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Abstract: Acute kidney injury (AKI) is one of the most frequent complications after cardiac surgery
and is associated with poor outcomes. Biomarkers of AKI are crucial for the early diagnosis of this
condition. Secretory leukocyte protease inhibitor (SLPI) is an alarm anti-protease that has been
implicated in the pathogenesis of AKI but has not yet been studied as a diagnostic biomarker of AKI.
Using two independent cohorts (development cohort (DC), n = 60; validation cohort (VC), n = 148),
we investigated the performance of SLPI as a diagnostic marker of AKI after cardiac surgery. Serum
and urinary levels of SLPI were quantified by ELISA. SLPI was significantly elevated in AKI patients
compared with non-AKI patients (6 h, DC: 102.1 vs. 64.9 ng/mL, p < 0.001). The area under the
receiver operating characteristic curve of serum SLPI 6 h after surgery was 0.87 ((0.76–0.97); DC). The
addition of SLPI to standard clinical predictors significantly improved the predictive accuracy of AKI
(24 h, VC: odds ratio (OR) = 3.91 (1.44–12.13)). In a subgroup, the increase in serum SLPI was evident
before AKI was diagnosed on the basis of serum creatinine or urine output (24 h, VC: OR = 4.89
(1.54–19.92)). In this study, SLPI was identified as a novel candidate biomarker for the early diagnosis
of AKI after cardiac surgery.
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1. Introduction

Acute kidney injury (AKI) is one of the most common complications after major surgery, especially
after cardiac surgery [1,2]. Despite substantial improvement in intraoperative management and
perioperative care, the incidence of AKI in patients in the intensive care unit (ICU) remains high
and ranges between 20% and 67% [3]. AKI necessitates a prolonged ICU stay and is an important
prognostic factor of poor mid- to long-term outcomes: it is associated with increased postoperative
infections and cardiovascular complications, as well as markedly increased morbidity and mortality

J. Clin. Med. 2019, 8, 1931; doi:10.3390/jcm8111931 www.mdpi.com/journal/jcm

http://www.mdpi.com/journal/jcm
http://www.mdpi.com
https://orcid.org/0000-0003-0719-1607
https://orcid.org/0000-0001-7875-090X
https://orcid.org/0000-0002-2028-2039
http://dx.doi.org/10.3390/jcm8111931
http://www.mdpi.com/journal/jcm
https://www.mdpi.com/2077-0383/8/11/1931?type=check_update&version=2


J. Clin. Med. 2019, 8, 1931 2 of 16

rates, even years after surgery [4–8]. Although distinct consensus criteria for the early detection of
AKI have been defined by the Kidney Disease Improving Global Outcomes (KDIGO) clinical practice
guidelines, AKI continues to be underdiagnosed [9]. To date, the treatment options for AKI are limited,
and renal replacement therapy is the standard approach to treating severe cases of AKI. The early
identification of patients at risk could enable the timely initiation of preventive measures to reduce the
sequelae of AKI [10]. In this context, the currently established and routinely used AKI indicators, such
as serum creatinine and urine output, have been repeatedly demonstrated to be insufficient for the early
detection of AKI because changes in serum creatinine indicative of altered kidney function are evident
only after more than 50% of the baseline renal function has been compromised [11]. Moreover, serum
creatinine only serves as a surrogate parameter to estimate the excretory function of the kidney. Thus,
serum creatinine does not provide information about the underlying renal pathology and is unable to
discriminate between reversible and irreversible injuries [12]. For a better approximation of the extent
of injury and the early diagnosis, differential diagnosis, and prognosis of AKI, the international KDIGO
board has called for the identification of appropriate AKI markers, analogous to serum troponin or
liver enzymes used to identify organ injury [13].

Accordingly, studies have investigated several new biomarkers of AKI, and urinary tissue
inhibitor of metalloproteinase-2 (TIMP-2) and insulin-like growth factor-binding protein 7 (IGFBP7)
([TIMP-2]·[IGFBP7]) have been deemed promising markers [14]. The assessment of whole-genome
mRNA profiles in human kidney biopsies from post-transplant AKI revealed that the most upregulated
mRNA (15-fold) was that of secretory leukocyte protease inhibitor (SLPI) [15]. Despite these promising
findings, to date, observational studies have not been conducted to evaluate circulating concentrations
of SLPI as a biomarker of AKI. Therefore, in a cardiac surgery setting, we tested the predictive value of
SLPI as a novel AKI biomarker in two independent prospective observational studies: one development
cohort and one validation cohort.

2. Materials and Methods

2.1. Study Design and Patients

The aim of the study was to investigate the association between serum SLPI levels and the
incidence of postoperative AKI after cardiac surgery. The studies, registered at clinicaltrials.gov
(NCT 02488876, April 2009), were approved by the institutional review board (Ethics committee,
RWTH Aachen University, Aachen, Germany) and performed in adherence to the Declaration of
Helsinki. All patients were scheduled for elective cardiac surgery involving aortic cross-clamping,
cardioplegic myocardial arrest, and cardiopulmonary bypass. Exclusion criteria were emergency
operations, pregnancy, lack of informed consent, an age of less than 18 years, and end-stage renal
disease requiring dialysis.

First, an explorative development study was conducted between September 2015 and March 2016.
Second, the results of the development study were used as the basis for a prospective observational
validation study, which was conducted from January to June 2017.

Serum creatinine was measured daily. The serum creatinine level on the day before cardiac surgery
was used as the reference value. Urine output was quantified hourly by Foley catheter drainage while
the patient remained in the intensive care unit.

In both the development and validation studies, serum samples for enzyme-linked immunosorbent
assays (ELISA) were drawn one day prior to surgery and immediately (0 h) and 24 h after surgery. In the
development study, additional samples were drawn 6 and 12 h after surgery, and, in the validation
study, an additional sample was collected 48 h after surgery (Figure 1B).

After blood collection, the samples were centrifuged (3000 rpm for 10 min), and the supernatants
were transferred to cryotubes for storage at −80 ◦C until further analysis. Urine samples were collected
preoperatively, immediately postoperatively, and 24 h after surgery and transferred to cryotubes for
storage at −80 ◦C.
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Figure 1. (A) Flowcharts of the two independent observational studies investigating SLPI as a 
biomarker of AKI after cardiac surgery. (B) The time points of sample collection for analysis. Larger 
arrows represent the collection of blood and urine, and smaller arrows represent the collection of 
blood only. SLPI, secretory leukocyte protease inhibitor; AKI, acute kidney injury. 

2.2. Study Endpoints 

The primary endpoint of both studies was the development of AKI within 72 h after cardiac 
surgery. AKI was diagnosed according to the KDIGO clinical practice guidelines by (1) an increase 
in serum creatinine of at least 0.3 mg/dL or a 50% increase from baseline and/or (2) a decline in urine 
output to below 0.5 mL/kg/h for at least 6 h [16]. 

The following patients’ baseline characteristics are known to affect the risk of AKI and were thus 
determined: age, sex, body mass index (BMI), intake of heart medication, arterial hypertension, 
pulmonary hypertension, congestive heart disease, reduced left ventricular ejection fraction (LVEF) 
<35%, chronic kidney disease, chronic obstructive pulmonary disease (COPD), diabetes, and previous 
cardiac surgery. On the basis of these data, we calculated the Cleveland Clinic Foundation Score—a 
clinical score used to estimate the risk of developing AKI after cardiac surgery [17]. We recorded the 
operational characteristics, including the type and duration of surgery, and the postoperative 
Sequential Organ Failure Score (SOFA) on the first day after surgery (POD1). 

2.3. Biomarkers 

Serum and urine levels of SLPI were measured by ELISA as previously described and according 
to the manufacturer’s instructions (R&D Systems, Minneapolis, MN, USA) [18]. For the urine samples 
taken from patients in the development study, we additionally quantified urine neutrophil 
gelatinase-associated lipocalin (NGAL)—a previously described biomarker of AKI—using a 
commercially available ELISA kit (R&D Systems, Minneapolis, MN, USA) [19,20]. Before analysis, 
the serum samples were diluted 1:200 for SLPI ELISA, and urine samples were diluted 1:10 for SLPI 

Figure 1. (A) Flowcharts of the two independent observational studies investigating SLPI as a biomarker
of AKI after cardiac surgery. (B) The time points of sample collection for analysis. Larger arrows
represent the collection of blood and urine, and smaller arrows represent the collection of blood only.
SLPI, secretory leukocyte protease inhibitor; AKI, acute kidney injury.

2.2. Study Endpoints

The primary endpoint of both studies was the development of AKI within 72 h after cardiac
surgery. AKI was diagnosed according to the KDIGO clinical practice guidelines by (1) an increase in
serum creatinine of at least 0.3 mg/dL or a 50% increase from baseline and/or (2) a decline in urine
output to below 0.5 mL/kg/h for at least 6 h [16].

The following patients’ baseline characteristics are known to affect the risk of AKI and were
thus determined: age, sex, body mass index (BMI), intake of heart medication, arterial hypertension,
pulmonary hypertension, congestive heart disease, reduced left ventricular ejection fraction (LVEF)
<35%, chronic kidney disease, chronic obstructive pulmonary disease (COPD), diabetes, and previous
cardiac surgery. On the basis of these data, we calculated the Cleveland Clinic Foundation Score—a
clinical score used to estimate the risk of developing AKI after cardiac surgery [17]. We recorded
the operational characteristics, including the type and duration of surgery, and the postoperative
Sequential Organ Failure Score (SOFA) on the first day after surgery (POD1).

2.3. Biomarkers

Serum and urine levels of SLPI were measured by ELISA as previously described and
according to the manufacturer’s instructions (R&D Systems, Minneapolis, MN, USA) [18]. For the
urine samples taken from patients in the development study, we additionally quantified urine
neutrophil gelatinase-associated lipocalin (NGAL)—a previously described biomarker of AKI—using
a commercially available ELISA kit (R&D Systems, Minneapolis, MN, USA) [19,20]. Before analysis,
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the serum samples were diluted 1:200 for SLPI ELISA, and urine samples were diluted 1:10 for SLPI
ELISA and 1:100 for NGAL ELISA. In a subgroup of 25 patients (the first 25 patients of the validation
cohort), we normalized SLPI to the creatinine concentration in the urine. The average coefficient of
variation (CV) between duplicates was 9.7% (intra-assay CV) and the average inter-assay cooefficient
was 11.9%.

2.4. Statistical Methods

Because SLPI serum levels ranged widely in the first study (development study), we performed
an additional validation study. The sample size of the validation study was calculated on the basis
of the development study. The median of the SLPI levels 24 h after surgery was used as a cut-off.
We assumed a power of 90% and set the significance level to 0.05. From the difference in proportions
of the “AKI events” in both groups (G1 (≤median SLPI) = 10.7% and G2 (>median SLPI) = 34.5%),
we calculated a preferable sample size of 168 patients, assuming a drop-out rate of 25%. The sample
size was calculated with PROC POWER, SAS 9.4 (SAS Institute Inc., Cary, NC, USA).

Categorical variables are described by absolute numbers and percentages, and continuous variables
are reported as the median and interquartile range (IQR) with the first (Q1) and third (Q3) quartiles.

Differences in baseline characteristics between the two outcome groups were analyzed using
univariable logistic regression. Correlations between SLPI and NGAL were calculated using
Spearman’s correlation.

The diagnostic accuracy of the biomarkers was calculated by the receiver operating characteristic
(ROC) curve and the corresponding area under the curve (AUC). p-values were calculated for a
hypothesis of AUC > 0.5. Optimal cut-offs were calculated using the Youden index, and 95% confidence
intervals, sensitivities, and specificities are reported.

A univariable logistic regression model was used to investigate the performance of SLPI as
a predictor of AKI. Given a nonlinear relationship between SLPI and the incidence of AKI, SLPI
was considered a binary variable and categorized by the corresponding median to avoid biased
estimates [21].

Using multivariable logistic regression models, we adjusted SLPI for the Cleveland Clinic
Foundation Score (including sex, congestive heart disease, left ventricular ejection fraction, use of
intra-aortic balloon-pump, chronic obstructive pulmonary disease, insulin-requiring diabetes, previous
heart surgery, emergency surgery, type of surgery, and preoperative creatinine level) [17]. We applied
Firths’ bias reduction implemented in SAS-Macro %fl (SAS Institute Inc., Cary, NC, USA); the odds
ratios (OR) with 95% confidence intervals (CI) and P-values are reported. To evaluate whether serum
SLPI is able to predict AKI before an increase in serum creatinine is evident, we analyzed the time
point at which a rise in serum creatinine was detected [22]. Then, in a subgroup analysis, we only
considered the patients who received an AKI diagnosis after the time point of SLPI measurement.
For example, when analyzing serum SLPI 24 h after surgery, all patients whose serum creatinine had
already increased at 24 h after surgery or later were excluded.

In all cases, two-sided testing was used, and p <0.05 was considered statistically significant. If not
otherwise stated, statistical analyses were performed using SAS Software, version 9.4 (SAS Institute
Inc., Cary, NC, USA) and SPSS 25 (IBM SPSS Statistics for Windows, version 21.0. IBM Corp., Armonk,
NY, USA).

3. Results

3.1. Baseline Characteristics and Outcomes of Patients

Of the 70 cardiac surgery patients initially screened for the development study, 60 patients
were successfully enrolled. For the validation study, 148 of the 168 screened patients were enrolled
(Figure 1A). The incidence of AKI during the first 72 h after cardiac surgery was 25% in the development
cohort (DC; 14 of 60 patients) and 15% in the validation cohort (VC; 22 of 148 patients) (Table 1).
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In both cohorts and for all cases, the diagnostic criterion “increased creatine” was met before oliguria
occurred. Oliguria was detected in 21% of AKI cases in the DC and in 23% of AKI cases in the VC
(Table 1). In most cases, AKI was diagnosed 48 h after surgery (DC, 50% of cases; VC, 41% of cases)
(Table 1). In both cohorts, the overall proportion of AKI patients affected by persistent AKI (>48 h) was
approximately 40% (Table 1).

Table 1. Incidence, diagnostic criteria, and time point of diagnosis of AKI by cohort. Categorical
data are presented as the absolute number and percentage. Diagnosis of AKI was based on Kidney
Disease Improving Global Outcomes (KDIGO) clinical practice guidelines ((1) an increase in serum
creatinine of at least 0.3 mg/dL or an increase of 50% above baseline and/or (2) a decline in urine output
to below 0.5 mL/kg/h for at least 6 h) [16]. Most patients diagnosed with AKI were affected by AKI
stage 1 and were diagnosed 48 h after surgery. All patients suffering from AKI showed an increase in
serum creatinine. Approximately 40% of AKI patients had persistent AKI lasting >48 h. AKI, acute
kidney injury.

Acute Kidney Injury
within 72 h after
Cardiac Surgery

Development Cohort
(n = 60)

Persistent
AKI > 48 h

Validation Cohort
(n = 148)

Persistent
AKI > 48 h

AKI according to KDIGO
diagnostic criteria 14 (25%) 6 (43%) 22 (15%) 9 (41%)

KDIGO Stage 1 8 (57%) 12 (54%)
KDIGO Stage 2 5 (36%) 8 (36%)
KDIGO Stage 3 1 (7%) 2 (9%)

Diagnostic criteria met

Increased creatinine 14 (100%) 22 (100%)
Oliguria

(<0.5 mL/kg/h
for ≥6 h)

3 (21%) 5 (23%)

Time point of diagnosis

24 h after surgery 3 (21%) 1 (33%) 6 (27%) 2 (33%)
48 h after surgery 7 (50%) 3 (42%) 9 (41%) 6 (67%)
72 h after surgery 4 (29%) 2 (50%) 7 (32%) 1 (14%)

The majority of patients who developed AKI had significantly elevated baseline creatinine levels
before surgery (DC: 0.93 mg/dL vs. 1.22 mg/dL, p = 0.011; VC: 0.99 mg/dL vs. 1.08 mg/dL, p = 0.018)
(Table 2). In the development study, AKI was significantly associated with older age (p = 0.047),
diabetes mellitus (p = 0.012), the intake of calcium channel blockers (p = 0.037), and an increased
Cleveland Clinic Foundation Score (p = 0.005). In the VC, AKI was associated with a longer duration
of cardiopulmonary bypass (p = 0.046, Table 2). No sex-based differences were observed.

3.2. AKI Was Associated with Higher Serum SLPI in Cardiac Surgery Patients

After cardiac surgery, serum SLPI significantly increased in both cohorts and peaked at 24 h after
surgery (DC and VC: p < 0.001). Compared with patients not diagnosed with AKI, those diagnosed
with AKI had significantly elevated SLPI serum levels 6, 12, 24, and 48 h after surgery (e.g., 24 h,
DC: p = 0.001; 24 h, VC: p = 0.008; Table 3, Figure 2A,B). Serum SLPI did not differ significantly
between transient (<48 h) and persistent (>48 h) AKI cases (Figure S1). Patients with high serum SLPI
(higher the median value) 24 h after surgery had a significantly higher incidence of AKI (DC: 10%
vs. 38%, p = 0.03; VC: 7% vs. 24%, p = 0.01; Figure 3). Similar to serum SLPI, urinary SLPI levels
were significantly increased 24 h after cardiac surgery (Figure 2C,D). Compared with serum SLPI,
urinary levels of SLPI were low overall (approximately 5–10 times lower). After surgery, urinary SLPI
levels did not significantly differ between patients with and without AKI (Table 3, Figure 2C,D). When
normalized to urinary creatinine, patients with AKI showed significantly higher SLPI levels 24 h after
surgery (subgroup of VC, n = 25, p = 0.01; Figure 2F).
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Table 2. Baseline and operative characteristics by cohort and AKI. Data are expressed as the median (Q1–Q3) or number (percentage). ACE, angiotensin-converting
enzyme; AKI, acute kidney injury; BMI, body mass index; CABG, coronary artery bypass graft; COPD, chronic obstructive pulmonary disease; LVEF, left ventricular
ejection fraction; POD1, first postoperative day; Q1, Q3, first and third quartile, respectively; and SOFA, Sequential Organ Failure Score. The influence of baseline
characteristics on AKI was analyzed by univariable logistic regression. Bold fonts indicate p-values < 0.05.

Characteristic
Development Cohort Validation Cohort

No AKI AKI p-Value No AKI AKI p-Value
(n = 46) (n = 14) (n = 126) (n = 22)

Demographics
Age (years) 67 (59–75) 69 (68–78) 0.047 67 (59–75) 69 (68–78) 0.171
Sex (female) 11 (24) 4 (29) 0.678 33 (26) 6 (27) 0.869
BMI (kg/m2) 27.4 (25.0–29.9) 26.5 (23.8–33.2) 0.767 27.1 (24.8–30.3) 28.5 (22.9–30.4) 0.876

Medication, No (%)

Beta blockers 40 (87) 9 (75) 0.292 91 (73) 17 (77) 0.733
ACE Inhibitors 35 (76) 8 (67) 0.478 69 (55) 12 (55) 0.943

Sartans 6 (13) 1 (8) 0.840 27 (22) 7 (32) 0.271
Calcium channel blockers 6 (13) 5 (42) 0.037 35 (28) 6 (27) 0.993

Diuretics 36 (78) 11 (92) 0.456 52 (42) 13 (59) 0.138
Statins 45 (98) 12 (100) 0.929 106 (85) 19 (86) 0.975

Acetylsalicylic acid 44 (96) 12 (100) 0.860 103 (82) 18 (82) 0.848

Comorbidities, No (%)

Arterial hypertension 28 (61) 11 (85) 0.159 89 (71) 18 (82) 0.362
Pulmonary hypertension 3 (7) 1 (8) 0.741 6 (5) 2 (9) 0.328
Congestive heart disease 7 (15) 4 (29) 0.255 16 (13) 0 (0) 0.201

LVEF < 35% 10 (22) 2 (14) 0.651 6 (5) 2 (9) 0.328
Chronic kidney disease 3 (7) 2 (14) 0.345 9 (7) 4 (18) 0.090

COPD 3 (7) 2 (14) 0.345 15 (12) 3 (14) 0.707
Diabetes, insulin 3 (7) 5 (38) 0.012 13 (10) 3 (14) 0.545

Previous cardiac surgery 3 (7) 0 (0) 0.632 8 (6) 1 (5) 0.970

Serum creatinine at
baseline (mg/dL) 0.93 (0.78–1.04) 1.22 (0.83–1.36) 0.011 0.99 (0.80–1.10) 1.08 (0.94–1.28) 0.018

Type of Surgery

Isolated CABG 24 (52) 3 (21) 0.064 78 (62) 11 (50) 0.274
Isolated valvular surgery 8 (17) 4 (29) 0.344 16 (13) 4 (18) 0.425

Combined procedure 14 (30) 7 (50) 0.191 30 (24) 7 (32) 0.403
other 5 (4) 1 (5)

Risk of AKI

Cleveland Clinic Foundation Score 3 (2–3) 4 (3–5) 0.005 3 (2–4) 3 (2–4) 0.636

Duration of Surgery

Aortic cross clamp 74.5 (57.5–99) 78.5 (47–105) 0.934 73 (55–89) 78 (60–101) 0.232
Cardiopulmonary bypass 115 (91–144) 118.5 (89.5–148.5) 0.769 109 (87–133) 139 (97–150) 0.046

SOFA on POD 1 10 (7.5–12) 9 (7–10) 0.674 8 (6–9) 9 (7–12) 0.044
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Table 3. SLPI measured at different time points. Serum and urinary SLPI concentrations quantified by ELISA and compared between patients with and without AKI.
Bold fonts indicate p-values < 0.05.

Serum SLPI

SLPI (ng/mL)
Development Cohort (n = 60) Validation Cohort (n = 148)

No AKI AKI p-Value No AKI AKI p-Value
(n = 46) (n = 14) (n = 226) (n = 22)

Pre-OP 67.3 (57.2–82.1) 87.6 (65.3–98.5) 0.14 40.1 (31.6 –48.5) 43.7 (36.6–52.4) 0.280
0 h after surgery 66.3 (52.8–81.15) 102.7 (83.2–128.2) 0.06 29.7 (22.4–39.9) 37.9 (25.4–45.3) 0.127
6 h after surgery 64.9 (53.9–84.7) 102.1 (93.2–131.5) <0.001

12 h after surgery 74.7 (52.0–88.1) 114.5 (95.0–134.5) <0.001
24 h after surgery 86.1 (69.0–113.5) 117.9 (105.6–145.2) 0.001 80.4 (64.7–111.7) 106.6 (83.0–135.3) 0.008
48 h after surgery 58.5 (58.5–90.0) 98.8 (76.0–110.4) 0.000

Urinary SLPI

SLPI (ng/mL)
Development Cohort (n = 60) Validation Cohort (n = 148)

No AKI AKI p-Value No AKI AKI p-Value
(n = 46) (n = 14) (n = 226) (n = 22)

Pre-OP 1.10 (0.40–2.09) 0.40 (0.17–0.96) 0.022 0.51 (0.15–1.53) 0.8 (0.20–1.36) 0.520
0 h after surgery 0.23 (0.07–1.09) 0.58 (0.31–2.02) 0.056 0.13 (0.025–0.35) 0.98 (0.98–1.40) 0.073

24 h after surgery 2.20 (0.74–5.05) 2.38 (0.33–9.23) 0.942 1.15 (0.71–1.92) 1.08 (0.90–1.62) 0.575

Patients with AKI showed significantly elevated serum SLPI after surgery. AKI, acute kidney injury; Pre-OP, before surgery; SLPI, secretory leukocyte protease inhibitor. Data are reported
as median (Q1–Q3). p-values were analyzed using the Mann–Whitney U test.
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Figure 2. Higher serum SLPI levels were associated with a greater risk of AKI. (A,B) Perioperative
kinetics of serum SLPI in patients without postoperative AKI compared with patients with AKI.
(C,D) Perioperative kinetics of urinary SLPI. (E) Correlation between postoperative urinary SLPI and
postoperative urinary NGAL 24 h after cardiac surgery. (F) Postoperative kinetics of urinary SLPI
normalized to urinary creatinine. AKI, acute kidney injury; NGAL, neutrophil gelatinase-associated
lipocalin; Pre-OP, before surgery; SLPI, secretory leukocyte protease inhibitor. Data are means ± SEM;
r, Spearman’s coefficient. (A,B) * p < 0.05, ** p < 0.01 versus other groups at the corresponding time
point (difference between groups).
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Figure 3. Percentage of patients with AKI within 72 h after cardiac surgery, stratified by median serum
SLPI concentration 24 h after surgery (A) in the development cohort and (B) validation cohort. AKI,
acute kidney injury; SLPI, secretory leukocyte protease inhibitor. * p < 0.05 analyzed by Fisher’s
exact test.

3.3. Accuracy of SLPI for Diagnosis of AKI

We assessed the predictive accuracy of SLPI for AKI by the ROC curve and the corresponding
AUC. At 24 h after surgery, the area under the ROC curve of serum SLPI was 0.81 (95% CI 0.69–0.92) in
the development cohort and 0.69 (95% CI 0.58–0.80) in the validation cohort (Figure 4). The additional
earlier time points in the development cohort yielded AUCs of 0.87 (95% CI 0.76–0.97) 6 h after surgery
and 0.85 (95% CI 0.74–0.95) 12 h after surgery. When only patients with a Cleveland Clinic Foundation
Score ≥3 (“at risk for AKI”) were selected, the diagnostic accuracy did not improve significantly
(Figure S2). The AUCs of the absolute increase of SLPI from baseline before surgery (delta from
pre-OP) were not superior to absolute SLPI (Figure S3). Compared with urinary NGAL, with an AUC
of 0.52 (95% CI 0.31–0.73) 24 h after surgery, serum SLPI was more accurate in diagnosing AKI 24 h
after surgery (Figure 4, Figure S4). However, urinary SLPI, even when normalized to urine creatinine,
did not demonstrate significant results (AUC = 0.71, 95% CI 0.44–1.0). Table 4 lists the optimal cut-off

concentrations calculated using the Youden index and the related sensitivities and specificities.
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Figure 4. Receiver operating characteristic (ROC) curves of SLPI and NGAL for the diagnosis of AKI at
different time points after surgery. (A) ROC of serum SLPI in the development study and (B) in the
validation study. AKI, acute kidney injury; AUC, area under the curve; CI, 95% confidence interval;
SLPI, secretory leukocyte protease inhibitor.
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Table 4. Sensitivity and specificity of SLPI as a biomarker for AKI at optimal cut-off values.

Time
Point after

Surgery

Optimal
Cut-off
(ng/mL)

Sensitivity
(%) 95% CI Specificity

(%) 95% CI Likelihood
Ratio

Youden
Index

Development cohort, Serum SLPI

6 h >85.20 64.3 35.1–87.2 68.29 51.9–81.9 2.027 0.32
12 h >92.72 66.7 34.9–90.1 73.17 57.1–85.8 2.485 0.39
24 h >87.93 100.0 75.3–100.0 54.55 38.9–69.6 2.200 0.54

Validation cohort, Serum SLPI

24 h >101.8 70.0 45.7–88.1 67.6 57.8–76.4 2.162 0.38
48 h >78.45 77.8 52.4–93.6 71.2 61.4–79.9 2.709 0.49

Optimal cut-off concentrations were calculated with the help of the Youden index; CI, confidence interval; Pre-OP,
before surgery; SLPI, secretory leukocyte protease inhibitor.

3.4. SLPI as a Predictor of AKI in Univariate and Multivariate Analyses

As calculated in a univariate analysis, patients with higher postoperative serum SLPI (>median)
had a significantly higher risk of AKI (e.g., validation cohort, 24 h, OR = 3.89, 95% CI 1.44–12.08,
p = 0.007; 48 h, OR = 9.24, 95% CI 2.69–48.30, p < 0.001; Table 4).

Because the Cleveland Clinic Foundation Score is a clinical score for risk stratification of AKI after
open cardiac surgery, this score was included in the multivariable analysis as the reference model
(independent variable). The Cleveland Clinic Foundation Score includes the variables sex, congestive
heart disease, left ventricular ejection fraction, use of intra-aortic balloon-pump, chronic obstructive
pulmonary disease, insulin-requiring diabetes, previous heart surgery, emergency surgery, type of
surgery, and preoperative serum creatinine. When adjusted for the Cleveland Clinic Foundation Score,
serum SLPI remained a significant predictor of AKI at 6, 12, and 24 h after surgery in the development
cohort and 24 and 48 h in the validation cohort (e.g., 6 h, DC: OR = 1.74; 95% CI 1.18–2.84, p = 0.004;
24 h, VC: OR = 3.91 95% CI, 1.44–12.13, p = 0.007; Table 5).

To determine whether SLPI can be regarded as a predictive biomarker, we performed a subgroup
analysis in which we only considered AKI cases that were diagnosed after the respective SLPI
measurement. Thus, for SLPI measured at 24 h, we only considered cases of AKI that were diagnosed
at 48 or 72 h (n = 11 in the development and n = 16 in the validation study), and for SLPI measured at
48 h, we only considered cases of AKI that were diagnosed at 72 h after surgery. In addition to the
early time points (6 and 12 h after surgery), in these univariable and multivariable analyses, SLPI was
significantly predictive of AKI 24 h (multivariable: OR = 4.89; 95% CI, 1.54–19.92; p = 0.006) and 48 h
(multivariable: OR = 15.24; 95% CI, 1.63–2025.31; p = 0.013) after surgery (Table 5).
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Table 5. SLPI as a predictor of AKI. (A) Univariable logistic regression. Serum SLPI was a significant predictor of AKI 12, 24, and 48 h after surgery. Multivariable
logistic regression adjusted for Cleveland Clinic Foundation Score (including the variables sex, congestive heart disease, left ventricular ejection fraction, use of
intra-aortic balloon-pump, chronic obstructive pulmonary disease, insulin-requiring diabetes, previous heart surgery, emergency surgery, type of surgery, and
preoperative serum creatinine). After adjustment for the Cleveland Clinic Foundation Score, serum SLPI remained a significant predictor of AKI. (B) Subgroup
analysis of cases of AKI that were diagnosed after the respective SLPI measurement. For SLPI measured at 24 h, only the cases of AKI that were diagnosed at 48 or 72 h
(n = 11 in the DC and n = 16 in the VC) were considered. For SLPI measured at 48 h, only the cases of AKI that were diagnosed at 72 h after surgery were considered.
SLPI was categorized by the corresponding median; CI, confidence interval; OR, odds ratio; Pre-OP, before surgery; SLPI, secretory leukocyte protease inhibitor; bold
fonts indicate p-values < 0.05.

(A) AKI, Time Point not Considered

Univariable Logistic Regression (Median) Multivariable Logistic Regression (Median)

Time Point after Surgery Median OR 95% CI p-value OR adj. 95% CI p-value

Development Cohort

Pre-OP 71.3 1.37 0.42 4.57 0.601 1.12 0.30 4.16 0.868
0 h after surgery 77.2 2.06 0.63 7.28 0.230 1.69 0.46 6.61 0.431
6 h after surgery 69.6 2.19 0.67 7.82 0.197 1.74 1.18 2.84 0.004

12 h after surgery 79.9 3.80 1.03 17.09 0.045 1.72 1.15 2.83 0.008
24 h after surgery 95 3.92 1.10 17.31 0.035 1.76 1.16 2.98 0.007

Validation Cohort

Pre-OP 41.00 1.46 0.58 3.75 0.417 1.47 0.59 3.76 0.412
0 h after surgery 13.00 1.029 0.41 2.59 0.945 1.01 0.38 2.66 0.19

24 h after surgery 88.3 3.89 1.44 12.08 0.007 3.91 1.44 12.13 0.007
48 h after surgery 65.3 9.24 2.69 48.30 <0.001 9.45 2.74 49.55 <0.001

(B) AKI, Time Point Considered

Univariable logistic regression (median) Multivariable Logistic Regression (Median)

Time Point Median OR 95% CI p-value OR adj. 95% CI p-value

Development Cohort

SLPI measured at 24 h for AKI diagnosed later:
48 or 72 h after surgery (11 of 14 cases of AKI) 95 4.45 1.07 25.61 0.039 2.48 0.50 15.35 0.268

Validation Cohort

SLPI measured at 24 h for AKI diagnosed later:
48 or 72 h after surgery (16 of 22 AKI cases) 88.3 4.94 1.55 20.15 0.006 4.89 1.54 19.92 0.006

SLPI measured at 48 h for AKI diagnosed later:
72 h after surgery (7 of 22 cases of AKI) 65.3 15.4 1.67 2042 0.011 15.24 1.63 2025.31 0.013
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4. Discussion

SLPI is a 12 kDa (107 amino acids) non-glycosylated single-chain protein that is broadly expressed in
myeloid and other epithelial cells [23–25]. SLPI functions as a non-redundant alarm anti-protease and is
considered important in the defense against proteolytic attack from liberated granulocyte proteases [26].
Apart from its anti-protease activity, SLPI has antibacterial, antiviral, and anti-inflammatory properties
and promotes wound healing [27].

Cardiac surgery patients with AKI, even those who achieve complete renal recovery, have a
significantly increased risk of death and adverse long-term consequences compared with patients
without AKI [8]. Over time, 10%–20% of patients with AKI develop chronic kidney disease [28,29].
The KDIGO clinical practice guideline recommends the early identification of patients at risk and
suggests a bundle of preventive measures for the early treatment of kidney injury. Because serum
creatinine and urine output show changes in renal function only after the occurrence of significant kidney
injury, new biomarkers are needed to earlier identify patients who will later benefit from therapeutic
measures [9]. In the 2006 Clinical Path Opportunities List, the Food and Drug Administration declared
the identification of new biomarkers as a key area for improving clinical trials and medical therapies [30].
A major limitation in the identification of suitable biomarkers of AKI is the limited availability of
human biopsies from kidneys with AKI; therefore, relevant tissue analyses have not yet been conducted
in large-scale studies. In post-transplant kidney graft dysfunction, however, the retrieval of kidney
biopsies is part of the routine diagnostic panel. The assessment of whole-genome mRNA profiles in
eight injured kidney allografts with AKI revealed not only the upregulated expression of established
biomarkers such as NGAL but also the significantly enhanced expression of SLPI mRNA [15].
The increase in SLPI gene expression is correlated with the protein levels of SLPI in the plasma and
urine, which indicates a link between elevated SLPI in the urine and blood and the status of the kidney.
In fact, immunohistochemical staining and in situ hybridization detected local SLPI protein expression
in the kidney tubular epithelial cells, suggesting that the tubule epithelial cells are a source of elevated
serum SLPI in patients suffering from post-transplant AKI [31]. Despite the striking baseline-adjusted
increase in mRNA expression (15-fold change) that first implicated SLPI as a promising biomarker of
AKI, to the best of our knowledge, SLPI has been exclusively tested in the post-transplant AKI setting
and has not been examined in AKI after cardiac surgery.

In this prospective observational study, we investigated the possibility of using SLPI to diagnose
and predict AKI in patients undergoing cardiac surgery. The incidence of AKI ranged between 15%
(in the validation cohort) and 25% (in the development cohort), which is within the normal range
of incidence of AKI observed after cardiac surgery [3]. Only a minority of patients met the KDIGO
diagnostic criterion of oliguria lasting at least 6 h, which might be attributed to strict counteractive
measures, including diuretics and fluid management, undertaken in the ICU setting.

The levels of serum and urinary SLPI considerably increased in the postoperative course and
peaked 24 h after the surgical intervention. Compared with healthy blood donors with an average
serum SLPI of 49 ng/mL, the serum concentrations of SLPI were approximately twice as high 24 h
after cardiac surgery [32]. Contrasting the perioperative values of serum SLPI in the development
and validation cohorts, we detected different baseline SLPI levels, whereas the relative changes
were comparable. Whether these differences arose from different patient characteristics could not be
reliably established.

Patients affected by AKI during the first 72 h after surgery had significantly higher serum SLPI 6,
12, 24, and 48 h after surgery compared with non-AKI patients. SLPI levels exceeding the median 24 h
after surgery were associated with a markedly increased risk of AKI. Serum SLPI showed promising
accuracy in the diagnosis of AKI, with an AUC of over 0.85 six hours after surgery in the development
cohort. However, samples from later time points only yielded moderate results for the AUC and
the corresponding sensitivity or specificity of cut-off values. Considering the optimal cut-off values
calculated using the Youden index for the different time points, the overall cut-off value of serum SLPI
to predict AKI might ranges from around 85 to 90 ng/mL. Compared with patient characteristics that
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were prognostic for AKI, the addition of SLPI to the risk assessment models significantly improved the
prediction of AKI. SLPI was found to detect AKI before a rise in serum creatinine or before decreased
urine output became evident. These findings suggest that SLPI is a novel predictive marker of AKI,
which may be of particular clinical significance after cardiac surgery but also in a broader intensive
care setting associated with AKI.

To date, the functional role of SLPI in the pathogenesis of AKI after cardiac surgery is unknown
and requires further examination in experimental studies. In animal models, SLPI has been shown
to be an important protective mediator during ischemia–reperfusion injury in the liver and brain,
as well as after cardiac transplantation [27,33–35]. In a renal ischemia–reperfusion injury mouse
model, SLPI was suggested to contribute to tubular cell regeneration via Cyclin-D1 upregulation [36].
Cardiac surgery patients are exposed to a high risk of developing a systemic inflammatory response,
which is a substantial factor in the pathogenesis of postoperative AKI [37,38]. After cardiac surgery,
SLPI was significantly upregulated and might play a role as a counter-regulatory factor against the
detrimental inflammatory response by modulating nuclear factor κ-light-chain-enhancer of activated B
cells (NF-κB) and promoting organ repair, such as proximal tubular cell regeneration [35,36,39–41].
The sufficient degradation of SLPI in the tubular cells of healthy individuals can be assumed [42,43].
The elevation of serum SLPI levels in acute kidney injury might be a multifactorial and multidirectional
resulting from (1) SLPI release from injured kidney tissue, (2) impaired renal elimination, and (3) acute
and chronic inflammatory conditions.

One strength of this study is the robust results obtained from two independent and heterogeneous
cohorts with significant comorbidities related to AKI, including patients with chronic kidney disease.
Compared with some other recently discovered biomarkers, SLPI seems to function accurately as an
AKI marker in these unselected study cohorts, which might increase the generalizability of the received
findings [44].

Some study limitations exist, and the presented findings need to be interpreted cautiously.
Long-term data for the prediction of chronic kidney disease and long-term mortality were not captured
in our database and therefore could not be analyzed. Another limitation to our trial is that, for the
validation study, only postoperative samples taken 24 and 48 h after surgery were available; thus,
the results obtained at 6 and 12 h in the development study could not be compared. However, the results
obtained from the development study at 24 h after surgery were successfully confirmed in the validation
cohort. Additionally, the appearance that serum SLPI is superior to urinary SLPI as a predictor of
AKI should be approached carefully. If a tubular source of SLPI is assumed, then the concentration of
SLPI in the urine should be robustly elevated, although we only detected elevated urinary SLPI levels
when they were normalized to serum creatinine. As leukocytes are the best-established source of SLPI,
elevated SLPI during AKI might, in part, result from a systemic inflammatory response. However,
urine concentrations are subject to fluctuations caused by dilution effects (e.g., by diuretics). This
might explain why we only observed a significant elevation of urinary SLPI after its normalization
to creatinine.

Among the newly identified biomarkers of AKI, urine neutrophil gelatinase-associated lipocalin
(NGAL) and [TIMP-2]·[IGFBP7] have provided promising results [14,19,45]. The combined
measurement of [TIMP-2]·[IGFBP7] reflects the idea that biomarker panels might better depict
the heterogeneous etiology of AKI than single markers. The combination of these identified markers
with new biomarkers, such as SLPI, might further improve diagnostic accuracy [46–49].

5. Conclusions

In conclusion, we identified SLPI as a novel biomarker for the early detection of AKI after cardiac
surgery. Our findings may lead to future perspectives of biomarker-based risk stratification and may
identify patients who would benefit from the early initiation of preventive and treatment strategies.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0383/8/11/1931/s1,
Figure S1. Comparison of serum SLPI in patients affected by transient AKI (<48 h) versus persistent AKI (>48 h).

http://www.mdpi.com/2077-0383/8/11/1931/s1
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Figure S2. Diagnostic accuracy of serum SLPI in patients “at risk” as identified by Cleveland Clinic Foundation
Score. Figure S3. Association of absolute increase of serum SLPI from baseline (pre-OP, before surgery) with AKI.
Figure S4. Receiver operating characteristic (ROC) curves of urine NGAL for the diagnosis of AKI. Figure S5.
Association of perioperative serum SLPI with postoperative death and ICU length of stay.
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