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Abstract: Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder with a
complex symptomatology, and core symptoms as well as functional impairment often persist into
adulthood. Recent investigations estimate the worldwide prevalence of ADHD in children and
adolescents to be ~7%, which is a substantial increase compared to a decade ago. Conventional
treatment most often includes pharmacotherapy with central nervous stimulants, but the number of
non-responders and adverse effects call for treatment alternatives. Exercise has been suggested as
a safe and low-cost adjunctive therapy for ADHD and is reported to be accompanied by positive
effects on several aspects of cognitive functions in the general child population. Here we review
existing evidence that exercise affects cognitive functions in children with and without ADHD and
present likely neurophysiological mechanisms of action. We find well-described associations between
physical activity and ADHD, as well as causal evidence in the form of small to moderate beneficial
effects following acute aerobic exercise on executive functions in children with ADHD. Despite large
heterogeneity, meta-analyses find small positive effects of exercise in population-based control (PBC)
children, and our extracted effect sizes from long-term interventions suggest consistent positive effects
in children and adolescents with ADHD. Paucity of studies probing the effect of different exercise
parameters impedes finite conclusions in this regard. Large-scale clinical trials with appropriately
timed exercise are needed. In summary, the existing preliminary evidence suggests that exercise
can improve cognitive performance intimately linked to ADHD presentations in children with and
without an ADHD diagnosis. Based on the findings from both PBC and ADHD children, we cautiously
provide recommendations for parameters of exercise.
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Preface

ADHD is a neurodevelopmental disorder characterized by inattention and/or hyperactivity and
impulsivity diagnosed in children before the age of 12 [1]. Worldwide prevalence of ADHD in children
and adolescents is estimated to be between 5% and 10% [2–4] and recent surveys estimate that 57% of
diagnosed cases persist into adulthood [5], with well-documented detrimental impact on social and
academic skills [6]. The gravity of this diagnosis is underlined by the decreased life expectancy [7],
comorbidity with other psychiatric diagnoses [8] and substance abuse [9], along with reduced quality
of life for the affected children and their families [10]. Present treatment approaches most often
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include stimulant and non-stimulant pharmacotherapy along with cognitive therapy. Stimulants
such as methylphenidate (MPH) show the largest positive effects on the symptomatology in ADHD,
but 20–25% of the diagnosed individuals do not respond to the treatment, and pharmacotherapy can
be accompanied by physical and psychological adverse effects [11–18]. The gravity and prevalence of
ADHD thus urgently calls for therapeutic approaches which can supplement or potentiate the effect
of pharmacological and cognitive treatment as well as improve the life for children resilient to these.
Physical activity may constitute such an approach.

For a child to be diagnosed with ADHD, she or he must present at least six of the nine symptoms
within either the inattentive and/or the hyperactivity and impulsivity category. According to the
American Psychiatric Association’s Diagnostic and Statistical Manual for Mental disorders (DSM-5) [1],
a child can be diagnosed with either of the three ADHD presentations: inattentive, hyperactive and
impulsive or some combination of these [1]. ADHD is thus an umbrella diagnosis. Whereas categorical
diagnoses are of clinical and practical value, they may conversely oversimplify a complex mixture
of cognitive traits. This appears to be the case for ADHD, where the current evidence demonstrates
that ADHD should be considered as the impairing tail of traits that vary continuously throughout the
general population rather than a discrete category [19–23]. This suggests that interventions or activities,
which benefit children, in general, are also relevant for children and adolescents with ADHD and may
alleviate the ADHD symptomatology. Acute and regular physical activity (PA) are known to trigger
a wide array of physiological events that can lead to improvements in physical and psychological
well-being as well as physical and cognitive functions including the memory domain (see e.g., [24]
or [25] for review). In contrast, the effects of PA on cognitive functions, which are known to be affected
in children with ADHD compared to population-based controls (PBC) are sparsely studied. In this
review, we describe deficits in cognitive performance associated with ADHD and review the empirical
evidence suggesting effects of exercise on cognitive performance (specifically Executive Functions
(EFs) including selective attention as well as sustained attention) in children with and without ADHD.
To substantiate the discussion, we characterize neurophysiological and neurocognitive abnormalities
associated with ADHD and provide a mechanistic framework for the counteracting or ameliorating
effects of exercise in children and adolescents while highlighting key findings from the recent decades
of research. Furthermore, we extract and present effect sizes from existing intervention studies and
discuss these results in light of the neurophysiological framework presented. Finally, we will cautiously
provide recommendation of duration, intensity, and type of acute and long-term exercise interventions
for persons diagnosed with ADHD.

1. ADHD, Cognitive Functions and the Ameliorating Effects of Exercise

The cardinal symptoms of inattentive ADHD encompass distractibility, forgetfulness, poor
organization skills and low perseverance, whereas hyperactivity and impulsivity are associated
with impatience for delayed rewards, difficulties in inhibition of untimely and inappropriate motor
responses along with inability to dampen motor activities to appropriate levels for a given situation [1].
The link between these symptoms and executive functions is unmistakable [26], and accordingly,
existing research has documented performance deficits in tests of cognitive (incl. executive) functions
in children with ADHD [27–29]. Three primary aspects of executive functions (EF) are traditionally
identified; working memory, inhibitory control and cognitive flexibility or set shifting [26,30]. Children
with ADHD display subpar performance in some, but not all aspects, and rarely the same tests of
EFs (see e.g., [31] for review). Every child thus has his or her own profile, i.e., a combination of
performance in tests of EFs and attentional control, which reflects his or her idiosyncratic etiology.
Importantly, this individual combination of performances across several tests of NCFs may entail
pivotal information about his or her individual path to remission. The framework for this review is
thus that of assessing the effects of exercise on performance in tests of EFs and attention in children
and adolescents with (and without) ADHD. The objective is to answer the question: To what extent
can exercise improve cognitive deficits associated with pediatric ADHD and which modality, intensity
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and duration of exercise might benefit cognitive performance based on studies of acute and long-term
exercise in children and adolescents with and without ADHD?

1.1. ADHD is Associated with Lower Performance in Cognitive Tests

Although ADHD is in general associated with lower performance, neuropsychological tests are in
isolation unlikely to have sufficient selectivity necessary to entail clinical value [32]. As an example,
if pediatric ADHD was diagnosed based on impaired performance (>90 percentile) in at least five
commonly used tests for executive functions, ~10% would be identified, whereas ~50% would be
identified using only the most sensitive of these (see [33] for a discussion). Additionally, several of
the tests commonly deployed to assess EF in ADHD have low construct validity (see e.g., [34] for
a discussion). At first sight, the tenet that deficits in EF may lead to the complex array of ADHD
symptoms appears to be scarcely supported in the literature. As an example, meta-evidence suggests
that impaired inhibitory control [35], which is thought to be a fundamental deficit in ADHD, does not
differ between individuals with ADHD and age-matched population-based controls when evaluated
with the Stroop test [36]. On the other hand, meta-analyses results for both go/no-go [37] and
stop-signal [38] tasks reveals impaired inhibition in ADHD. As a result, meta-analyses including all
three tests find small differences between PBC and ADHD populations across different tasks and test
paradigms [39]. Improving task validity may thus increase sensitivity, and recent results demonstrate
that slight protocol alterations can improve validity of tasks probing working memory in ADHD [40].
Furthermore, deploying a comprehensive test-battery including several tests within each EF domain
can increase sensitivity and specificity to 89 and 80% respectively [41]. Another important point
of criticism is the practice of comparing pooled average performance scores with little attention
to intra-individual variability. This may impede detection of subpar performance. Exemplified;
The lower selective and sustained attention ability associated with ADHD results in lower average
performance (e.g., higher mean reaction times (RT) in a flanker test), which originates in part from large
intra-individual variability [42–44]. This variability does not stem from large systematic fluctuation in
trial-to-trial performance, but rather from few very high RTs, signifying lapses in attention [45].

Assessing internal phenomena such as cognitive processes is not straightforward and crude
categorization into ‘presentations’ or ‘core symptoms’ may not be of sufficient fidelity to fully describe
the idiosyncratic etiology of ADHD. Each core symptom of ADHD assessed through conventional scales
(e.g., Connor’s rating scales) is influenced by several neurocognitive functions typically operationalized
as performance on neurocognitive tests. Although, each cognitive construct (i.e., ‘working memory’,
‘cognitive flexibility’, ‘inhibitory control’ ‘attentional control’) involves multiple and overlapping
neurophysiological processes and testing these independently is accordingly troublesome (e.g., testing
WM independent of attentional control), they do provide cut out a middleman and provide a more
detailed picture of the pathology. Elucidating the effect of exercise on tests of executive functions and
attention (combined termed neurocognitive functions, NCF) provides vital information on how to
target exercise interventions for children with ADHD.

Meta-analyses suggest that pediatric ADHD is associated with consistently lower performance in
tests of response inhibition, behavioral inhibition, reaction time variability, cognitive flexibility, choice
impulsivity (delayed gratification and delay discounting tasks) and WM [29,38,46–48]. As argued
below, exercise might constitute an avenue to symptom amelioration by improving these NCFs.
A raison d’être for this narrative review is therefore that changes in NCFs reflect changes in the
clinical severity for children with ADHD. However, correlated improvements in NCFs and ADHD
symptomatology suggest that this is not the case for exercise (e.g., [49]). Furthermore, as cognitive
functions develop in parallel with CNS maturation during the first two decades of our life [50], it can
be argued that e.g., subpar NCFs in pediatric ADHD is solely a matter of tardy cognitive maturation
and targeting e.g., EF specifically in children makes little sense [51–53]. However, as measures of EF
influence learning behaviors more than estimates of core symptomatology [54] and ADHD-related EF
deficits are evident in adolescents [55] and persist into adulthood [56], it appears that deficits in NCFs
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(incl. EF) are of clinical importance and do not wane with central nervous maturation [57]. In the
following section, we provide a comprehensive overview of the effect of exercise on tests of NCFs
where children with ADHD generally display subpar performance.

1.2. Exercise Benefits Performance in Neurocognitive Tests

Physical activity (PA) and exercise exerts a plethora of beneficial physiological, psychological
and neurocognitive effects. These include reductions in stress [58], anxiety [59], depression [60] and
negative affect [61] along with positive influences on cognition including improved executive and
memory functions (see [24] for review). A discussion of the effects of exercise on cognition warrants a
few semantic clarifications. Firstly, physical activity can be defined as any bodily movement that results in
energy expenditure [62]. This broad definition includes both planned and deliberately executed exercise
along with everyday activities such as commuting on foot. The distinction between PA and exercise
feeds into the perspectives dominating the research field; exercise may act as a neuro-enhancer and
improve cognitive performance through acute and long-term effect on monoaminergic transmission,
neurotrophic signaling and mechanisms of neuroplasticity (see e.g., [24] for review). Additionally,
it is also a prevalent perspective in the literature, that the cognitive load associated with engaging in
physical activities and exercise (e.g., decision making processes, adherence to the rules of a game or
the demands for flexible behavior as a team member [63]) could entail training of impaired cognitive
functions. The possibility of the latter is discussed below.

1.2.1. Acute Exercise Affects Performance in Tests of Cognitive Functions

During the recent years, there has been an increasing focus on acute effects of a single bout of
exercise. Acute exercise increases arousal, which is accompanied by potentiated performance in a
wide array of cognitive tasks. Although a single bout of exercise is unlikely to cause long-lasting
changes in the cognitive functioning, the immediate effect can be harvested for relevant purposes
(e.g., improved class-room behavior and learning outcome). Across cognitive domains, meta-analyses
point to positive effect of acute exercise in PBC children. For combined EFs, effect sizes (ESs, either
Cohen’s d og Hedges’ g) vary from 0.19 to 0.54 [64–67], whereas two meta analyses score effects
of exercise on measures of attention to ESs of 0.43 and 0.42 [65,66]. To the best of our knowledge,
only four meta-analyses investigating the effect of exercise on cognition including children with ADHD
exist [68–71]. None of these calculate the effect of acute and long-term exercise separately and we
accordingly present these at the end of this section.

A few findings on the effects of acute exercise on PBC children are of particular interest for the
present review and warrant further discussion. Dividing PBC children into high and low performance
groups based on a preceding Flanker’s Task testing inhibitory control, Drollette et al., found that
exercise elicits larger beneficial effects on inhibitory control in the lower performing children [72].
Based on the aforementioned notion that ADHD represents the extremes of traits present throughout
the general population, the results suggest that children with ADHD are thus likely to benefit the
most from acute exercise. Supporting this, several studies report positive effects of acute exercise on
performance on several tests of cognitive functions in children with ADHD. Silva et al. found increased
performance in an attention-demanding first person computer simulation [73], but also positive effect
on inhibitory control has been reported deploying go/no-go [74,75], Flanker [76–78] and Stroop [79–81]
tests. In addition, findings of exercise-induced performance increases for cognitive flexibility probed
with modified Flanker tests [77], task-switch tests [82], the Wisconsin card sorting task [81] and
the alternate use task [83] have also been reported. Importantly, several contrasting findings also
exist [84–87]. The divergent results likely reflect methodological heterogeneity. For example Craft
reported no change in digit span or general intelligence following a bout of exercise lasting 1 to
10 m [85]. It is likely that durations of ~10 m are not sufficient to impact subsequent performance on
tests of NCFs.
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In summary, some studies investigating effects of acute exercise have found positive effects on
performance in various aspects of cognitive functions – also in children with ADHD. Unless the
observed positive effects are merely transient, taken at face value the beneficial effects of acute exercise
could in term over the course of weeks or months accumulate into differences in levels of cognitive
functioning. Such effects would be reflected in both positive associations between cognition and
physical activity levels and changes in cognitive performance after long-term interventions. This is
discussed in the subsequent sections.

1.2.2. Association between Fitness or Physical Activity Level and Cognitive Functions

Activity levels of children are typically measured directly as accelerometer data collected over one
or more typical days [88], indirectly through physical activity questionnaires [89] or by assessment of the
fitness level (e.g., [90–94]). By correlating fitness and activity levels with performance on tests of NCFs,
associations between ‘chronic physical activity’ and cognitive functions can be estimated. Evidence
from meta-analyses supports a positive relation in PBC children [95–97]. Children with ADHD are
less likely than their PBC peers to meet recommended levels of physical activity, and based on the
aforementioned studies, this may be linked to deficits not only in physical capacity etc., but also in
measures of cognitive functions [98]. In a large sample representing the general population (n = 45,897),
Cook et al. reported that young individuals with ADHD who are unmedicated, are—or are likely to
be—sedentary [98]. This supports earlier finding of an increased risk of a sedentary lifestyle and risk
of obesity in un-medicated youth with ADHD [99].

In preadolescent children with a high risk of ADHD (i.e., ≥90th percentile on the hyperactive/

impulsive parents’ and teachers’ rating scales), Brassell et al., found a positive correlation between
aerobic fitness and accuracy for the incongruent trials in a modified Flanker task as well as lower
interference scores, altogether signifying better inhibitory capacity for high fit children [100]. In line
with this, longer response times across congruent and incongruent trials in the Flanker task has
been reported for children with ADHD and low cardiovascular fitness compared to a group of high
fitness children with ADHD [101]. Better performance in tests probing executive functions may also
relate to activity levels as Gapin et al., found that in a small sample of children with ADHD (n = 14)
activity levels measured over 7 days with an accelerometer were positively related to planning abilities
assessed as performance in the Tower of London task [102]. Altogether, the association between PA
and cognitive functions across the general population as well as within the pediatric ADHD population
appear robust although causal relations cannot be assumed, and reports of contrasting findings exist.

1.2.3. Long-Term Exercise Improves Performance in Cognitive Tests

Meta-analyses of the causal effect of long-term exercise interventions cognitive function in PBC
children find small effects on EFs (0.24 [65], 0.20 [103,104] and 0.14 [67]), while one analysis reports
large effects on attention (g = 0.90) [65]. This effect originates from a single original dataset of
230 children [105] demonstrating improved capacity for processing/psycomotor speed, concentration
and attention following 5 months of increased PA assessed by the d2-R test thought to probe sustained
attention [106].

A positive effect of structured exercise on hyperactive behavior was suggested in 1980 by Allen
who found short periods of jogging prior to the beginning of the school day over the course of
6 weeks to improve classroom behavior in twelve boys with unspecified behavioral and gross motor
impairments [107]. Within the cognitive domain, several studies have found improvements in one or
more measures in children with ADHD following long-term exercise [49,108–117]. As discussed below,
exercise that is both coordinative and cardiovascular challenging may be more engaging (and efficient).
As an example, Pan et al. found 24 table tennis practice sessions over the course of 12 weeks to improve
behavioral inhibition measured by use of the Stroop test and decreased behavioral problems during
the training period [110,111].
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In conclusion, long-term studies of the effects of exercise and physical activity on measures on
performance in cognitive tests demonstrate positive effects in both PBC children and children with
ADHD. It is, however, noteworthy there are only few long-term studies in children with ADHD
reporting all exercise parameters. More studies are thus needed in particular in children with ADHD
detailing the influence of specific exercise parameterization including timing.

1.2.4. Meta-Analyses Suggest Beneficial Effects of Exercise on Cognitive Functions in Children
with ADHD

Four meta-analyses have reported effects of exercise on cognition in (or including) children with
ADHD; one combines effects from cross-sectional, acute and long-term investigations [70], one sums
evidence from both acute and long-term [71], one include only three studies [69] and one includes
participants with autism (although a separate analysis for the ADHD diagnosis was conducted) [68].
Consequently, at present, the methodological heterogeneity between studies hampers the possibility of
drawing firm conclusions from meta-analyses.

In 2015, Cerrillo-Urbina and coworkers presented evidence from eight randomized controlled
trials with a total of 249 children [69]. Of the eight studies included in the analysis, seven applied
aerobic exercise over a time span ranging from a single session to 10 weeks with significant overall
effects on all cognitive domains tested. These inclusion criteria are very broad for both the exercise
interventions and cognitive outcome measures, but the overall Effects Size (ES) in support of a positive
effect of exercise was (Cohen’s d) 0.84 with ES ranging from 0.56 (hyperactivity and impulsivity) over
0.58 (executive functions), 0.59 (social skills) to 0.66 (anxiety). Supporting positive effects of exercise,
Vysniauske et al. reported similar evidence for an alleviating effect of exercise in ADHD. By combining
evidence from seven studies they found beneficial effects measures of executive functions (g = 0.54)
with a meta-regression pointing to a longer duration of the exercise intervention leading to larger
effects [71]. The latter conclusion is however somewhat hampered by the inclusion of both acute and
long-term experiments, mixing immediate, transient effects with effects of long-term exercise and these
effects should be addressed separately. In addition, several systematic and narrative reviews have
provided less objective evaluations of the extant evidence and recommendations for clinical application.
Recently, Cornelius et al. summarized and combined evidence from 20 original studies and concluded
that physical activity regardless of intensity, length, duration and frequency had beneficial effects for
children with ADHD (g = 0.81) [70]. Despite moderate to large effect sizes (0.46 to 1.6) neither attention,
EFs, academic achievements, social problems or disruptive behaviors differed significantly from control
conditions. The overall effect can be accredited to the emotion/mood category. The conclusions should
be interpreted with caution due to the combination of evidence from association studies, uncontrolled
single-session studies and RCTs in addition to the heterogeneity between studies in extent and type
of exercise.

Notwithstanding the limitations of the available meta-analyses, recent evidence-based practice
recommendations suggest moderate to large positive effects of exercise on inattention, impulsivity,
hyperactivity and executive functioning [118]. This is supported by conclusions from both systematic
and narrative reviews [119–125].

2. The Neurophysiology of ADHD and how Exercise may Exert Beneficial Effects

As discussed above, ADHD pathology is complex, and several neurophysiological abnormalities
contribute to the low performance in test of NCFs. A qualified discussion of how exercise may improve
cognitive functions in children with ADHD warrants an outline of differences in central nervous
structures, network activity and brain neurochemical signaling between PBC and children with ADHD
as well as an overview of how exercise impacts the CNS. See Figure 1 for a schematic illustration
summarizing the succeeding sections.
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ADHD and PBC peers, the citations all refer to meta-analyses. (B) Potential counteracting effects of 
‘acute’ and ‘chronic’ exercise are listed in representative colours. Please note that ‘chronic exercise’ 
encompasses both long-term intervention and associations. Delta and Nabla denote the sign of the 
physiological change. Abbreviations are listed below. Abbreviations: ACC (anterior cingulate cortex), 
BDNF (brain-derived neurotrophic factor), BG (basal ganglia), CB (cerebellum), CC (corpus 
callosum), CR (corona radiata), CrB (cerebral), DA (dopamine), DAN (dorsal attention network), 
DRD2 (dopamine receptor D2), DS (dorsal striatum), EN (executive networks), FAc (frontoaccumbal) 
FC (functional connectivity), FP (frontoparietal), FrC (frontal cotex), FT (frontotemporal), GM (grey 
matter), NE (norepinephrine), NET (norepinephrine transporter), PC (parietal cortex), PFC (prefrontal 
cortex), PPC (posterior parietal cortex), RN (reward networks), SLF (superior longitudinal fasciculus), 
STR (striatum), TBR (theta/beta ratio), TC (temporal cortex), TH (tyrosine hydroxylase), TR (task-
related), UF (uncinate fasciculus), VAN (ventral attention network), WM (white matter). 

2.1. Brain Structure Abnormalities Associated with Pediatric ADHD and the Effects of Exercise 

Structural abnormalities in cortex and midbrain associated with ADHD likely develop slowly 
over years. Similarly, structural changes in cortical and subcortical regions develops slowly over 
weeks to months of e.g., motor practice [126–128], and we accordingly restrict the discussion of 
exercise effects to long-term interventions and association between physical activity levels and 
structural integrity/volume.  

2.1.1. ADHD is Associated with Structural Cortical, Cerebellar and Subcortical Abnormalities 

ADHD is associated with wide array of grey matter abnormalities in the brain (see [129] for a 
recent overview). Of great interest, a recent study found neuroanatomical correlates of ADHD to 
overlap with those of working memory across age-groups [130]. Magnetic resonance imaging (MRI) 

Figure 1. Neurophysiological differences between PBC and children with ADHD and the potential
counteractive effects of exercise. (A) Identified neurophysiological and anatomical differences between
children and adolescent with ADHD and their PBC peers divided into analysis level (‘neurochemical’,
‘functional’ and ‘structural’) in colour-coded boxes. Due to the substantial amount of experimental
work conducted on differences in task-related activation between indiviudals with ADHD and PBC
peers, the citations all refer to meta-analyses. (B) Potential counteracting effects of ‘acute’ and ‘chronic’
exercise are listed in representative colours. Please note that ‘chronic exercise’ encompasses both
long-term intervention and associations. Delta and Nabla denote the sign of the physiological change.
Abbreviations are listed below. Abbreviations: ACC (anterior cingulate cortex), BDNF (brain-derived
neurotrophic factor), BG (basal ganglia), CB (cerebellum), CC (corpus callosum), CR (corona radiata),
CrB (cerebral), DA (dopamine), DAN (dorsal attention network), DRD2 (dopamine receptor D2),
DS (dorsal striatum), EN (executive networks), FAc (frontoaccumbal) FC (functional connectivity),
FP (frontoparietal), FrC (frontal cotex), FT (frontotemporal), GM (grey matter), NE (norepinephrine),
NET (norepinephrine transporter), PC (parietal cortex), PFC (prefrontal cortex), PPC (posterior parietal
cortex), RN (reward networks), SLF (superior longitudinal fasciculus), STR (striatum), TBR (theta/beta
ratio), TC (temporal cortex), TH (tyrosine hydroxylase), TR (task-related), UF (uncinate fasciculus),
VAN (ventral attention network), WM (white matter).

2.1. Brain Structure Abnormalities Associated with Pediatric ADHD and the Effects of Exercise

Structural abnormalities in cortex and midbrain associated with ADHD likely develop slowly
over years. Similarly, structural changes in cortical and subcortical regions develops slowly over weeks
to months of e.g., motor practice [126–128], and we accordingly restrict the discussion of exercise
effects to long-term interventions and association between physical activity levels and structural
integrity/volume.

2.1.1. ADHD Is Associated with Structural Cortical, Cerebellar and Subcortical Abnormalities

ADHD is associated with wide array of grey matter abnormalities in the brain (see [129] for a
recent overview). Of great interest, a recent study found neuroanatomical correlates of ADHD to
overlap with those of working memory across age-groups [130]. Magnetic resonance imaging (MRI)
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studies point to lower grey matter volume for anterior cingulate cortex, basal ganglia and cerebellar
vermis along with lower frontal, parietal and temporal cortical thickness [53,131–140]. Evidence from
diffusion-weighted MRI has indicated that the grey matter abnormalities are paralleled by differences
in white matter organization in prefrontal, frontostriatal, frontoparietal and mesocorticolimbic
circuits [141,142]. Intriguingly, white matter differences between structures, which are intimately
involved in attention control and reward processing have been demonstrated to predict persistence of
ADHD into adulthood [143]. Although it does not provide causal evidence, the finding suggests a link
between the integrity of key brain structures and ADHD symptomatology, and this is further supported
by findings demonstrating correlations between symptom severity and volume of reward related basal
ganglia structures [144]. It is unlikely that specific focal structural abnormalities should underlie the
heterogenous symptomatology of ADHD, but experiments in human and non-human primates with
focal cortical lesions reveal increased distractibility as well as impaired selective and sustained attention
ability, strongly implicate the right dorsolateral prefrontal [145–147] cortex but also the temporoparietal
junction [148]. Furthermore, selective inhibition of α2 receptors in the prefrontal cortex of non-human
primates causes hyperactivity and impairs behavioral inhibition [149,150], which provides a link from
brain structure and function to behavior. The finding also emphasizes the role of monoaminergic
signaling in cortical regions involved in executive functions, which is reviewed in next sections.
Taken together, these findings provide a structural basis of the prevalent hypothesis that dysfunctions
and delayed development of brain circuitries contribute to ADHD symptomatology, although it is
important to note that the involved mechanisms may indeed not be unidirectional.

2.1.2. Exercise Leads to Structural Changes in the CNS

Exercise might act as an endogenous stimulus to trigger a cascade of molecular neuroplastic
processes eventually leading to structural adaptations in the nervous system (see e.g., [151] for review).
Two decades ago, Van Praag and co-workers demonstrated that voluntary treadmill running led to
increased neurogenesis bilaterally in the dentate gyrus of the hippocampus in rats [152,153]. These
findings were later extended to also encompass morphological adaptations in areas demonstrating
attenuated development in ADHD, including the prefrontal cortex (PFC) [154]. In humans, several
cross-sectional studies indicate that higher fitness levels are associated with both structural and
functional differences in multiple cerebral structures, which are intimately involved in cognitive
functioning [90,91,93,155–158]. The modulating effects of exercise interventions on brain structure
have especially been substantiated in older adults, with ample evidence suggesting that exercise is a
potent strategy to mitigate atrophy of brain volume associated with aging or even lead to increased
grey and white matter in frontal regions as demonstrated by Colcombe et al. [159]. In children and
adolescents, only a few studies have investigated the structural differences and adaptations associated
with physical activity levels and exercise, respectively. Drawing on cross-sectional evidence, aerobic
fitness, an indirect marker of physical activity levels, has been associated with larger volumes of both
subcortical and cortical structures, including the dorsal striatum of the basal ganglia [90]. In contrast,
for neocortical structures, higher-fitness children have been demonstrated to exhibit lower grey matter
thickness in superior frontal and superior temporal cortical areas [160]; two areas that typically undergo
substantial grey matter pruning during adolescence [161,162]. These findings tentatively suggest that
higher-fit individuals outrace their less-fit peers in developmental progress for these specific subcortical
and cortical structures. Conversely, this stage of cortical development is reached with further delay
in individuals with ADHD compared to individuals without ADHD [53]. Interestingly, most of the
abovementioned studies linking aerobic fitness with structural differences included parental reports
of the level of ADHD-related traits, but either excluded participants displaying a high degree of
ADHD-related traits or failed to explore moderated associations statistically—potentially due to the
relatively small and recurrent sample size included. This approach unfortunately filters out information
relating to the extremes of neurocognitive and structural development, making direct inferences to
ADHD affected populations troublesome.
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Studies probing white matter integrity are few. A cross-sectional study in a sample of PBC children
utilized diffusion-tensor imaging (DTI) to demonstrate that white matter integrity in fronto-temporal
bundles is higher in individuals with higher aerobic fitness levels [94]. The results from a single
longitudinal randomized controlled trial in undiagnosed children, has furthermore demonstrated that
8-months of exercise training resulted in increases in the fractional anisotropy of the uncinate fasciculus,
which connects frontal and temporal areas. The results are, based on the 18 individuals enrolled in the
study, indicative of greater white matter integrity in the intervention group following exercise [163,164].
In sum, results from PBC children tentatively suggest that markers of physical activity levels or exercise
per se are associated with modest structural adaptations in some of the structures and networks of
the nervous system displaying protracted or anomalous development in individuals diagnosed with
ADHD. As these structures and networks have been related to performance within several cognitive
domains including EF, it could be hypothesized that exercise-induced structural adaptations may
potentially be accompanied by changes in performance in e.g., tests of EFs in children and adolescents
with and without ADHD. Whether this is in fact the case, however, warrants further investigations,
as the current bulk of evidence is largely cross-sectional and relies on a recurrent sample of individuals
and the few longitudinal studies have largely been confined to PBC individuals.

2.2. Abnormalities Associated with Neuronal Network Activity in Pediatric ADHD and the Effects of Exercise

The grey and white matter deficiencies associated with ADHD are likely to contribute to the
aberrant patterns of activity and connectivity observed during resting state and task-based functional
MRI (fMRI) and electroencephalography (EEG) assessments [165]. Conversely, behavioral patterns
may indeed also lead to neuroplastic changes in the central nervous system. In any case, it is interesting
to investigate brain activity patterns in individuals with ADHD and compare this to activity in PBC
individuals—also to understand the possible effects of exercise. Here, we describe networks or nodes
of networks, which have been demonstrated to display aberrant activation in children with ADHD
during cognitive processing. The evidence originates from noninvasive electrophysiological and brain
imaging methods.

2.2.1. ADHD is Associated with Altered Activity in Networks across the Brain

Engaging in meaningful sensorimotor interactions with our surroundings depends on our ability to
structure brain activity patterns, which are necessary for planning, initiating and executing movements,
perceiving sensory inputs and also the ability to attenuate resting-state central nervous activity
characterized by default mode network activity during cognitive processing [166]. Incapacity to do so
is associated with impaired attention and inhibitory control thus ADHD [167–169].

Hyperactivity, inattention and impulsivity in children has early on been suggested to be reflected in
a cortical slowing of processing in frontal regions i.e., and increase in slow (theta, ~2–8 Hz) band activity
in EEG recordings [170,171] reflecting decreased alertness possibly due to abnormal monoaminergic
transmission in the corticocortical and corticostrital networks described below (but see also [172] for a
review). The relative theta-to-beta (16–25 Hz) activity over midline electrodes (i.e., the theta/beta ratio,
TBR) represents an FDA approved adjunct diagnostic tool for pediatric ADHD although it is associated
with some controversy (see [173] for discussion and meta-analysis). In addition to the TBR, alpha
band activity (7–13 Hz), a slow alpha peak frequency is commonly reported with ADHD [174–176],
and this is thought to signify state of arousal [177] and previously demonstrated to predict psychomotor
performance [178,179].

Not only EEG recordings but also evidence from fMRI has indicated differences in network
activation involving frontal brain regions in ADHD and this is commonly referred to as hypofrontality.
Evidence from meta-analyses suggests that hypoactivation of frontostriatal (FSN), frontoparietal
(FPN) and ventral attentional (VAN) networks during inhibitory control tasks represent correlates of
pediatric ADHD [180,181]. Altered activity in frontostriatal circuitries is thought to underlie several
reward-related behavioral impairments [182]. ADHD is associated with hypoactivation of frontostriatal
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circuits during inhibitory control tasks whereas hypoactivation of structures in the mesocorticolimbic
network has been demonstrated during reward anticipation [183,184]. Patients with ADHD display
decreased striatal activation, which is correlated to reward anticipation [185,186] as well as a preference
for smaller immediate versus larger delayed rewards and riskier reward-related behavior (see [187]
for a review). This provides a plausible mechanistic background for the effect of dopamine and
norepinephrine reuptake inhibitors and more importantly for the topic of the present review, also a
potential neurophysiological mechanism, which physical activity and nutrition interventions may
influence (see e.g., [188]). The frontoparietal network is widely distributed and includes regions within
frontal, parietal, cerebellar, insular and cingulate areas, with the ventral attentional network extending
between temperoparietal, insular and ventral frontal loci [189]. FPN activation is associated with
executive, goal-directed processes such as combining information from surroundings with internal
representations to guide decision-making. Changes within FPN may contribute to impulsive and
hyperactive behavior as recently suggested by Tegelbeckers and co-workers [190]. Attentional control
is governed by a ventral and a dorsal attention system located in frontoparietal areas [191]. The ventral
attention system supports the ability to reorient to external salient and relevant stimuli [192] whereas
the dorsal attention system draws on executive processes outlined above albeit influenced by bottom-up
processes reflecting salience of external stimuli. Evidence links aberrant function in these attentional
control networks to deficiencies in selective and sustained attention associated with ADHD (e.g., [193]).
Furthermore, these networks along with tonic alertness are linked to monoaminergic projections
from subcortical structures [194,195]. The high temporal resolution of EEG allows time-locking
recordings and stimuli and thereby to study event-related potentials (ERPs) by averaging many
evoked responses (see [196,197] for a review of ERP in cognitive sciences). Individuals with ADHD
generally display compromised task-related neural processing [198], manifested as reduced amplitudes
of ERPs e.g., the N200 and P300 component during tasks requiring executive inhibitory/interference
control [198]. The reduced P300 component ostensibly reflects a compromised capacity to allocate
attentional resources effectively during cognitively demanding tasks [199].

2.2.2. Exercise Leads to Changes in Network Activity

Exercise has been demonstrated to change oscillatory activity in the ‘resting’ brain, but also
task-related activity across several cerebral loci. Resting EEG measurements demonstrate that in young
adults, acute exercise increases resting state alpha peak frequency [200] and beta power [201]. In both
PBC and ADHD children, coordinative physical activity of moderate intensity (metabolic value (MET)
of 4) has been found to decrease theta and increase alpha power [202], whereas treadmill running
at a moderate intensity leads to nearly normalized TBR in children with ADHD [203,204]. Changes
in resting state activity have been investigated with fMRI as well. In PBC adults, Weng et al. found
acute exercise to increase functional connectivity within reward networks and increased integration
between executive and attentional control networks as well as between dorsal and ventral attention
networks [205].

Ample evidence in PBC children suggests that acute exercise can change event-related brain
responses, (e.g., the amplitude and latency of the P300 component) during cognitive tasks taxing
executive functions (e.g., [72,206,207]). A few reports of changes in task-related activation following
acute exercise exist. In young adults, Li et al. increased task-related (2-back task) activation in prefrontal
areas associated with WM functions and decreased activation of regions within the default mode
network [208]. In PBC children, Chen and co-workers found increased activation superior and inferior
parietal lobule along with and posterior lobule of cerebellum [209]. In further support, increments
in task-related blood oxygenation in PFC after exercise measured with Functional Near-Infrared
Spectroscopy (fNIRS) have been demonstrated in PBC children and adults correlating with improved
performance on executive tasks (N-back [210] and Stroop [211–214]). This may reflect increases in
the state of arousal, which benefits executive control measured as attentional performance [215].
In summary, an acute bout of exercise appears to affect the resting brain reflected in decreased TBR and
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increased α-peak frequency as well as increased functional connectivity within networks intimately
associated with executive and attentional control. Parallel changes in task-related activity are evident
as increased blood oxygenation assessed with both fMRI and NIRS and increased event related brain
responses. Conceptually, acute exercise might thus provide an avenue to counteract the functional
deficiencies observed in cognitive processes in young individuals with ADHD.

In children with ADHD, one study examined EEG-correlates of stimulus processing and attentional
resource allocation following a single bout of exercise. Intriguingly, the study revealed increases
in the amplitude of the P300 component both in non-medicated children with ADHD and in PBC
children following 20 m of moderate intensity treadmill running compared to seated reading [78].
Furthermore, the latency was shortened over frontal regions, which is indicative of improved processing
speed. A single bout of exercise might thus transiently elevate the available attentional resources and
improve covert processing speed in children with ADHD and in PBC children. These results highlight
that changes in task-related neural processing following acute exercise are comparable between
PBC and ADHD-diagnosed individuals. This is further supported by a recent study demonstrating
non-dissociable increases in P300 amplitudes following exercise in children with ADHD receiving
MPH treatment and in PBC children [76]. Altogether, these findings lend credence to the hypothesis
that task-related cognitive processes are equally susceptible to the influence of exercise in diagnosed
and undiagnosed individuals.

In young PBC children, aerobic fitness levels have been associated with hyperactivation of
prefrontal regions during an Eriksen flanker-task assessing inhibitory control [91], albeit the results are
ambiguous [158], with discrepancies potentially linked to successful versus unsuccessful compensatory
behavioral strategies. A handful of studies have investigated task-related neural activity based on fMRI
before and following long-term exercise interventions. Davis and co-workers found that adhering
to an afterschool exercise program 5 days/week for 13 weeks led to bilateral increases in task-related
PFC activity during the anti-saccade paradigm in a sample of 20 overweight children aged ~10 [216]
(but see also [217] for contrasting findings). For longer exercise interventions, the available results
are also compelling, but less dense. One study found increased activation in the PFC following an
8-month exercise intervention in overweight, unfit PBC children [218]. Another study by Hillman and
co-workers reported greater P300 amplitudes in 109 preadolescent children adhering to a 9-month
afterschool exercise program compared to waitlist controls, suggesting that the beneficial effects
observed following single exercise bouts might accumulate over time [219]. While these results
are promising, other studies have failed to replicate and extend these results [220]. This might
reflect differences in the characteristics of the interventions employed, but also heterogeneity in the
populations tested in previous studies. For example, almost 50% of the children participating in the
RCT set out by Hillman and co-workers were characterized as pertaining to low socio-economic status,
and this might be an influential moderator of effect sizes. Nevertheless, in line with the evidence from
acute behavioral studies, the results tentatively suggest that chronic exercise benefits event-related
neural processing in those who need it the most and this potentially holds promise for individuals with
ADHD. However, how electrophysiological processes related to cognitive functions change following
both acute and chronic exercise interventions in individuals diagnosed with ADHD remains to be
thoroughly elucidated. Furthermore, another major challenge for the studies applying ERP-related
techniques is the lack of reports linking exercise-induced changes in event-related activity and cognitive
performance (but see [221] for exceptions using cluster-based permutation techniques). The functional
and clinical relevance of changes in event-related electroencephalographic activity following exercise
bouts is therefore not fully understood, and changes could in principle be epiphenomena unrelated
to function. In addition, resting EEG measure of the long-term effects of exercise is hard to interpret.
As an example, two weeks of exercise caused increases in delta band spectral power, but decrements in
all other all others along with increased mean band frequency of delta, theta and beta, but not alpha
bands [222]. The long-term alterations in PBC children are thus not readily interpreted, and to the best
of our knowledge, changes in resting EEG in children with ADHD after long-term exercise are yet to
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be been investigated. In the following section, we review neurobiological changes at a biochemical
level, supporting the behavioral benefits and neurophysiological changes accompanying short and
long-term exercise.

2.3. ADHD, Exercise and Biochemical Changes in the Brain

Here, we briefly describe experimental findings in support of the monoaminergic hypothesis
of ADHD as well as findings linking pediatric ADHD to anomalous BDNF activity. Exercise is
theorized to influence ongoing and subsequent cognitive performance through multiple central
nervous routes such as changes in cortical monoaminergic transmission, changes in brain neurotrophin
levels and changes in cerebral blood flow. Acute exercise increases cerebral oxygenation and while
the Kety-Schmidt determined global cerebral blood flow remains largely unchanged during most
exercise types [223], regional changes in oxygen consumption, glucose and lactate direct further blood
flow to activated areas. The repeated increased metabolic demands associated with e.g., running
in long-term interventions increases angiogenesis in cerebellum [224,225], motor cortex [226–228]
and striatum [229]. The two former alterations are within motor areas and suggest compensatory
angiogenesis to accommodate region-specific metabolic demands. These changes do not immediately
appear relevant for effects relating to executive functions and/or behavior in ADHD. However,
both motor cortical and cerebellar regional activity has been implicated in cognitive functions [228]
and ADHD symptomatology [86,136,230]. Interestingly, the exercise-mediated increases in vasculature
are triggered by increased neurotrophic signaling [229].

With a particular focus on dopamine (DA) and brain-derived neurotrophic factor (BDNF),
we discuss the mechanisms, which are thought to be involved in mediating effects of exercise on
performance in cognitive tests in children.

2.3.1. ADHD is Associated with Abnormal Monoaminergic Signaling

As the ADHD affected networks and cerebral structures described above entail multiple
monoaminoceptive regions [231,232], it is tempting to speculate that dysfunctional regulation of
monoamines and monoaminergic signaling may represent a biochemical underpinning of the reported
ADHD related patterns of brain activity.

Dopamine and Reward-Related Processing

It has been suggested that impaired transmission in motivational- and reward-related pathways
contributes to the ADHD pathology (e.g., [31]). In support of this, and as discussed above, impaired
reward processing is linked to aberrant recruitment of frontostriatal networks (see [233] for review).
Specifically, children with ADHD prefer immediate smaller rewards over delayed larger rewards ([234]
but see also [235] for a review). In humans, this is evident as hyporesponsiveness in striatum
during reward anticipation [185]. As reward processing is intimately linked to transmission from
midbrain to striatal and prefrontal regions [236], altered dopaminergic activity presents a likely
candidate mechanism.

The ameliorating effects of stimulants, which are first-in-line treatment for children with ADHD,
support the pivotal role of DA transmission in pediatric ADHD. The over-all effect of MPH and
amphetamine is to increase extracellular catecholamine availability and whilst they differ slightly in the
potency of the direct effects on monoaminergic reuptake transporters, the effects on ligand availability
are comparable (see [237] for an excellent overview). MPH and amphetamines inhibits the dopamine
transporter (DAT) [238] and cause increased release of DA containing vesicles [239,240]. The net result
is increased extracellular DA concentrations and signaling in striatal, prefrontal, anterior cingulate
cortex (ACC) as well as other cortical regions [241,242]. In summary, stimulants improve ADHD
symptoms [243] and executive functions [244,245] through altered central nervous monoaminergic
transmission, with increased cortical and striatal DA availability appearing as the most important
mediators [246].
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In further support of the dopamine hypothesis in ADHD, the spontaneous hypertensive rat
(SHR), a commonly used rodent model for ADHD, is hyperactive; expresses lower ability to sustain
attention and increased impulsivity in the absence of immediate rewards along with increased response
variability [247,248], which can be reversed by amphetamine administration [249–251]. Furthermore,
SHR displays differences within DAT1 compared to their progenitor Wystar Kyoto Rats [252] and
aberrant DA activity [253,254].

Despite a high hereditability of ADHD, which is estimated to ~75% for both inattentive and
hyperactive components and all genders (see [255] for a recent review), only one genome-wide
association study has identified 12 independent common variant risk loci that met genome-wide levels
of significance [256]. These include loci associated with other psychiatric diseases in addition to the
DUSP6 gene coding for the a phosphatase involved in regulation of DAT internalization and thus
synaptic DA activity [257]. A meta-analysis from 2009 pointed to common variants in six genes coding
for proteins involved in serotonin (5HTT, HTR1B), dopamine (DAT1, DRD4, DRD5) and SNAP-25 a
protein involved in vesicle fusion with the presynaptic membrane (SNAP25) [258]. Supporting the
view that ADHD represents the extreme of continuous traits, the 10-repeat allele of a variable number
of tandem repeat in the intronic region of the DAT1/SL6CA3 gene predicts higher levels of inattention
and hyperactivity across the general population as well as categorical diagnosis in male youth [259].

The relation between ADHD and gene variants coding for decreased bioavailability of in particular
dopamine underlines the potentially beneficial role of acute exercise, since exercise can be considered
an endogenous route to increased CSF (intra- and extrasynaptic) dopamine concentrations [260].

Control of Attention and Monoaminergic Signaling Systems

In terms of attentional control, a system of three interconnected networks with distinct
neurochemical circuits subserving attentional processes was proposed early on [194,195].
These networks include a general tonic alertness network involving noradrenergic innervation
from locus coeruleus and an orienting network associated with the visual system, frontal and parietal
lobes and cholinergic transmission and lastly an executive network in LFPC and ACC, which is coupled
with dopaminergic projections from midbrain areas. More commonly the neurophysiological correlates
of attentional control are described with a 2-system model, which encompasses a ventral and a dorsal
attention system located in frontoparietal areas [191]. The former supports the ability to reorient to
external salient and relevant stimuli [192] whereas a dorsal attention system draws on the executive
processes outlined above albeit influenced by bottom-up processes reflecting external stimuli salience.
Evidence implicates both of these attentional control networks along with tonic alertness in deficiencies
in selective and sustained attention associated with ADHD (e.g., [193]).

Aberrant norepinephrine (NE) signaling has been demonstrated in relation to ADHD
(see e.g., [261,262]) and it is well described that NE projection activity from Locus coeruleus plays a
role in vigilance and attentional processes [263–265]. In humans, children with ADHD have lower
baseline concentrations of peripheral NE when compared to their PBC counterparts [266]. Although,
the relationship between peripheral NE and central noradrenergic signaling is poorly understood,
an association to tonic NE signaling mediating general alertness cannot be excluded. Supporting a role
for NE in ADHD pathology, stimulants improve cognitive functions through NE mediated pathways
as illustrated by increased NE signaling in striatum after AMP administration in non-human primates
and rats [267] and improved sustained attention ability after administration of a selective α2A agonist
in children with ADHD [268].

As discussed above, candidate gene studies implicate 5-hydroxytryptalmine (5-HT)
i.e., serotonergic signaling in the ADHD pathology (e.g., [269]), whereas evidence linking cholinergic
transmission to ADHD related deficits in cognitive functions is sparse. The role of 5-HT signaling
in ADHD is supported by clinical trials demonstrating beneficial effects of buspirone (e.g., [270]) on
behavioral modulation and the effect is speculated to relate more to impulsive and hyperactive behavior
rather than to inattention (see [271] for a review). Furthermore, the non-stimulant drug Atomoxine binds
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to both norepinephrine and serotonin transporters at clinical doses [272]. The reported improvement
in sustained attention and executive functions [273] including response inhibition [274] following
Atomoxetine administration can thus be due to changes in both noradrenergic and serotonergic
signaling. Finally, abnormalities in dopaminergic synaptic markers within reward-associated networks
incl. midbrain, caudate and accumbens have been demonstrated to correlate with symptoms of
inattention, which suggest a role of dopamine and the frontostriatal executive attentional control
system in ADHD [275].

2.3.2. Exercise Changes Monoaminergic Signaling

The neuroendocrine response to exercise is intricate and it is beyond the scope of this review
to provide a complete overview of the involved mechanisms and effects (see instead [276,277]).
Here, the focus is in particular on the response of the central nervous monoamine diffuse systems.
During exercise, plasma levels of catecholamines [278–280] increase acutely with longer lasting
increments of DA fitting the temporal profile of exercise-induced improvements in cognitive functions
best. Central monoamine levels are also affected by exercise, but the relation between changes in
peripheral and central levels is complex. For example, CNS NE levels are more related to peripheral
epinephrine than NE, DA does not cross the blood brain barrier and central changes in DA have been
suggested to depend on peripheral calcium stimulating central DA synthesis [281,282]. Accordingly
the finding that acute exercise-induced increases in systemic catecholamines are blunted in children
with ADHD as compared to PBC children does not suggest that exercise benefit exclusively the latter,
but rather that the peripheral response to exercise may entail diagnostic value [266]. In rodents,
striatal and prefrontal DA and 5-HT levels increase with exercise [283–287] (but see also [288] for
contrasting findings), whereas changes in central NE are equivocal at best. In brief, it appears that
extra striatal areas are NE depleted whereas striatal [283,289] and prefrontal [290] extracellular NE
activity increases. The increase in DA activity is presumably mediated through reciprocal effects on
DRD1 and DRD2 receptors.

Longer lasting adaptations in the monoaminergic systems are evident after long-term exercise.
Following weeks of treadmill running increased expression of tyrosine hydroxylase (TH) alongside
decreased expression of DRD2 autoceptors in substantia nigra indicate increased DA synthesis and
release from midbrain projections [291]. Impaired TH expression in substantia nigra [292,293] and
striatum [293,294] in the SHR model is counteracted by 4 weeks of exercise, and the response to exercise
is dose-dependent and coincides with reduced hyperactivity. Also in SHRs, Cho et al. demonstrated
that long-term exercise counteracts hyperactivity and impulsivity through decreases in striatal and
substantia nigra DRD2 expression [295]. Findings of higher central nervous levels of NE has also been
demonstrated in trained versus untrained rats [296,297]. In SHRs, weeks of treadmill running leads
to normalization of orienting behavior mediated through reduced norepinephrine transporter (NET)
levels in PFC [298] and causes structural changes in PFC [154]. These findings emphasize that exercise
has beneficial effects on cognition also through NE dependent mechanisms.

In summary, acute exercise affects the same DA and NE systems as stimulants (see e.g., [299] for
review), which may mediate the beneficial effects on NCFs reviewed above. Furthermore, evidence
from murine models suggests long-term exercise to normalize function of dopaminergic nigrostriatal
signaling and prefrontal NE function. Moreover, recent findings suggest that the beneficial effects
of exercise on memory depend on the allele composition within genes that influence dopaminergic
transmission [300,301]. It remains to be investigated whether similar relations exist for cognitive
functions outside of the memory domain.

It is important to mention that, the hereto described effects on monoamine signaling most likely
only constitute a few of the potential avenues of which exercise may change central nervous structure
and functions (see [302] for a review).
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2.3.3. ADHD is Associated with Abnormal BDNF Signaling

Brain-derived neurotrophic factor is expressed across the mature mammalian central nervous
system in minute amounts [303]. It acts through the high-affinity receptor Trk-B, potently modulates
synaptic signaling and neuroplasticity as well as influences neuronal maturation, cell differentiation,
cell migration, cell proliferation and survival (see e.g., [304]). The role of BDNF signaling in declarative
and procedural memory processes is well-described (e.g., [304–307]). Despite persistent suggestions of
a mechanistic role [308–310], evidence of a BDNF contribution to ADHD core symptomatology and
EFs in ADHD is less robust.

Whereas the Val66met single-nucleotide polymorphism (SNP) has been argued to influence EFs
as well as related neural structures in late adulthood (e.g., [311]), meta-analyses demonstrate that it
does not impact executive functioning [312] or increase risk of ADHD in children [258,313]. Recent
findings do however suggest that the Met allele (generally associated with lower BDNF activity and
impaired declarative memory functions [307]), is associated with larger cortical area and thickness of
parietal and prefrontal cortices in children [314,315], but also with hyperactivity and impulsivity [316].
Investigations of associations between ADHD, non-memory related cognitive functions and the
Val66Met SNP have resulted in contrasting findings at best. This does not preclude the possibility that
variation within the BDNF gene may be involved in ADHD pathogenesis, but it suggests that this
is not mediated by the Val66Met SNP alone but rather a haplotype, which includes this locus [317]
(but see also [318] for an overview) or rare gene variants [319].

Systemic BDNF (i.e., serum and/or plasma) concentrations relate to central nervous levels as
demonstrated by highly correlated ontogenic changes in measures of frontal cortex and serum BDNF
concentration [320]. Findings of both similar, lower and higher systemic BDNF levels in ADHD
patients compared to PBC children and adults exists (e.g., [321–324]) and a recent meta-analysis found
similar levels of BDNF in children but with males displaying increased systemic BDNF [325]. Reported
increases in plasma BDNF coinciding with reduced hyperactivity following long-term MPH treatment
could suggest a compensatory function [326].

The interaction between mechanisms involved in BDNF and dopamine signaling provide a likely
route of which exercise-induced secretion of BDNF may exerts effects, which can influence executive
functions [327]. Despite the lack of BDNF mRNA in murine striatum [328] the BDNF protein is widely
distributed due to anterograde axonal transport from several loci including substantia nigra, cortex,
thalamus and amygdala [328,329]. Also, the high affinity BDNF receptor Trk-B expressed neurons [330]
are vastly present in basal forebrain and striatum [331]. In striatum, presynaptic binding of BDNF
to its high-affinity receptor Trk B increases the release of DA alongside 5-HT and GABA [332,333],
and striatal infusion of BDNF improves executive function (set-shifting) through Trk-B mediated
mechanisms with an inverted u shaped dose-response curve although this effect is proposed to depend
on potentiation of glutamate release [334]. Acute AMP administration increases BDNF expression in
striatum and ACC in wild-type mice, but not in the heterozygous BDNF(+/-) model with only one
functional allele [335]. Furthermore, only wild-type mice display increased midbrain TH expression
further linking BDNF to DA signaling.

In summary, in contrast to the monoamines, genetic differences in the BDNF gene do not affect
NCF in children with ADHD. Changes in peripheral BDNF may signify increased central nervous
BDNF activity and likely influence DA transmission through its high affinity Trk-B in PFC and striatum.
The latter provides a likely route of which BDNF may mediate the beneficial effects of exercise on NCFs.

2.3.4. Exercise Changes BDNF Signaling

In this section we discuss effect of exercise on neurotrophic factors in relation to ADHD limited
to BDNF. The effects of aerobic exercise on BDNF expression and functions of the medial temporal
lobe, which are underlying the enhancing effects on (declarative) memory has been reviewed in depth
previously (see e.g., [24]). As ADHD is not associated with impaired long-term episodic memory,
we instead focus on BDNF transmission outside of hippocampus and the effect of non-memory
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related neurophysiological and cognitive processes [336]. A recent meta-analysis concluded that acute
exercise regardless of exercise modality increases peripheral measures of BDNF (i.e., plasma or serum
BDNF) [337]. Importantly, both circulating and central levels of mature BDNF increases after acute
moderate to vigorous exercise with cortex and hippocampus as the main sources [338] although the
ability of BDNF to cross the blood-brain barrier remains somewhat controversial [339–342]. In rodents,
days to weeks of exercise affect expression of BDNF in cerebellum, frontal cortex and striatum alongside
increased phospo-Trk-B in striatum [343,344].

In humans, the BDNF Val66Met SNP has been demonstrated to mediate the relationship between
levels of physical activity and working memory [327]. Furthermore, reports of parallel exercise-
mediated increments in circulating BDNF and performance in working-memory (Digit-span) [345],
cognitive-flexibility (task-switching) [346], attention (visuospatial attention task) [347], working
memory + attention (Wisconsin Card Sorting Test) [348], selective attention + behavioral inhibition
(Stroop) [349,350] (although a null-finding on the Stroop exists [351]) tasks suggest that BDNF plays a
role in mediating effects of exercise on NCFs. A causative role remains, however, to be demonstrated.

3. Exploring the Parameter-Space of Exercise Characteristics: Effects of Exercise on Cognitive
Performance in Children and Adolescents with ADHD

Since exercise may be structured in numerous different ways with respect to duration, intensity,
total volume and activity type (modality) etc., these parameters naturally also differ between the
existing studies within the research area. In order to understand the potential effects of exercise on
cognitive performance in children and adolescents with ADHD, it is thus important to elucidate if
observed effects relate to specific parameters of both acute and long-term exercise. In the analysis
performed in the present review, we have identified the existing studies on effects of acute and
long-term exercise on cognitive performance in children and adolescents with ADHD and quantified
effects on performance within specific cognitive domains and relating to the exercise parameters
duration, intensity and volume (see Appendix A for details on systematic search, description of exercise
parameters and calculation of ES). Beneficial effects of physical activity on cognition are contingent on
the exertion (i.e., an element of exercise, and not mere activity or movement per se) [70]. Accordingly,
we have not included activities such as recreational park walks [352], horse-back riding [353] or
yoga [354,355] in the analysis as potential effects of meditation alongside with exposure to nature,
animals etc. are beyond the scope of this review. The analysis of the existing studies within the
area allows us to consider and discuss which aspects of exercise contribute to any eventual derived
effects e.g., on performance in neuropsychological tests. This discussion is important both from a
mechanistic point of view, but also in an applied perspective and thus coherent with the purpose of the
present review.

Figure 2 depicts the effects (ES) of acute exercise on cognitive performance for children with ADHD
and the effects are specified for exercise duration, intensity and volume for the cognitive domains
inhibitory control, cognitive flexibility, working memory, sustained attention and psychomotor speed.
Based on Figure 2 the studies investigating acute exercise find small to moderate beneficial effects of
acute aerobic exercise on executive functions in children with ADHD.
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observed following acute exercise (Figure 2). 

Figure 2. The effects of acute exercise on cognitive performance for children with ADHD. The three
parts of the figure depict effect sizes extracted from studies systematically identified and categorized by
cognitive domain (inhibitory Control (INH, purple); Cognitive Flexibility (CF, red); Working Memory
(WM; orange), Sustained Attention (SA, green) and Psychomotor Speed (PS, blue) as a function of
exercise intensity (A), duration (B) and volume (intensity x duration, (C)). The size of the circles denotes
the number children with ADHD (within subject design) allocated to the active group or groups
(between subject design) that completed the study.

Figure 3 depicts effects (ES) of long-term exercise on cognitive performance for children with
ADHD and the effects are specified for exercise intensity, duration pr. session, duration of the
intervention and exercise volume. Also, for the effects of long-term exercise, the effects are specified
for the cognitive domains inhibitory control, cognitive flexibility, working memory, sustained attention
and Psychomotor speed. The extracted effect sizes from long-term interventions suggest consistent
positive effects on cognitive performance in children and adolescents with ADHD, and it should also
be noted that the effects of long-term exercise (Figure 3) appear larger than those observed following
acute exercise (Figure 2).
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The multi-plot illustrates extracted effect sizes color-coded by cognitive domain and plotted against
exercise intensity (A), session duration (B), study duration (C) and volume (session-duration x session
frequency x study duration, (D)).

In order to allow a direct comparison between the analysis performed in the present review
and the results obtained in previous meta-analyses, Figure 4 depicts effects (ES) of acute (left) and
long-term exercise (right) on performance in different cognitive domains for children with ADHD and
population-based controls (PBC). Despite large heterogeneity between studies, previous meta-analyses
find small positive effects of exercise in population-based control (PBC) children, and the results
obtained in children with ADHD are coherent with this finding. In children and adolescents with
ADHD there are even larger differences in ES between studies, but the results confirm the overall
positive effects on cognitive performance - in particular for long-term exercise.
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3.1. Effects of Acute vs. Long-Term Exercise on Cognitive Functions

As specified above, we have extracted effects sizes for the available studies of acute and long-term
exercise interventions on cognitive performance in children with ADHD and provided a graphical
overview of the effects in Figures 2 and 3. Qualitatively, the results presented in Figure 2 suggest that
average intensities between 65 and 75% of maximal heart rate with durations below 20 m may result in
the largest acute effects. However, this should be interpreted in light of the very uneven distribution of
exercise characteristics across the two parameters. The vast majority of the studies are conducted with
~75% HRmax for 30 m (incl. warm-up).

In ADHD, abnormal cortical monoaminergic neurotransmission affecting attention and reward
processing has been observed. With acute exercise of moderate to high intensity however, plasma
levels of catecholamines increase with longer lasting increments of DA fitting the time course of
exercise-induced improvements in cognitive functions. Central monoaminergic concentrations also
increase with acute exercise, and although the relation between changes in peripheral and central
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levels is complex, it could be speculated that acute exercise-induced changes in monoaminergic
neurotransmission may contribute to the effects of acute exercise observed in individuals with ADHD.

Considering network activation, evidence from both EEG and fMRI has indicated differences in
frontal brain regions in children with ADHD compared to PBC and hypoactivation of frontostriatal
(FSN), frontoparietal (FPN) and ventral attentional (VAN) networks during inhibitory control tasks etc.
In both PBC and ADHD children, acute exercise with moderate intensity leads to changes in network
activity and furthermore moderate intensity exercise can lead to increased functional connectivity
within networks intimately associated with executive and attentional control. Acute exercise may thus
provide an avenue to counteract the functional deficiencies observed in cognitive processes in children
with ADHD and we thus expected to find positive effects of primarily moderate intensity exercise.

In general, the computed effect-sizes appear lower in comparison to those reported in the published
meta-analyses of exercise in ADHD (see Figure 4). This may partly be explained by the fact that we
calculated ESs based solely on post-intervention performance alone (i.e., comparisons between tests
of NCFs conducted after and exercise or control intervention). This approach was chosen to enable
comparisons of ESs between studies that did not conduct baseline testing and those that did as well as
to prevent false positives from ‘catch-up effects’ due to lower baseline performance in the exercise
group (see [356] for a discussion of this).

As illustrated in Figure 3, this review found consistent and large positive effects sizes for long-term
exercise interventions. While effects of long-term interventions could be considered as repeated bouts
of acute exercise, an additional important difference between studies, is that while studies of acute
exercise have often considered timing of exercise relative to assessment of cognitive performance.
This is most often not considered in long-term studies. It is noteworthy that long-term exercise is
accompanied by larger effects on cognitive performance and future studies could consider combining
acute and long-term perspectives. ADHD is associated with a wide array of gray matter abnormalities
in the brain. These structural abnormalities likely develop over weeks to months to years. Conversely,
results from PBC children tentatively suggest that regular exercise during several (eight) months can be
accompanied by modest structural adaptations in some of the structures and networks of the nervous
system displaying anomalous development in individuals diagnosed with ADHD. Exercise thus holds
the potential to induce or promote structural changes in the CNS and these effects would only be
expected in long-term studies. It is positive that the present review found consistent and large positive
effects for long-term exercise interventions and it could be hypothesized that long-term changes in
performance in e.g., tests of EFs in children and adolescents with and without ADHD may relate to
accompanying exercise-induced structural adaptations. This potential relation between changes in
cognitive performance and CNS structure and function with long-term exercise however remains to be
elucidated by future long-term studies.

3.2. Effects of Exercise on Performance in Specific Cognitive Domains

In line with our previous discussion of potential neurophysiological mechanisms underlying
the effects of exercise on ADHD, we expected that cognitive functions supported by frontostriatal,
dopaminergic and general tonic monoaminergic transmission would display the largest ESs for acute
and long-term interventions respectively. As depicted in Figures 2–4, we found positive ES in seven of
nine measures of psychomotor speed (blue) and sustained attention (green), descriptively confirming
our hypothesis. It should be noted that changes in PS should be interpreted with caution since
increased RT (resulting in decreased psychomotor speed) may partly reflect decreased impulsivity.
The ESs for acute exercise on inhibitory control are widespread. This measure reflects the ability
to inhibit impulsive behavior and can thus at least in part be argued to reflect reward processing.
As improvements in aberrant reward processing do not occur with acute exercise but are more likely
to be reflected in slow evolving adaptations in frontostriatal networks, this finding is to be expected.
In support, positive ESs were computed for five of seven measures of inhibitory control after long-term
exercise with the negative ES stemming from the small populations tested by Lee et al., [357] and
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Verret et al., [109]. It should be noted that Lee and et al., tasked inhibitory control with the Golden’s
Stroop test. As discussed in Section 1.1, the Stroop Interference score does not differ between children
with ADHD and PCT children. Noteworthy, the Interference scores reported by Lee et al., were smaller
than expected from the age group already at baseline, which might render this measure insensitive to
detect potential exercise-induced performance increments [358]. Furthermore, Verret et al., deployed
the Test for Everyday Attention for Children battery and probed inhibitory control with the ‘walk/don’t
walk’ task [109]. As the task entails holding a motor response past the first ~200 ms of an auditory
stimulus until it reveals either ‘walk’ or ‘don’t walk’ characteristics, we categorized it in agreement with
Verret et al. It should be noted that the walk/don’t walk test is an adaption of the sustained attention to
response task (SART) commonly used to test sustained attention (e.g., [358]). Re-categorizing this ES
to ‘sustained attention ‘efficiently annuls the contrast to the other inhibitory control (‘INH’) EF but
is in dire contrast to the very large ES of sustained attention reported from the same study based on
the ‘Score pondering’ test. It should be noted that whereas Verret et al., adjust post test scores for
differences in pre-test means they do not report the latter. Accordingly, it cannot be rejected that the
difference between the two EF may arise from large group differences at baseline.

The effect of acute exercise on cognitive flexibility is largely positive (two of five ES < 0). In contrast
to Chang et al., who did not find meta-analytic evidence of effects of acute exercise on PBC children’s
performance in the alternate use task (categorized as cognitive flexibility), we find small positive effects
(0.28 to 0.29) on two of two measures extracted from Ludyga et al. also using the alternate use task [83].
However, as Ludyga et al. contrasted post-exercise performance without performance baseline
assessments, this approach is not sensitive to day-to-day fluctuations in performance, which may
influence the results. From Benzing and co-workers we extracted large positive effects in the temporal
domain evident as reduced RT switch costs using a modified Flanker (g = 0.66) test whereas ESs from
Hung et al. were negligible but negative in the temporal domain (Task Switch, g = −0.06) [77,82].
Also, we extracted negative effects from Chang et al. (Wisconsin Card Sorting Task, g = −0.35) [81].

We extracted ESs from four studies all pointing to performance enhancing effects of long-term
exercise on tests of cognitive flexibility [49,111,114]. The very large positive ES (TMT-part B, g = 1.79)
for cognitive flexibility computed from Kang et al. following six weeks of mixed sports therapy
stands out. We categorized the TMT –B as a cognitive flexibility based on previously demonstrated
correlations between the performance on this task and perseverative errors on the WCST an oft-cited
operationalization of cognitive flexibility [359], but both spatial attention, processing/psychomotor
speed and motor acuity could influence the performance. Both Pan et al. and Choi et al. tested
cognitive flexibility as perseverative errors on the WCST yielding small to medium ESs in our analysis
(g = 0.32 and 0.58). In summary, both acute but in particular weeks of exercise appear to benefit
cognitive flexibility in children with ADHD.

Across both acute and long-term studies Tan et al., previously found similar effects of exercise on
inhibition and set-shifting (r = 0.17 and 0.18, respectively) although only inhibition reached statistical
significance. Cornelius et al., Vysniauske et al., and Cerrillo-Urbina et al., did not report measures for
the various EF domains individually, but reported larger standard mean differences for attention over
EF [69] and moderate significant (g = 0.54) [71] and moderate but non-significant effects of both EF and
attention respectively (g = 0.65 and 0.46) [70]. Meta-analyses based on studies in PBC children are
better powered and may, based on this, be more informative. For acute effects, Chang et al. found
small to moderate positive effects of exercise on cognitive flexibility (alternate use test, d = 0.11) and
inhibitory (Stroop, d = 0.25 and Flanker Incongruent d = 0.29), whereas a negative (d = −0.31) was
found for working memory (digit span backwards) [66]. The latter is agreement with our computed
null-effect (Colour span backwards [77] and negative effect (task switch, increase global switch accuracy
cost [82]). This is in noteworthy contrast to the long-term effect, we computed for digit span index
score (including digit span backwards) of g = −0.64 [360]. In general, the meta-analyses suggest that
acute exercise have small effects on working memory (g = 0.28 [65] and 0.05 [67]), moderate effects on
attention (g = 0.43 [65] and d= 0.42 [66]) and inhibitory control (g = 0.20 [65] and 0.46 [67]). Long-term



J. Clin. Med. 2019, 8, 841 22 of 51

exercise has small to moderate effects on inhibitory control (g = 0.19 [65], 0.38 [103] and 0.26 [104])
and working memory (g = 0.1 [104], 0.14 [103] and 0.36 [65]) and small effects on cognitive flexibility
(g = 0.18 [65] and 0.14 [103,104]). In contrast, rather divergent ESs have been reported for attention
(g = 0.13 [103] and 0.9 [65]). In Figure 4, the effects reported by previous meta-analyses are depicted
alongside the results of the present review.

3.3. Exercise Intensity, Duration and Volume as Potential Moderators of Effects on Cognitive Functions

Whereas previous meta-analyses have refrained from concluding on quantitative exercise
parameters as potential moderators of effects on cognitive functions, the analysis of the present
review also detail effects relating to the specified exercise parameters intensity, duration and volume.
Tan et al. did not find type or number and duration of sessions to moderate effects in studies including
both individuals with ADHD and autism spectrum disorder [68]. Interestingly Vysniauske et al. found
larger effect sizes for longer durations of exercise, but no moderating effects from exercise intensity [71].
However, since both acute and long-term studies were included in this analysis, the results should be
interpreted with caution. The literature also offers more descriptive inferences based on systematic
reviews. Den Heijer et al. suggest that 30 m of individually adapted daily exercise [361] represents an
appropriate duration and frequency. This suggestion is supported by Neudecker et al. who refrained
from concluding on other parameters due to the paucity of studies in this area [124]. Grassman et al.
suggested 30 m to improve EFs [362] and this is supported by Suarez-Manzano et al. who provided
20–30 m of moderate intensity (40–75%) for acute and >5 weeks of at least three days a week with >40%
intensity for long-term exercise to improve cogntion [123]. This finding on long-term improvements in
measures of cognitive functions is also supported by Haperin et al. [121]. These details on exercise
intensity and duration represent suggestions based on the literature as existing evidence is yet too
insufficient to substantiate such recommendations.

In studies of PBC and ADHD children alike, reports of the intended and actual intensity of
the exercise intervention are frequently omitted (e.g., [49,74,110,111,360] in our analysis) and other
studies report average heart rate during the exercise bouts but fail to normalize these measurements to
individual maximum heart rate (e.g., [82,363]). This compromises the possibility of investigating a
potential moderating role of exercise intensity in the meta analyses (e.g., [67]). Nevertheless, Chang et
al. found that performance in test of cognitive function (in general) performed immediately after a bout
of exercise was only increased when the exercise was of moderate or low intensity [66]. Additionally,
when cognitive performance was tested almost immediately after exercise (short delay), only exercise
with very light to moderate positively affected cognitive performance. If a 20 min. break in-between
exercise and cognitive testing procedures was introduced, also intense exercise had positive effects on
performance in cognitive tests. Thus, there is a positive effect of exercise on cognitive performance,
but the effects are related to interactions between exercise intensity and timing

When considering the potential effects of exercise duration, Chang et al., pointed to a minimum
duration of 11 m to elicit positive effects, whereas de Greeff and coworkers did not find any moderating
effects (beta = 0.001, p > 0.9) [65]. For chronic exercise neither de Greeff et al., nor Alvarez-Bueno et al.,
found study duration to moderate the effects (B between −0.1 and 0.01 and p > 0.2), but Xue et al. found
that exercise session durations above 90 m and interventions of >5 weeks resulted in larger effects.

In this review, we hereto refrained from discussing potential interactions between medication
and exercise. In brief, whereas subgroup analyses have generally not found medication status to
moderate effects of exercise on cognition (e.g., [363]), the similarities between the central nervous effects
of stimulants and exercise suggest that they may interact. In support of this, Choi and co-workers
found additive effects of MHP and three weekly 90 m exercise sessions over the course of six weeks on
cognitive flexibility [114]. This supports the role of monoamine signalling in the ameliorating effects of
exercise and suggests that exercise can be adjunct to pharmacological treatment.
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3.4. Type of Exercise—Modality—as Potential Moderator of Effects on Cognitive Functions

A noteworthy controversy regards the possible role of the type of physical activity (see [63,356,364]
for discussions). As outlined previously, the very definition of physical activity renders it multifaceted,
and encompassing a wide array of different activity types in different domains, with different
requirements for physical exertion, motor coordination, decision-making, social interaction etc.
The body of research literature in ADHD includes activities such as treadmill running and walking,
trampoline jumping, water gymnastics, track and field as well as an array of different ballgames. In brief,
the vast majority of the acute exercise interventions employ relatively simple, non-coordinative exercise
activities (i.e., treadmill running or ergometer biking), whereas all of the long-term interventions entail
coordinative exercise activities. Due to this difference between acute and long-term studies—which is
important to note—exercise modality is not illustrated as part of Figures 2–4.

While the physiological response may differ a lot between various types of physical activities so
could the psychosocial and cognitive demands inherent in the activities [356,365,366]. In line with this
notion, it has been speculated that ‘simple’ aerobic or cardiovascular physical activities (e.g., running,
biking) may have little impact on measures of executive functions, whereas the cognitive demands of
other activities or sports could proposedly lead to increased performance in tests gauging executive
functions [356]. A systematic review by Ng and coworkers recently found that the largest intervention
effects of exercise on cognitive, behavioral and physical parameters in children with ADHD were
reported for mixed exercise programs over pure aerobic exercise programs [367]. The moderating
effect of qualitative aspects (e.g., the coordinative and cognitive demands) of the exercise intervention
has been studied predominantly in PBC children in both acute and chronic designs. For acute exercise,
Budde and co-workers utilized a between-subject design to examine whether coordinative exercise
and aerobic exercise led to different changes in cognitive performance and found greater effects for the
coordinative exercise [215]. Other studies have, however not found similar results [366,368], but it
should also be noted that when studying effects of different activity types, these may differ in several
aspects including also exercise intensity, which complicates comparison. Findings from studies of
long-term exercise interventions in both laborious and in ecological settings are also heterogeneous.
Koutsandréou and co-workers reported improved performance in a Letter Digit Span task assessing
working memory after completing a 10-week exercise program including both cardio-vascular and
motor-demanding exercise program, but with the latter improving working memory the most [369].
This supports the tenet that the motor challenges might drive improvements in working memory,
in a manner similar to the neuroplasticity-enhancing effects observed in the motor system [370,371].
However, children in the motor-demanding program had a mean heart rate of 125 BPM during the
motor exercises, which is lower than the cardio-vascular group (139 BPM) but substantially above
resting rates (e.g., 79 BPM in the control group). While it may be that motor-demanding exercises lead
to larger improvements in WM compared to cardio-vascular exercise, the potential role of differences
in exercise intensity cannot be rejected. Notwithstanding, the results are in agreement with previous
reports (e.g., [372]) whereas a later study has failed to demonstrate larger effects for coordinative,
motor-demanding exercise [220].

The effect of exercise modality has been sparsely studied in children with ADHD. Comparing the
effects of a single session of either aerobic exercise (biking) or coordinative exercise (e.g., balancing on
exercise balls, one-legged stands during catch-and-throw), Ludyga and co-workers reported benefits of
both compared to seated rest on general reaction time in a modified flanker task, but slightly superior
effects for the biking exercise group compared to the group performing coordinative exercise [76].

To sum up, meta-analyses have addressed the controversy at hand. In children with ADHD,
Cornelius and coworkers found positive effects of PA involving an imminent cardiovascular element
(‘aerobic’ PA) [70]. In support, Cerrillo-Urbina et al., found evidence favoring effects of aerobic exercise
on executive functions and core symptoms over yoga or physical education-based interventions [69].
For PBC children, a recent meta-analysis found that in contrast to pure aerobic exercise, a single
bout of cognitively engaging exercise failed to benefit cognitive functions, whereas larger ESs
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were found for chronic intervention deploying cognitively engaging versus pure aerobic exercise
(g = 0.29 vs. g = 0.53) [65]. For acute effects, a meta-regression analysis found better performance after
ergometer cycling vs running [373]. For chronic interventions, Alvarez-Bueno et al. conducted sub
group analyses and found that qualitatively enriched and quantitatively enhanced exercise benefitted
different cognitive domains [103].

Below we provide recommendations for continued research in the field of exercise and ADHD,
while summarizing evidence into preliminary points for real-world application of the different findings,
which have been discussed so far.

3.5. Recommendations

Existing meta-analyses have refrained from providing recommendations, but a few studies have
addressed the question of who benefits from exercise. A positive meta-relation (beta 0.03, p < 0.05)
reported by Xue et al. between body mass index and effects on EF suggests that less fit children and
adolescents may benefit more from exercise [104]. To follow up on this, it is noteworthy that individuals
with ADHD are often sedentary. While the effects of exercise on EF are moderated by baseline fitness,
evidence for moderating effects of age is mixed [67,97,103,104]. Even descriptive conclusions based
on these meta-analyses are difficult, which leads us to suggest that exercise benefits children of all
ages by interacting with the maturing nervous system both off-setting and changes the developmental
trajectory of impairment positively.

3.5.1. Science and Evidence-Based Recommendations

Based on the quality and heterogeneity on experimental studies, an expert panel recently
concluded that evidence was insufficient to recommend exercise to increase cognitive functions in
PBC children [374]. Combing evidence from PBC children and children with ADHD combined with
non-existing reports of adverse effects of exercise interventions we carefully dare to disagree with the
panel. Descriptively, we argue that effects depicted in figures and reviewed above suggest long-term
exercise as a valuable adjunct to other treatment for children with ADHD to enhance in particular
inhibitory and attentional control. The effects of acute exercise appear less robust. Of great interest,
Chang et al., found that only exercise carried out during the first half of the day yielded positive
outcomes [66]. This underlines the importance of timing exercise. This is supported by Hart who found
that 15 min of exercise provided at the beginning of the day can reduce behaviors associated with
ADHD and that while this effect dissipates over time, a short bout of 3–5 min. moderate-to-vigorous
physical activity 90 m after the initial exercise, can maintain the benefits [375]. Aside from the
long- term effects of exercise on neural functions supporting executive functions and attentional control,
the beneficial effects of acute exercise on not only subsequent cognitive activity but also recently
encoded non-declarative memory (e.g., [376–379]) underline the importance of planning exercise in
close temporal proximity to cognitive challenging tasks.

Furthermore, it seems that the type of activity employed should be carefully considered. Long-term
interventions appear to have largest effects when they entail both cardiovascular and coordinative
elements. Such playful but exerting activities are likely to be more practical feasible and associated
with higher compliance. Importantly, the physiological and cognitive load associated with different
activities is inherently individual. This feeds into the idea of individualizing physical activities to
match the physical and cognitive level of the involved children, so that each individual is optimally
stimulated and engaged by the employed interventions (Pesce et al. [380]). Furthermore, Cook and
co-workers suggest that the deficits in executive functions associated with ADHD might decrease
adherence to an exercise regime in young individuals underlining the importance of motivational
activities [98].
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3.5.2. Directions for Future Research

Reporting Exercise Characteristics

As evident from the fewer circles in Figure 3A compared to the rest, intensity of long-term
interventions is not routinely reported. To promote the understanding of which parameters that are
important for the effects and identify underlying mechanisms of action, not only average heart rates,
but also the range and temporal profiles enabling analysis of time spent in different heart rate zones is
needed. In addition, given the potential challenge related to exercise intervention adherence in children
and youth with ADHD, it is important to report adherence rate to enable rightful interpretations of
potential effects.

Study Design

Exercise interventions are inherently limited to single-blinded assessments. To increase quality
of studies, attempts to blind participants to the intervention should be routinely implemented
(see e.g., for attempt to blind parents to the intervention [381]). This is however not the case in a
number of studies, where symptomatology is routinely evaluated by teachers and parents, who are not
blinded to the intervention. The latter can be accommodated by evaluating the effect of exercise on
standardized automated tests of NCFs.

In line with this, it is essential to design appropriate control conditions that allow careful teasing
apart of factors associated with potential performance enhancing effects. A large part of the studies
conducted in individuals with ADHD utilize resting, passive control conditions that entail no specific
change in environment or expectancy of changes in performance. As such, for passive control
conditions it remains uncertain whether effects of exercise simply result from being presented with a
novel situation or being disposed to a novel environment i.e., the Hawthorne effect. Active control
conditions might be suitable to overcome this limitation but need to be carefully designed to control
for the factors not being put under the microscope, e.g., matching social interactions or cognitive
engagement. Accordingly, effects of exercise interventions ought to be interpreted in relation to the
included control conditions. In addition, the improvements in tests of NCFs for resting control groups
upon repeated task-exposure (e.g., [81]) underline the importance of thorough test familiarization.
Furthermore, only assessing performance only after an intervention carries challenges given that it is
not possible to assess within-subject variations in baseline performance. Furthermore, it is evident
from the descriptive visual summary of studies provided in this narrative, that a majority of studies
have been based on a rather small sample size. Albeit perhaps a daunting quest, future studies should
strive to recruit larger samples to allow stronger conclusions.

Based on the findings from the previous intervention studies and meta-analyses, future studies
can additionally explore whether long-term effects are contingent on accumulation of acute effects on
ongoing and subsequent cognitive processes or rather reflect the structural and neurophysiological
characteristics associated with e.g., higher fitness levels. Finally, future studies should explore the
ecological validity of different exercise activities and parameters relating to practice structure, activity
type, timing etc. by implementing various models of these e.g., during and after schooldays etc.

Outcome Measures

The incomplete and inconsistent reporting of outcome measures hampers interpretation of the
effects of exercise. The construct validity of test of NCFs is contingent on appropriate analysis.
Pooling accuracy and reaction time scores (e.g., for Stroop or Flanker) for different task-conditions
(e.g., congruent and incongruent trials) or only reporting one of them decreases specificity and occludes
potential speed-accuracy trade-offs. As an example of the former, Pontifex and co-workers investigated
the effects of a single bout of treadmill exercise in children with and without ADHD. The authors found
increased response speed and accuracy following 20-min exercise, but findings were reported across
stimuli compatibility, thus reflecting overall enhancement of neurocognitive performance. However,
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specific effects on inhibitory control, usually expressed as an interference score computed by differences
between incongruent and congruent response speeds and accuracies in a Flanker task was not formally
tested. This complicates inferences relating to the effects of exercise on performance in specific cognitive
domains, e.g., inhibitory control, and effects reported on such ought to be interpreted cautiously.

4. Conclusions and Perspectives

In line with previous research, we find that exercise benefits executive functions and attentional
control in children with ADHD. The beneficial effects are comparable to those reported in PBC
with substantial and consistent improvement on test of several cognitive functions following
particularly long-term exercise. An important notion is also that no study has reported negative
or adverse effects of exercise. Outside of the neurocognitive realm and thus the scope of this
review, exercise has been reported to, not surprisingly, increase cardiovascular fitness [382] and
motor functions [109,111,360,382–385], but also to improve measures of anxiety and depression related
behavior [385,386], social problems [109] and self-esteem [382] in children with ADHD. We have,
broadly speaking, ignored these changes to focus the present review but we are not ignorant of
their importance. Furthermore, and of great importance, exercise has been repeatedly reported to
improve ADHD-related behavior (e.g., [109,113–116,381,382,385,387,388]), although null-findings exist
(e.g., [389–391]). This highlights exercise as a low-cost, multilateral approach that, if deliberately
designed and delivered, could be used in adjunct with traditional pharmacological, psychological and
pedagogical intervention strategies to promote cognitive performance in children and adolescents
with ADHD.

We end this narrative with a final note to stress the importance of exercise in children and
youth with ADHD. Two reports of special interest support the findings by Åberg et al., [392] and
Tandon et al., [393] discussed above and warrant further discussion. In a large sample size (n = 1615)
from the general adult German population, retrospective assessment of childhood PA levels and ADHD
symptom severity along with current (adult) ADHD symptoms revealed that excessive childhood
exercise was associated with not carrying ADHD symptoms into adulthood [394]. In support,
Rommel et al. reported that level of PA during late adolescence to be inversely related to severity of
symptoms of inattention and hyperactivity/impulsivity in early adulthood [395]. These associations,
albeit not experimentally proven to be causal, the results presented in this review along with the dire
consequences of carrying an ADHD diagnosis into adulthood strongly suggest regular exercise to
children and adolescent with ADHD.
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Appendix A

Systematic Search and Extraction of Effect Sizes from Previous Studies

To qualify the present discussion, we conducted a systematic search in relevant databases
(PubMed, and Web of Science incl. Web of Science Core Collection, BIOSIS Previews, MEDLINE®,
KCI-Korean Journal Database, Russian Science Citation Index, SciELO Citation Index, Derwent
Innovations Index, Data Citation Index, Current Contents Connect) with customized search terms
for PubMed:

(“exercise” [Title] OR “physical activity” [Title] OR “fitness” [Title] OR “physical exercise” [Title]
OR “acute exercise” [Title] OR “chronic exercise” [Title] OR “aerobic” [Title] OR “resistance” [Title]
OR “anaerobic” [Title] OR ”coordinative” OR “training”) AND (“attention deficit hyperactivity
disorder” [Title] OR “ADHD” [Title] OR “attention deficit disorder” [Title] OR “hyperkin*” [Title]
OR attention-deficit/hyperactivity disorder [Title]) AND (“child*” [Title] OR “young” [Title] OR
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“adolescent” [Title] OR “teenagers” [Title] OR “student*” [Title]) AND (“executive function” [Title]
OR “executive functions” [Title] OR “inhibition” [Title] OR “interference” [Title] OR “cognitive
control” [Title] OR “inhibitory control” [Title] OR “flexibility” [Title] OR “working memory” [Title]
OR “switching” [Title] OR “shifting” [Title] OR “sustained attention” [Title] OR “attention” [Title])

and for Web of Science:

TI = (“exercise” OR “physical activity” OR “fitness” OR “physical exercise” OR “acute exercise” OR
“chronic exercise” OR “aerobic” OR “resistance” OR “anaerobic” OR ”coordinative” OR “training”)
AND TI = (“attention deficit hyperactivity disorder” OR “ADHD” OR “attention deficit disorder”
OR “hyperkin*” OR attention-deficit/hyperactivity disorder) AND TI = (“child*” OR “young”
OR “adolescent” OR “teenagers” OR “student*”) AND TI = (“executive function” OR “executive
functions” OR “inhibition” OR “interference” OR “cognitive control” OR “inhibitory control”
OR “flexibility” OR “working memory” OR “switching” OR “shifting” OR “sustained attention”
OR “attention”).
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Figure A1. Flow-chart of the study selection process.

We identified 449 studies from which we excluded 91 duplicates and further 347 that did not
meet our inclusion criteria (<18 years old, diagnosed with ADHD, acute (one session) or long-term
(>1 session) exercise intervention with control group or condition, assessing cognitive functions
(either executive functions or attention) through automated or standardized neurocognitive test battery
(i.e., not scales, clinician’s, teacher’s or parents reporting), peer-reviewed and available as full text in
English, resulting in 11 studies identified. One inclusion and eight exclusions are in contrast with
previous systematic reviews and accordingly warrant a brief explanation.

In contrast to a recent meta-analysis [70], we included data from Ziereis and Jansen [360] and
Medina et al. [363]. The latter has previously been excluded from some [69,70] but not all [68,71]
meta-analyses due to insufficient control conditions. We chose to include data from Medina et al.
despite the possibility of test-retest effects caused by the non-randomized order of tests. The authors
carried out task-familiarization prior to the first testing to accommodate this issue. Furthermore,
we excluded data from studies published only as abstracts (e.g., [396]). We found the study from
Ziereis and Jansen to comply with all our inclusion criteria. Also, in contrast to recent systematic
reviews [68,367], we excluded three studies based on outcome variables. Craft was excluded since
only measures of memory were included [85] and Piepmeier et al., and Pontifex et al., were both
excluded based on the reported dependent variables. The outcome measures (‘total time to complete’
on the Stroop test, ‘Post-error slowing’ and ‘response accuracy’ across congruent and incongruent
trials on a modified version of the Eriksen flanker Task) cannot be specified to any of our predefined
categories [78,79]. This notwithstanding, the authors reported significant improvements across all three
measures supporting the view that acute exercise improves cognitive functions in general. Furthermore,
and also in contrast to a recent systematic analysis [367], we excluded one study that included not only
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children with ADHD, but also children diagnosed with disruptive behavior disorders (i.e., oppositional
defiant disorder and conduct disorder) without an ADHD diagnosis [397].

Further seven studies were identified from references during reading resulting in a total
of eighteen studies divided between investigations of effects of on cognitive functions after
acute (n = 8) [74–77,81–83,363] and long-term (n = 10) [49,109–112,114,115,357,360,398] exercise.
The identification of studies and inclusion process is presented in Figure A1.

We extracted ES as Hedges g to accommodate small sample sizes. Where these were not
reported in tables or text but depicted in figures [49,78,115,360], we used a high-fidelity analytic
tool (WebPlotDigitizer, V.4.1. Automeris, Austin, Texas, USA, 2018) to extract mean and standard
deviations of post-tests. We did not pursue ESs when means or SDs were not reported or illustrated
(e.g., reaction times in [115] and accuracy in [77]). Hedges’ g were computed for post measurements
due to missing baseline data points for some studies [399]. Further, this approach was adopted to
minimize the risk of inflating effect sizes due to catch-up effects for exercise groups with insignificantly
lower baseline performances (see [356,400] for a discussion). We classified outcome measures as
reflecting performance in one of following domains of executive control: (1) inhibitory control,
(2) cognitive flexibility, (3) working memory as well as (4) sustained attention and (5) psychomotor
speed (see Figures 2–4). Importantly, we limited ES extracting to parameters that is readily allocated
to one of the cognitive domains. As an example, we included two of three measures for cognitive
functions from the recent RCT conducted by Benzing and Schmidt [398]. Here we extracted and
plotted ES for reactions times in switch trials during the Flanker task as a measure for cognitive
flexibility and total amount of correct answers in the Color Span Backwards Test assessing working
memory. In contrast, we excluded the mean reaction time for corrects responses across congruent and
incongruent trial for the Simon task as a measure of inhibition, since averaging across the congruent and
incongruent conditions precludes assessment of changes specifically in inhibitory/interference control
independent of processing or psychomotor speed. As discussed in Section 2.1 the cognitive domains are
influenced from multiple, overlapping and interacting neuropsychological processes, which put both
categorization and the construct validity of the associated neurocognitive test batteries into question.
In case of parallel reports of raw data and results derived from the same data (e.g., reaction times
for inconsistent trials vs the Stroop interference score), we plotted the test score best representing the
domain (Stroop Interference score in this case). Furthermore, when both measures of RT and accuracy
were reported, we extracted and plotted the former. As such, we cannot finitely reject the possibility
that the some of the illustrated results reflect a change in strategy (i.e., a speed accuracy trade-off for PS)
rather than a behavioral improvement per se. Supporting this decision, several of the included studies
do not report both. If several independent measures of exercise-mediated changes within the same
cognitive domain were reported, they are all included (e.g., Interference score from the Stroop test and
No-Go true number from the go/no-go test [112]). In Tables A1 and A2, we list included and excluded
dependent variables from the studies presented in Figures 2–4. Negative ESs signifying improved
performance (e.g., decreased reaction times or number of errors) were reverse-coded. Consequently,
all positive EFs depicted in Figures 2–4 reflect improvements in performance.
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Table A1. Included and excluded dependent variables from acute studies.

Study [#ref] Type of Task Included Measures Cognitive Domain Not Included Extraction Method

Benzing et al., 2018 [77]
Modified Flanker Task,
Modified Colour Span

Backwards Task

Congruent RT, Inhibitory
(incongruent) RT, Global
Switch RT cost, Correct

responses

PS, INH, CF, WM
Congruent accuracy, incongruent
accuracy, switch accuracy, Global

switch accuracy cost

Mean ± SD
reported

Chang et al., 2012 [81] Stroop, Wisconsin Card
Sorting Task

Colour-word,
perseverative errors INH, CF

Word, Colour, total correct,
perseverative responses,

Non-Perseverative errors,
Conceptual level, responses,

categories completed,

Mean ± SD
reported

Chuang et al., 2015 [75] Go/No-Go RT, Commission Error rate PS, INH Hit rate, Omission Error rate Mean ± SD
reported

Gawrilow et al., 2016 [74] Modified Go/No-Go Successful No-Go INH Overall errors on go-trials Mean ± SD
reported

Hung et al., 2016 [82] Task-Switching Paradigm
Global Switch RT pure,
Global Switch RT cost,
Local Switch RT cost

PS, WM, CF

Global switch RT Mixed,
Local Non Switch RT, Local

Switch RT, Global Switch
Accuracy Mixed, Local Switch RT

Global Switch accuracy Pure,
Local Non- Switch accuracy, local
switch Accuracy, Global Switch

Accuracy Cost, Local Switch
Accuracy cost

Mean ± SD
reported

Ludyga et al., 2018 [83] Alternate Use Fluency, Flexibility CF, CF Originality, Elaboration Mean ± SD
reported

Ludyga et al., 2017 [76] Modified Flanker Task RT congruent, RT
incongruent PS, INH NA Mean ± SD

reported

Medina et al., 2010 [363] Connor’s Continuous
Performance Test II

Commission errors, Hit
RT, Hit RT block Change INH, PS, SA

Omission errors, Hit RT Standard
Error, Variability, Detectability,

Response style, Hit RT ISI change,
Hit Standard Error interstimulus

change, Perseverations, Hit
standard error Block

Mean ± SD
reported

Abbreviations: CF (Cognitive Flexibility), INH (Inhibitory Control), PS (Psychomotor Speed), RT (Reaction Time), SA (Sustained Attention), WM (Working Memory).
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Table A2. Included and excluded dependent variables from chronic studies.

Study [#ref] Type of Task Included Measures Cognitive Domain Not Included Extraction Method

Benzing & Schmidt
2019 [398]

Simon Task, modified
Flanker Task, Colour Span

Backwards task

Switch trials RT, correct
Responses CF, WM RT across trials Mean ± SD

reported

Chang et al., 2014 [115] Go/No-Go Accuracy no-go trials INH Accuracy go trials Mean ± SD
from figures.

Choi et al., 2015 [114] Wisconsin Card
Sorting Test Perseverative Errors CF NA Mean ± SD

reported

Kang et al., 2011 [49] Trail Making Test part b Time to completion CF Digit Symbol Task Mean ± SD
from figures

Lee et al., 2017 [357] Stroop Interference INH Colour-Word Mean ± SD
reported

Memarmoghaddam et al.,
2016 [112] Stroop, Go/No-Go

Consistent RT,
Interference, No-Go true

number, True RT
PS, INH, INH, PS

Consistent and inconcistent error
number, consistent and

inconcistent no reponses,
consistent and inconcistent true
number, inconsistent RT, Go and
no-go true number, Go and no-go

error number, error RT

Mean ± SD
reported

Pan et al., 2015 [111] Stroop, Wisconsin Card
Sorting Test

Colour-word,
Perseverative errors INH, CF

Total correct, perseverative
responses, non-perseverative

errors, conceptual levels,
Responses, categories completed

Mean ± SD
reported

Pan et al., 2016 [110] Stroop Colour word INH NA Mean ± SD
reported

Verret et al., 2012 [109] Sky Search
Score pondering,
walk/don’t walk

pondering
SA, INH

Time targeted pondering,
attention pondering, sky search

DT pondering

Mean ± SD
reported

Ziereis & Jansen 2015 [360]
Digit Span,

Letter-Number
Sequencing

Digit span Index score,
Letter-number sequencing

index score
WM, WM Backwards digit span, forward

digit span
Mean ± SD
from figures

Abbreviations: CF (Cognitive Flexibility), INH (Inhibitory Control), PS (Psychomotor Speed), RT (Reaction Time), SA (Sustained Attention), WM (Working Memory).
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