above finding from our initial cybercycle study, in retrospect, is perhaps not surprising
given that there is a considerable growing, albeit controversial, literature (including meta-analyses
of controlled trial) indicating the effects of cognitive training interventions [28-32]. Studies that
have employed cognitive interventions alone such as computerized tasks, have been suggested
to improve cognitive performance in older adults [29,33-35]. However, many of these studies
did not address cognitively declining samples [36,37] and critiques of the literature question the
transfer of apparent cognitive gains [38—41]. Yet, given larger effect sizes and fewer side effects than
medications, the American Academy of Neurology (AAN) [42] and others recommend that health
care practitioners working with patients with MCI advocate for physical and mental exercise over and
above pharmacologic interventions [21,42—45].

1.4. Combined Physical and Mental Exercise for MCI (e.g., Combined/Tandem or
Interactive/Neuro-Exergaming)

Furthermore, research in humans suggests that neuroplasticity is induced by exercise [46,47],
which may prime the substrate prior to or in concert with cognitive exercise and reviews of published
studies have found that, when physical exercise is combined with mental exercise, there are added
cognitive benefits [47-55]. There are many different ways to combine mental and physical exercise,
including: 1. sequentially (e.g., cognitive training follows physical activity dis-synchronously often
in tandem); 2. simultaneously (e.g., cognitive tasks are presented at the same time while doing
physical activity, but they are “disparate,” without interactivity, as in “dual-task” paradigms); and 3.
interactively (e.g., physical and cognitive activities are interwoven such that performance in one realm
affects the other and vice versa) [11]. Determining which way to combine mental and physical
exercise is most effective or under what participant and environmental circumstances requires
additional research.

To evaluate the potential to maximize the cognitive benefit of an interactive physical exercise,
we compared the impact of different levels of mental challenges in a recently completed randomized
clinical trial (RCT, Aerobic and Cognitive Exercise Study [ACES]) for MCI [56]. In the ACES trial,
similar outcomes were achieved by six months for participants of either: (1) pedaling and steering
along a scenic bike path (exer-tour: low mental challenge); or (2) pedaling and steering through a
videogame landscape tagging dragons and coins to score points (exer-score, high mental challenge) [56].
Further comparative analyses had been planned but could not be pursued due to attrition. It was
difficult for MCI participants to leave their home and the commercial grade equipment was too large
and expensive to distribute in homes. As a result, our lab began developing a portable neuro-exergame
for use in the home. The interactive Physical and Cognitive Exercise System (iPACES™) was found to
be feasible for older adult use in a single bout study in the lab (v1.0) [57]. This system also yielded
promising results in an initial pilot clinical trial of older adult use in the home for three months [11].

It has thus been proposed that both mental and physical exercise interventions together
may improve or slow the decline of cognitive abilities in older adults with MCI [58] including
sequential/tandem or simultaneous dual-task paradigms [59-62], yielding improvements in executive
function tasks, global-visual memory, processing speed [39,63,64], and improved brain health per
neuroimaging [65,66]. Nevertheless, when sequential or in tandem mental and physical exercise
interventions were compared to their counterpart interventions alone, they did not produce any
greater cognitive improvements than one or the other [52,59,67-73]. Furthermore, some research has
shown that, combined with physical and mental exercise or virtual-reality exergaming interventions,
may be the most useful in the early (vs. more severe) stages of cognitive decline [58]. This suggests
that there might be a “sweet spot” along the continuum of decline in which MCI might be best
suited to extract a benefit from combination interventions. One recent meta-analysis examined
four multi-component studies that included MCI samples reporting that “separate” studies (aka
sequential /tandem) were more effective than “simultaneous” interventions [74]. The latter compared
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dual-task vs. interactive aerobic paradigms such as in the cybercycle study [22]. We have hypothesized
previously that interactive paradigms are more intuitive, which simulates real-life activities that
synergistically activate evolutionarily-adapted networks (e.g., move along a path while seeking a
target: destination/food/enemy), vs. forced dual-task paradigms that engage neuronal networks in a
competition for resources (e.g., move along a path while being distracted to compute a mathematical
problem or memorize an unrelated word list). Theoretical and neurobiological explanations for
synergistic effects have been offered [51] and more innovation and research is called for [75] to
explore the impact and explanations behind truly interactive physical and cognitive exercises (iPACES)
especially for MCIL

Simultaneous exercise and cognitive interventions have been shown to have positive influences
on cognition in older adults with a variety of exercise activities yielding similar results [11,22,75-82].
Meta-analyses comparing combined interventions to mental-only and physical-only interventions
indicated that the combined intervention is more effective than the individual components [50,73,74].
Additionally, recent meta-analytic work has shown that overall combined physical and cognitive
exercise interventions resulted in significantly improved cognitive performance [47]. In addition,
interventions where cognitive and physical activities were occurring simultaneously and were superior
to those where these tasks were performed separately [47].

Reported positive physical effects of combined physical and cognitive training have led to an
increase in this facet of research such that there are now enough completed trials that they can be
analyzed systemically. A couple of published reviews of the literature have explored interactive
exergames and their relationship to cognitive functioning in those with neurological disability and
it was found that exergaming improved executive functioning with medium-effect sizes [83,84].
Mura and colleagues [83] posited that these benefits may stem from improved decision-making and
visuo-spatial perception that create an increased ability to use cognitive resources. Exergaming
also had these positive effects when compared to neurologically disabled participants with no
intervention [83]. Recent work has also demonstrated that supportive feedback during exergames make
them more enjoyable to the user [85], which might increase compliance in these interventions. There is
unfortunately a lack of research comparing simultaneous or interactive (exergaming) interventions to
sequential interventions, but it is hypothesized that interactive interventions could be most potent due
to potentially synergistic effects [22,75,84].

1.5. Exercise, Cognition, and Biomarker Indicators

Insulin-like Growth Factor 1 (IGF-1), Dehydroepiandrosterone sulfate (DHEA-S), and cortisol
are three biomarkers that might potentially be associated with the changes in executive functioning
that occur after physical and cognitive exercise interventions [73]. IGF-1 levels have been correlated
with different levels of cognitive abilities [86]. Recent studies have shown that decreased IGF-1 is
associated with decreased cognition [87,88]. IGF-1 has also been shown to increase with exercise [89-91].
Low levels of DHEA-S are associated with many conditions such as Alzheimer’s, schizophrenia,
and HIV/AIDS, which suggests that DHEA-S has a relationship to cognition [92,93]. Healthy
individuals have also displayed this connection with greater levels of DHEA-S corresponding to
greater cognitive abilities [94]. Additionally, cortisol has also been linked to cognitive impairments
and some neurodegenerative conditions such as Alzheimer’s and other dementias [95-99] and has
been responsive to exercise interventions in MCI [100], which makes it another important biomarker
to assess in the current study.

It was hypothesized based on prior literature that:

1. cognition, more specifically executive function, would improve over the course of the three-month
neuro-exergame intervention (partial replication and extension of prior findings [11,22])
2. cognitive improvement would be correlated with salivary biomarkers:

e  cortisol would be negatively correlated per [95,96]



J. Clin. Med. 2018, 7, 249 50f21

e IGF-1 would be positively correlated per [88]
e DHEA-S would be positively correlated per [91,93]

3. acomponent familiarization period would not exceed standard practice effects [pedal-only and
game-only practice periods were included to gradually train and prepare cognitively challenged
participants for the more complex interactive neuro-exergaming experience (iPACES) and also
these periods were anticipated to have a dual benefit of washing out any practice effects from
serial cognitive testing such that the learning curve would be similar to that of published
normative data] [101].

2. Experimental Section

2.1. Participants

The iPACES™ v2.0 was an IRB-approved quasi-experimental pilot clinical trial (NCT03069391).
A within-subjects design was employed such that participants were incrementally exposed to and
trained in the independent physical and cognitive components before using the fully interactive
iPACES intervention with a dual goal of washing out practice and learning effects from repeated
neuropsychological evaluations. Participants were recruited through flyers, newspaper ads,
demonstrations at local retirement and community centers, and through the Union College Academy
for Lifelong Learning (UCALL) program. Participants sought were age 50+, sufficient visual, auditory,
physical functions to participate in testing and exercise, and no known diagnosed neurological
condition (e.g., epilepsy, Parkinson’s disease, and Alzheimer’s disease). Additionally, participants had
to be co-residing with a partner for safety reasons (buddy system during exercise). All participants
were screened with the Impaired Decision-Making Capacity structured interview (IDMC; Veteran's
Health Administration Handbook 2007) [102] and provided informed consent (if applicable, it would
have been co-signed by a surrogate or legally-authorized representative per IDMC results).

Enrolled (n = 14, 7 pairs) were six females and eight males. The mean age of participants was
82.8 (SD = 3.9), mean level of education was 16.6 years (SD = 2.1), mean body mass index (BMI) was
24.7 (SD = 3.3), average baseline cognitive status was in the MCI range (23.4, SD = 2.8 per the screening
test for MCI: Montreal Cognitive Assessment (MoCA) < 26), and all were Caucasian (largely consistent
with the catchment area of recruitment in upstate New York). Enrolled participants were co-residing
pairs in which each of the partners participated in exercise and assessments. The buddy system was
used to limit health risks associated with a typically sedentary older adult exercising alone in their
home while also serving to remind one another to complete study activities. Two participants were
not able to provide useable data on most measures due to previously existing conditions and were
excluded from final analyses. (One participant had macular degeneration, but could play the game
and wanted to exercise with their partner and could complete some non-visual tests such as the ADAS.
The other participant had more cognitive impairment than apparent at first and could not follow
instructions well enough to complete some of the test, but also wanted to continue the exercise with
their partner.). Of the 14 participants enrolled, seven completed the final three-month evaluation.
Of those seven, four were compliant with the recommended dose of exercising 30 to 45 min/week
and 3 to 5 times/week within their ideal heart rate range (averaging a minimum of 2.5 times/week
allowing for 1 to 2 weeks of vacation, illness, or equipment breakdown).

2.2. Procedures

Once a co-residing pair expressed interest in participating in the study, they were screened to
determine if they met study criteria and an in-home initial evaluation was scheduled. Two trained
research assistants were present for in-home data collection so that testing of each participant could
be done simultaneously in separate but adjacent parts of the home (e.g., kitchen and living room).
Participants completed a battery of neuropsychological tests that focused on executive function (see
measures below). Participants also provided saliva samples through passive-drool collection for
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the evaluation of biomarkers (per measures below). The initial evaluation also included a series
of demographic, exercise history, and mood questionnaires. After each data collection point, the
next relevant condition was introduced to participants (e.g., placebo, exercise-only, and game-only).
For each condition, participants were asked to participate in the activities for 30 to 45 min on each
occasion and 3 to 5 times per week. Evaluations were performed at weeks: 0, 2, 4, 6, 8 weeks, and after
three months. An initial placebo period was used to familiarize participants with in-home evaluations
(e.g., including completing cognitive tasks on a touchscreen iPad) and, during those two weeks,
participants completed a set of on-screen readings on nutrition and exercise by answering a couple of
simple multiple choice questions at the conclusion of each session to serve as verification. The second
and third two-week windows served to introduce, familiarize, and evaluate each component of the
neuro-exergame (physical exercise: pedaler-only and cognitive exercise: game-only) before introducing
the interactive use of both in the full intervention (iPACES). The remaining weeks evaluated the full
interactive neuro-exergame intervention of iPACES (Figure 1). In all conditions, participants were
asked to record their activities in a paper log kept in a binder with study protocol instructions and other
information provided at their initial evaluation. Motivation to complete the exercise was measured
through a single item Likert scale. Upon study completion, participants were asked to fill out an exit
interview questionnaire in which participants described how enjoyable the exergame intervention was
and where the exergame intervention could be improved.

placebo pedaler-only game-only iPACES™

i - » »
> r r g r g

baseline 2wk 4wk 6wk 8wk 3M

L 4

Figure 1. Pilot study design showing component familiarization periods leading to interactive Physical
and Cogpnitive Exercise System (iPACES) intervention.

2.3. Measures

2.3.1. Neuropsychological Evaluation

The targeted outcome of the intervention was executive function, which is consistent
with prior literature on this cognitive domain commonly impacted by exercise and
exergaming [9,11,19,22,37,49,58,78,79,103,104]. ~ Executive functioning encompasses higher order
cognitive processes, akin to the “CEO of the brain,” planning and directing attention and behavior
especially in the face of multiple demands requiring set-shifting, response inhibition, and working
memory. These are all key to maintaining independence and avoiding institutionalization in later
life [105]. For example, an older adult preparing a meal may need to keep track and manage multiple
tasks (e.g., something in the oven and on the stovetop) and, if unsuccessful, red flags may be raised
(e.g., smoke alarm triggered or worse). Three measures that tap components of executive function
(Stroop, Trails, and Flanker) were administered in electronic form on an iPad via the BrainBaseline
software version 2.1 [106].

Congruent Correct-Incongruent Incorrect Metric (CCII) [107]. The CCII scaling metric [107] was
applied to each of the three executive function measures. The CCII is the percentage of correct
congruent responses minus the percentage of the incorrect incongruent responses. This measure
is used to gauge the strength of mental processing by quantifying the ability to correctly respond
to stimuli when they are relatively easier in contrast to incorrect performance when responding to
difficult stimuli. Each of the three executive function measures were scaled to this CCII metric and
yielded proportions ranging from —1 to 1 (difference in percentages).

Stroop. The Stroop test has long been used to assess executive function in clinical and research
samples with good reliability and validity [105,108,109]. The Stroop task evaluates a controlled,
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effortful response inhibition. In the present study, an electronic version of the Stroop task was
administered to participants at each evaluation. An electronic version was administered through an
iPad application: BrainBaseline [106].

Trails. The original black and white [105,110] and the Color Trails [111] have good reliability and
validity and have been used for many years to assess processing speed (connecting the “dots”/circled
numbers in order as quickly as possible) and executive function (alternating numbers and a second
sequence: letters in the black and white version of Trails B or pink/yellow colored numbers in the Color
Trails version). The present study used an electronic form of the Trails task by BrainBaseline [106].

Flanker. Additionally, the flanker task was used to further access executive function and stimuli
discrimination. The electronic form of the task was used via the BrainBaseline [106] and had
participants view five arrows and report which direction the middle arrow is pointing. This task
requires dual processing and response inhibition to override the tendency for surrounding arrows to
cue a response in a direction different from the actual middle arrow stimuli.

2.3.2. Other Tests Administered

Verbal memory was assessed using the Alzheimer’s Disease Assessment Scale (ADAS) Wordlists
for immediate and delayed recall [112,113]. The wordlist task was used to further characterize the
sample (e.g., identify participants who might fall into the amnestic subtype of cognitive decline
(aMCI) and who might not engage well with the intervention due to a lack of encoding or recall
of instructions over time). The ADAS was not hypothesized to change as a result of the iPACES
intervention due to memory not consistently being responsive to exercise in prior studies but was
included as a manipulation check since the neuro-exergame did have a list-learning task embedded.

The overall cognitive function was assessed with the Montreal Cognitive Assessment (MoCA)
and used as a screen for MCI status to characterize the sample. The MoCA is a brief battery of
neuropsychological assessments (e.g., clock drawing task, sentence repetition, and letter recognition)
that assess various aspects of overall cognitive function. This test has been used frequently over time
with high reliably and validity to provide insight of general cognition [114]. The score of MoCA allows
for categorization of participant cognitive abilities. Low scores are suggestive of Alzheimer’s type
dementia while high scores represent normative cognition and in-between is suggestive of MCL

Biomarkers: Saliva samples were immediately placed on ice until they could be placed in a —80 °C
freezer to prevent degradation. Samples were analyzed for concentrations of cortisol (biochemistry
lab protocol), DHEA-S (Salimetrics kit), and IGF-1 (Abcam kit). A bicinchoninic acid (BCA) protein
concentration from each sample was used to normalize the protein data.

Additional brief questionnaires regarding affective states and experiences while exercising were
administered as part of an exploratory addendum study and are reported elsewhere [115].

2.4. Materials

The iPACES neuro-exergame studied in this study (described below) was designed by our lab to
target a specific neuropsychological function (in this case: executive function given a primary clinical
need of the MCI population per above) and was initially deployed on a touch-screen PC tablet (iPACES
v1.0) [11,57]. Version 2 (v2.0) of the game utilized in this study, which is now called Memory Lane, was
enhanced through a collaboration between our lab and a software company (1st Playable, Troy, NY,
USA) to improve graphics, playability, and other features and was deployed in iOS on an iPad 2 Air.
Wireless, Bluetooth-enabled devices were integrated to complete the neuro-exergaming interactive
operations (e.g., heart rate monitor ring on finger, cadence meter to track the pedaling motion, and an
under-desk elliptical pedaler: Stamina 55-1610 InMotion E1000 Elliptical Trainer). Steering along the
virtual bike path of the iPACES Memory Lane neuro-exergame was accomplished by holding the iPad
like a steering wheel and tilting left and right accordingly to choose a pathway at each fork in the road
(Figure 2).
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IPACES™.

Memory Lane
(v2.0)

A portable neuro-exergame for
use in-home by patients with
MCI and their caregivers.

patent pending (2013-present):
No. 62/140,991
andersoc@union.edu

interactive Physical and Cognitive Exercise System (iPACES™)
(see also v1.0: Anderson-Hanley et al., 2017 & 2018)

Figure 2. [Illustration of the use of interactive pedaling and steering of the iPACES™ v2.0
neuro-exergame, Memory Lane.

The iPACES Memory Lane game was designed with the premise of challenging and reinforcing
executive functions by simulating the naturalistic task of traveling along a roadway to complete a
given list of errands (such as: doctor, pharmacy, grocery, starting with 3 and maxing out at 10 locations)
and then returning “home,” traversing (and again having to choose the correct errand locations) in
reverse order. The game guides the user down a path that leads the user to a fork in the road. The user
must steer (tilt) the iPad “left” or “right” to register their choice of errand location per previously given
list. If an error is made, the player is given another chance to complete the list of errands in the correct
order. Once all the correct locations are chosen, the player encounters a loop in the path that turns
them around to choose, in reverse order, the correct forks in the road to the previously completed
errand locations.

The iPACES, as played on the iPad, is held like a steering wheel to give the illusion of riding a
bike and maneuvering along a scenic path. The iPACES was intended to be used in its full interactive
(physical and cognitive exercise) version, but, for experimental purposes, it can also be enabled such
that component parts function separately as in “pedaler-only” (physical exercise only) or “game-only”
(mental exercise only) each for use as in component familiarization/training and also potentially as
comparative control conditions. When in the interactive mode, the speed of the game is controlled by
the speed of participant pedaling (picked up through wireless/Bluetooth cadence meter).

Analyses. The cognitive outcomes were assessed using paired t-tests. Intent-to-treat (ITT) analyses
(n = 14) were conducted by imputing mean scores for those participants who did not complete the final
three-month evaluation (n = 7). The relationship between changes in cognition and each biomarker
was evaluated with Pearson’s correlations (r), which were computed using change scores (post-pre).
The significance level was set at p = 0.05. Cohen’s effect sizes (d) were computed to quantify the
magnitude of any significant cognitive effect. For comparison, in lieu of a control group, normative
test-retest data was culled from Beglinger’s examination of serial Stroop administration (scaling their
reported results by way of converting to percent change with tapering of an initial increase to a plateau,
which can be seen as follows: 6%, 5%, 8%, 0%, and 0% and plotted alongside results in this study).
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3. Results

Of the 12 participants that were able to provide useable evaluation data, 11 were compliant
through the end of the component familiarization period (week 6) and seven were retained through the
final three-month evaluation (see Figure 3 CONSORT flow diagram for further details showing
participant progress through the trial). No adverse events occurred at any point during the
three-month study.

Assessed for eligibility (n= 33)

Excluded (n = 19; 8 pairs +3 individuals)
» not meeting inclusion criteria {n = 9)

* o declined to participate (n = 10)
(commitment too big, other iliness)

h 4
[ Enrollment }
J

Enrolled in intervention (n = 14)

o started intervention (n = 14)

+ did not engage intervention (n = 2)
(game too difficult)

[ 3M Follow-Up ]

g

Follow-up (n =8 @ 3M)

+ complete dose (=2x/wk; n = 4)

« ambiguous dose (1-2x/wk; n = 0)

¢ inadequate dose (<1xfwk; n = 3)

s discontinued intervention (n = 1)
(game too difficult/toc easy, not enough time,
unrelated health issues)

Analysis ] ¥

J

Intent-to-treat (ITT):

* Analyzed (n=14)
o 3M measures available (n=7)
o +imputed 3M averages (n=7)

Figure 3. CONSORT Flow Diagram: enrollment and progress of participants through the trial.

3.1. Cognitive Results

Participants” average cognitive performance across timepoints and conditions is presented in
Table 1 including the subvariables that were used to compute the CCII metric for each executive
function variable (see above). The three CCII metrics of executive function (Stroop, Trails, and Flanker)
were the focus of a priori hypotheses even though only Stroop and Flanker could be analyzed due to
too many out-of-range scores on Trails (likely due to multiple restarts from older adult participants
whose dexterity or lack of familiarity inflates touch screen sensitivities during required continuous
contact while drawing with a finger to connect dots).
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Table 1. Cognitive and biomarker data. Note: bold indicates p < .05 (ITT: n = 7, and ITT imputed: n = 14) compared both with baseline and end of component
familiarization (end of game-only).

0 2w 4w 6w 8w 3M
baseline (n = 14) placebo (1 = 12) pedaler (n =11) game (n =11) iPACES (n=11,7)
ave SD ave SD ave SD ave SD ave SD ave SD
Incongruent % correct 0.61 0.31 0.77 0.33 0.78 0.28 0.86 0.13 0.79 0.24 0.93 0.05
Congruent % correct 0.88 0.13 0.94 0.10 0.97 0.06 0.94 0.07 0.96 0.05 0.98 0.03
Stroo Incongruent ave time (s) 1.45 0.22 1.38 0.17 1.42 0.22 1.41 0.21 1.35 0.16 1.33 0.16
P Congruent ave time (s) 1.37 0.18 1.22 0.25 1.13 0.14 1.22 0.17 1.23 0.19 1.10 0.07
Total duration (s) 269.0 104.3 186.8 63.7 149.9 68.3 107.3 54.9 100.6 44.6 70.7 57
CCII 0.48 041 0.71 0.39 0.75 0.33 0.80 0.16 0.75 0.28 0.91 0.07
restarts 477 6.56 2.00 1.95 1.64 2.25 1.36 1.12 0.73 1.19 143 1.90
A % error 0.42 0.58 0.20 0.24 0.15 0.23 0.11 0.09 0.06 0.09 0.13 0.16
Trails B % error 0.29 0.27 0.18 0.17 0.16 0.16 0.10 0.10 0.10 0.09 0.28 0.15
B duration (s) 212.6 175.5 160.9 151.6 145.8 81.1 124.5 69.2 125.0 81.0 163.1 55.4
CCII 0.28 0.73 0.64 0.31 0.69 0.30 0.79 0.16 0.84 0.15 0.59 0.28
Incongruent % correct 0.81 0.25 0.91 0.14 0.90 0.17 0.93 0.07 0.92 0.12 0.76 0.36
Congruent % correct 0.91 0.10 0.89 0.14 0.97 0.03 0.95 0.08 0.95 0.08 0.98 0.02
Flank Incongruent ave time (s) 0.78 0.21 0.65 0.08 0.71 0.12 0.66 0.12 0.64 0.06 0.77 0.22
aner Congruent ave time (s) 0.74 0.25 0.63 0.08 0.64 0.07 0.61 0.12 0.61 0.07 0.67 0.12
Total duration (s) 244.9 47.7 207.9 94.2 152.7 63.4 97.8 64.5 97.4 57.9 719 16.7
CCIL 0.72 0.28 0.79 0.27 0.87 0.19 0.87 0.13 0.87 0.20 0.74 0.36
ADAS Word List (sum trials correct) 18.64 4.58 19.29 5.68 20.33 4.33 19.92 3.96 21.00 4.63 21.13 4.67
Word List (delay correct) 5.08 2.66 5.85 2.44 5.58 2.23 6.42 2.02 5.75 2.83 5.63 2.13
cortisol 3.55 3.36 5.08 5.37 5.52 5.23 2.58 3.38 3.06 4.00 17.61 7.17
Biomarkers DHEA-S 8733 5923 7729 8620 7301 9153 6508 6085 4999 3547 6072 6503
IGF-1 3.16 2.73 3.43 3.66 1.82 1.01 2.64 191 1.83 1.37 2.56 2.46

Notes: bold indicates p < 0.05 (ITT: n = 7, and ITT imputed n = 14) compared both with baseline and end of component familiarization (end of game-only).
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A significant improvement was found in ITT analyses of executive function (Stroop CCII)
from baseline to the three-month iPACES neuro-exergame intervention [#(13) = —4.34, p < 0.001,
d =1.05, Figure 4]. A significant improvement was also observed with a moderate effect size
[t(13) = —3.53, p =0.004, d = 0.68] when comparing as “baseline” the more stringent end of the
component familiarization periods (week 6), which was also the start of full interactive iPACES
(after which any practice effects were washed out as affirmed by the plotting of the grey line in Figure 4,
which shows the plateaued asymptote of Beglinger’s normative test-retest data [101]. See Gray and
colleagues for further discussion [116]). Also, plotted for anecdotal visual inspection were the results
of those participants that completed the full recommended dose of iPACES (n = 4). No significant
effect was observed for Flanker.

Executive funtion improves beyond practice effects
with long-term use of iPACES v2.0
for older adults with MCI*

1.0
0.9
T d=0.68; p=0.02(ITT)
0.8 T i
-
0.7 . = d=1.05; p=0.001(ITT)
S
© 0.6
=
@ T
g 0.5 £ iPACES ITT** (n = 14;
<% 7 completed, 7 imputed)
304
= el i PACES full dose (n = 4)
wv
03
practice effects
02 (serial test-retest data;
’ Beglinger 2005)
0.1 practice effects projection
’ (asymptote plateau cont.)
0.0
baseline  placebo  pedaler game-only iPACES 2w iPACES 3M * MoCA ave=24 (MCI<26)

**|TT = intent-to-treat

Figure 4. Changes in cognition over three-month iPACES neuro-exergame intervention exceed
practice effects.

3.2. Biomarker Results

Given the significant improvement in executive function (Stroop) noted above, the correlations
between the changes on the three biomarkers (cortisol, DHEA-S, and IGF-1) and the change in Stroop
were examined. Greater improvement in Stroop performance was significantly related to a decrease in
cortisol (r = —0.24, p = 0.04) and IGF-1 (r = —0.28; p = 0.04).

4. Discussion

Co-residing pairs of older adults (n = 14) were enrolled in a three-month in-home pilot study
to examine the cognitive and biomarker outcomes of pedaling and steering an enhanced iPad-based
neuro-exergame: the interactive Physical and Cognitive Exercise System (iPACES v2.0). Seven
participants (six with MCI) completed the final three-month evaluation and intent-to-treat analyses
of all 14 enrollees revealed a significant improvement in executive function (Stroop, but not Flanker)
that exceeded practice effects. This was affirmed by evaluating change from the initial baseline as
well as from the end of familiarization after washing out serial-testing practice effects and also by
comparing with normative test-retest data. The quasi-experimental within-subjects design gradually
and sequentially familiarized participants with each of the component conditions (e.g., game-only
and exercise-only) before introducing the fully interactive neuro-exergame (iPACES). The effect sizes
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observed ranged from medium to large even when including those with less than the full recommended
dose. As hypothesized, the improvement in executive function was found to significantly correlate
with a change in cortisol and IGF-1 (but not DHEA-S). The individuals, which experienced the
smallest biomarker changes had the greatest improvement on the Stroop, while individuals with the
greatest change in biomarkers had the least Stroop improvement. Contrary to expectations, cortisol
significantly increased after the three-month exergame intervention. Although unanticipated, the
finding of increased cortisol levels in elderly individuals post intervention has been seen in previous
research [117,118].

There are a number of limitations to this pilot study. In particular, the small sample size yields
narrow variability of participant limits generalizability, constricts exploration of factors that might
affect outcomes, and diminishes power to detect significant effects. Furthermore, the lack of a control
group for comparison makes interpretation challenging. However, these results are preliminary given
the small sample size and pilot. Due to the quasi-experimental nature of the study, there are a few
observations that can be cautiously made to guide further research. First, this pilot study partially
replicates and extends our prior pilot of iPACES v1.0 (Anderson-Hanley et al. in press), which confirms
that an in-home neuro-exergame intervention for MCl is feasible and potentially effective warranting
further study. This is also consistent with other published research on in-home exercise interventions,
which are not without their challenges but demonstrate that it is increasingly feasible to incorporate
innovated technology into a patient’s home environment [119]. Second, despite a small sample and
even with challenges in accruing a full dose of the iPACES intervention, a significant and sizeable effect
on one of three measures of executive function was found and the results of this enhanced v2.0 (d = 0.68)
seem even stronger than the initial pilot of iPACES v1.0 (d = 0.39 [11]). Lastly, biomarkers available in
readily-obtained saliva samples seem to provide a fruitful avenue for exploring possible underlying
mechanisms to explain any cognitive benefits of neuro-exergaming interventions, which is seen with
the significant relationship found between cortisol and executive function in other cross-sectional and
intervention studies [95-99].

The preliminary pilot findings in this study are consistent with prior research, which has found
cognitive benefits of exercise [9] and exergaming [11,56,84]. Chuang and colleagues [120] similarly
found an executive function benefit following an exergaming intervention (dance-dance-revolution:
DDR). Yet, this pilot adds to the smaller set of literature addressing MCI specifically and extends to
prior work on neuro-exergaming by reaching the oft-isolated MCI population with a widely-applicable,
safely-seated intervention for in-home use and with an effect size that seems to exceed prior
reports [11,56]. There is scant literature on in-home interventions, but notably this echoes Chew
and colleagues [120] who reported some benefits to patients enrolled in tandem intervention (physical
and cognitive exercises separately). Yet, this study also addresses caregivers directly (some with
insidious MCI and/or at least known heavy caregiver burden [121] involving a caregiver in the
exercise intervention as directly as participants themselves).

This study had several weaknesses that point to the next steps in the research. The first was a
lack of a control group and, while various comparisons were made within subjects (via initial baseline
and after washing out practice effects) and also with published normative test-retest data, a matched
control group in a larger trial would be more ideal for future research. The small sample does limit
statistical power, which means that, while it is encouraging that a significant effect could be detected
despite the small sample, a larger sample might shed light on smaller effects that are, perhaps, not
detected (e.g., possibly via Flanker) and would also afford greater diversity allowing for more nuanced
consideration of generalizability and analytic integration of covariates (such as age, education, sex, etc.).
For example, research has shown that benefits of exercise may vary by sex [122,123] and a larger sample
could clarify whether there are any inadvertent effects such as ruling out possible gender bias in the
choice or applicability of errand locations. Additionally, most participants reported enjoying the study.
However, it was often reported that the iPad game became redundant and participants suggested
incorporating more challenging and dynamic game features.
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The move from paper in the first iPACES pilot to electronic cognitive testing in this second iPACES
pilot study revealed some challenges for seniors using the touch screen. For example, high restart and
error rates were seen in the Trails task (seven of the 14 participants had >10 restarts on the Trails task
at one or more evaluations throughout the study). Additionally, the switch from paper to electronic
proved difficult in deriving comparable scores and metrics from a breadth of computer-captured data.
The high rate of attrition is not uncommon in intensive exercise interventions [124] and it may have
been exacerbated in this study given that these unpaid senior volunteers were either very busy or also
dealing with other health and familial complications. Furthermore, it may have been exacerbated in
that recruiting pairs was useful for safety afforded via the in-home buddy system but may have also
inflated attrition since two were lost when one partner was not able to continue. Last, compliance with
the full dose of exercise was challenging for our participants to achieve with four of the seven study
completers reaching the recommended target dose of three to five times per week. Participant feedback
suggests that those who volunteer for an unpaid study of this sort tend to also be busy with many
other commitments, but it may be necessary to further fine-tune the game’s challenge to the ability of
the participant. Some participants were only capable of finishing a limited challenge (e.g., maintaining
three to four errand locations yet achieving a sense of accomplishment vs. frustration) while others
needed a bigger challenge (e.g., maxing out quickly at 10 errand locations and perhaps needing varied
scenarios/story-boards to maintain interest such as pedaling along roadways of a state or country to
recall and tag a given list of tourist attractions).

Future research might also aim to replicate and extend research on related multimodal
interventions [125], which incorporated a nutritional component along with physical and cognitive
exercise (in tandem in that study). It makes sense that, if exercise interventions (both physical and
mental) are to impact cognitive and brain health via cardiovascular benefits and neuroplasticity,
nutritional support for building or repairing neurons could magnify the impact of an intervention.
Specifically, an expanding list of nootropics, derived from plant nutraceuticals (e.g., Gingko
Biloba, Bacopa Monnieri, Huperzine A, Choline, Phosphatidylserine, Vinpocetine, Rhodiola Rosea,
Methylcobalamin) and other potential cognitive enhancers [126] are finding their way into mainstream
use among the general population with varying degrees of scientific support on neuronal and brain
health [124]. Thus, examining the combined effects of neuro-exergaming with nootropics may be
supra-additive in terms of cognitive effects and warrants further study.

Alternative forms of exercise that incorporate interactive physical and cognitive components
have been increasingly explored such as dance [127-129] and might be contrasted in a future RCT
with neuro-exergaming even though care would need to be taken regarding additional variables such
as intensity of exercise, aerobic achievement, and influences of socialization. Naturalistic outdoor
cycling could be compared with virtual reality cycling and a preliminary pilot in our lab of this
type of comparison suggests it is feasible [130], but it is also complex to tease out the impact of
multidimensional interactivity, the intensity of cognitive challenges, and the impact of daylight, nature,
or green-scapes on outcomes [131]. Examining the role of various forms of mental engagement during
exercise could also be fruitful. For instance, this pilot of iPACES asserts a certain level of complexity of
the mental challenge (memorizing a list of errand locations and reversing them while pedaling “home”).
However, it may also be possible that cognitive performance and brain health is also improved due
to less effortful and more relaxing or meditative modes of exercise, which is seen in achieving a flow
state while engaging a challenging exercise or in Tai Chi [132].

Additional biomarkers might also be useful to examine in future research such as the brain-derived
neurotrophic factor (BDNF), which has been found to predict a cognitive benefit of a dual-task
paradigm for those with MCI [133].

5. Conclusions

In conclusion, the results of this pilot study indicate that a portable, iPad-based neuro-exergame
is feasible for MCI and caregiver co-residing pairs to use in the home and it appears to have a sizeable
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effect on executive function, which warrants further research. It is anticipated that there will continue
to be calls for additional research and funding for RCTs to evaluate these types of innovations for
addressing the encroaching dementia epidemic [75,134]. It is hoped that these interventions could
potentially ameliorate the cognitive decline of increasing numbers of those with MCI [75] including
reaching them at home where they often become secluded. Perhaps with enough evidence, the scientific
community might arrive at “prescribable video games” as a non-pharmacological intervention to
address cognitive decline [135] or, as in this pilot study of iPACES (v2), an impactful multimodal
neuro-exergame intervention.

6. Patents
iPACES™ patent pending (US15087351).
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