Journal of S
% Clinical Medicine ﬂVI\D\Py

Article

Maturity-Onset Diabetes of the Young (MODY) in
Portugal: Novel GCK, HNFA1 and HNFA4 Mutations

Maria L. Alvelos ¥, Catarina L. Gongalves L* Eduarda Coutinho !, Joana T. Almeida 12
Margarida Bastos 3, Maria L. Sampaio 4, Miguel Melo 3, Sofia Martins °, Isabel Dinis ’,
Alice Mirante 700, Leonor Gomes 3>, Joana Saraiva 35, Bernardo D. Pereira 80,
Susana Gama-de-Sousa ?, Carolina Moreno 3%, Daniela Guelho 3, Diana Martins 35,
Carla Baptista 3, Luisa Barros 3, Mara Ventura '3, Maria M. Gomes %190 and

Manuel C. Lemos *

1 CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilha, Portugal;
mioalv@gmail.com (M.LA.); cigoncalves@fcsaude.ubi.pt (C.I.G.); ecoutinho@fcsaude.ubi.pt (E.C.);
joanatralmeida@gmail.com (J.T.A.); maracventura@gmail.com (M.V.)

C4-UBI, Cloud Computing Competence Centre, University of Beira Interior, 6200-501 Covilha, Portugal

s Servico de Endocrinologia, Diabetes e Metabolismo, Centro Hospitalar Universitdrio de Coimbra,
3000-075 Coimbra, Portugal; margaridabastos@chuc.min-saude.pt (M.B.); jmiguelmelo@live.com.pt (M.M.);
mgomes@fmed.uc.pt (L.G.); joanacpmsaraiva@gmail.com (J.S.); carolinamoreno@sapo.pt (C.M.);
daniela_guelho@hotmail.com (D.G.); diana.cruzm@gmail.com (D.M.); cfmbaptista@gmail.com (C.B.);
mlmcbarros@gmail.com (L.B.)

4

Unidade de Endocrinologia Pediatrica, Servigo de Pediatria Médica, Departamento de Pediatria,

Centro Hospitalar Universitario de Lisboa Norte, 1649-035 Lisboa, Portugal;
lurdes.sampaio@chln.min-saude.pt

5 Faculdade de Medicina, Universidade de Coimbra, 3000-548 Coimbra, Portugal

Unidade de Endocrinologia Pedidtrica, Servico de Pediatria, Hospital de Braga, 4710-243 Braga, Portugal;
ana.sofia.martins@hospitaldebraga.pt (S.M.); mariamiguelsagomes@gmail.com (M.M.G.)

Unidade de Endocrinologia Pedidtrica, Servi¢o de Pediatria Ambulatdria, Hospital Pediatrico de Coimbra,
Centro Hospitalar e Universitario de Coimbra, 3000-602 Coimbra, Portugal;
isabeldinis@chuc.min-saude.pt (I.D.); alice.mirante@gmail.com (A.M.)

Servigo de Endocrinologia e Diabetes, Hospital Garcia de Orta, 2805-267 Almada, Portugal;
bern1981@gmail.com

Consulta de Pediatria/Patologia endécrina, Centro Hospitalar do Médio Ave, Unidade de V. N. Famalicao,
4761-917 Vila Nova de Famalicao, Portugal; susanagamasousa@gmail.com

10 School of Medicine, University of Minho, 4710-057 Braga, Portugal

Correspondence: mclemos@fcsaude.ubi.pt

t ML Alvelos and C.I. Gongalves contributed equally to this work.

check for
Received: 14 December 2019; Accepted: 15 January 2020; Published: 20 January 2020 updates

Abstract: Maturity-onset diabetes of the young (MODY) is a frequently misdiagnosed type of
diabetes, which is characterized by early onset, autosomal dominant inheritance, and absence of
insulin dependence. The most frequent subtypes are due to mutations of the GCK (MODY 2), HNF1A
(MODY 3), and HNF4A (MODY 1) genes. We undertook the first multicenter genetic study of
MODY in the Portuguese population. The GCK, HNF1A, and HNF4A genes were sequenced in
46 unrelated patients that had at least two of the three classical clinical criteria for MODY (age at
diagnosis, family history, and clinical presentation). The functional consequences of the mutations
were predicted by bioinformatics analysis. Mutations were identified in 23 (50%) families. Twelve
families had mutations in the GCK gene, eight in the HNF1A gene, and three in the HNF4A gene.
These included seven novel mutations (GCK ¢.494T>C, GCK ¢.563C>G, HNF1A ¢.1623G>A, HNF1A
c.1729C>G, HNF4A c.68delG, HNF4A c.422G>C, HNF4A ¢.602A>C). Mutation-positive patients were
younger at the time of diagnosis when compared to mutation-negative patients (14.3 vs. 23.0 years,
p = 0.011). This study further expands the spectrum of known mutations associated with MODY, and
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may contribute to a better understanding of this type of diabetes and a more personalized clinical
management of affected individuals.

Keywords: diabetes; MODY; genetics; mutation

1. Introduction

Maturity-onset diabetes of the young (MODY) is a monogenic form of diabetes characterized by
early onset (usually under the age of 25 years), autosomal dominant inheritance and absence of insulin
dependence during a variable period of time [1].

MODY is estimated to account for about 1-2% of all cases of diabetes [2]. However, the high costs
of genetic testing and the frequent overlap of clinical features between MODY and the more frequent
types of diabetes (i.e., types 1 and 2) have resulted in a significant underdiagnosis of MODY [3]. A
correct molecular diagnosis is an important aspect in patient management because it can help select
the most appropriate treatment, provide a prognosis for the course of the disease, alert to the existence
of associated malformations, and allow for genetic counselling [4].

There are several subtypes of MODY caused by mutations in at least 14 known genes (HNF4A,
GCK, HNF1A, PDX1, HNF1B, NEUROD1, KLF11, CEL, PAX4, INS, BLK, ABCC8, KCNJ11, APPL1),
which have in common a primary defect in insulin secretion associated with pancreatic beta cell
dysfunction [5]. However, heterozygous mutations in the GCK (glucokinase) (MODY 2), HNF1A
(hepatocyte nuclear factor 1 alpha) (MODY 3), and HNF4A (hepatocyte nuclear factor 4 alpha) (MODY
1) genes are the most frequent, and together they explain over 95% of the known genetic causes of
MODY [6].

The relative frequencies of MODY subtypes show variations according to the countries where the
studies took place. For example, MODY 3 is the most common subtype in the United Kingdom, The
Netherlands, Denmark, and Norway, but MODY 2 is the most common in Germany, Austria, Poland,
the Czech Republic, Italy, Greece, and Spain [6]. These differences may be explained by the use of
different selection criteria for patients for genetic testing [6].

The aim of this study was to identify the underlying genetic mutations in a group of Portuguese
patients with clinically suspected MODY.

2. Experimental Section

2.1. Subjects

Forty-six families with suspected MODY cases were referred by physicians based at six pediatric
and adult diabetes clinics serving the northern, central, and southern regions of mainland Portugal,
from 2012 to 2019. Patients were referred for genetic testing due to clinical suspicion of MODY based
on at least two of the following three criteria: (a) diagnosis of diabetes under the age of 25 years
in at least one family member; (b) autosomal dominant inheritance pattern through at least three
generations, or the existence of at least two first-degree relatives with diabetes; (c) ability to control
diabetes without insulin treatment for at least two years, or significant levels of serum C-peptide,
or absence of pancreatic autoantibodies. Whenever possible, other affected and non-affected family
members were studied. The control population consisted of 500 healthy volunteers recruited among
blood donors. All patients and controls were Caucasian Portuguese. Written informed consent was
obtained from all subjects and the study was approved by the local research ethics committee (Faculty
of Health Sciences, University of Beira Interior, Ref: CE-FCS-2012-010).
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2.2. Genetic Studies

Genomic deoxyribonucleic acid (DNA) was extracted from peripheral blood leucocytes [7] and
used with custom-designed primers for polymerase chain reaction (PCR) amplification of the coding
regions and exon-intron boundaries of the GCK, HNF1A, and HNF4A genes. Bidirectional sequencing
of the PCR products was performed using a CEQ DTCS sequencing kit (Beckman Coulter, Fullerton,
CA, USA) and an automated capillary DNA sequencer (GenomeLab TM GeXP, Genetic Analysis
System; Beckman Coulter). Genomic sequence variants identified in patients were searched for in
the Genome Aggregation Database (gnomAD) [8] in order to assess their frequency in the general
population. Novel missense variants were screened for in a panel of 200 healthy Portuguese volunteers
(400 alleles) using sequence-specific restriction enzymes or allele-specific PCR, to exclude the possibility
that these were common population-specific polymorphisms. For one variant found in a healthy
control, the screening was extended to 500 controls (1000 alleles). Variants that were found to be present
at an allele frequency higher than 0.1% in either gnomAD or in the Portuguese control population
were excluded from further analysis. Computational functional prediction analysis was performed
to evaluate the impact of the sequence variants on protein function, using SIFT [9], PolyPhen-2 [10],
Mutation Taster [11], and Human Splicing Finder [12] programs. Sequence variants were analyzed by
VarSome [13] and classified according to the American College of Medical Genetics and Genomics
(ACMG) guidelines [14]. Mutation nomenclature was based on the cDNA reference sequences for the
GCK (NM_000162.5), HNF1A (NM_000545.5), and HNF4A (NM_175914.3) genes.

2.3. Statistical Analysis

The clinical characteristics of patients with and without identified mutations (i.e., mutation-positive
and mutation-negative patients) were compared. Mean age at time of diagnosis, body mass index
(BMI), glycated hemoglobin (Alc), and serum C-peptide were compared by two-tailed Student’s t-tests.
The proportions of patients in each group with positive family history (defined as autosomal dominant
inheritance pattern through at least three generations, or the existence of at least two first-degree
relatives with diabetes), typical clinical presentation and course (defined as ability to control diabetes
without insulin treatment for at least two years, or significant levels of serum C-peptide, or absence of
pancreatic autoantibodies), and presence of all three classical MODY clinical criteria, were compared
by a two-tailed Fisher’s exact test. Statistical significance was set at p < 0.05.

3. Results

Rare heterozygous sequence variants were identified in 23 (50%) of 46 families (Figure 1la—d).
Twelve occurred in the GCK gene, eight in the HNF1A gene, and three in the HNF4A gene (Figure 2).
Three variants were found to be recurrent, thus the total number of unique variants was 20. These
consisted of 16 missense, two nonsense, one frameshift, and one synonymous variant.
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Figure 1. (a-d) Families with identified maturity-onset diabetes of the young (MODY) mutations. Filled
symbols represent patients with diabetes, open symbols represent unaffected individuals. Squares,
circles, and diamond symbols denote males, females, and unspecified, respectively. Numbers within
symbols indicate additional siblings with the same phenotype. Oblique lines through symbols represent
deceased individuals. Arrows indicate the index cases. The age of diagnosis of diabetes (y, years),
when known, is presented. The presence (+) or absence (-) of the mutation, when known, is presented.
The chromatograms of the DNA sequence for normal individuals and for patients with mutations

(asterisks) are presented below each pedigree.
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c.494T>C
c.544G>A
c.556C>T c.698G>A
c.130G>A c.386G>A ¢.563C>G c¢.757G>C c.1099G>A c.1268T>A

} I v
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c.68delG ¢.422G>C c.602A>C

HNF4A5H}£-H7H s HeHw[ ]

Figure 2. Schematic representation of the GCK, HNF1A, and HNF4A genes and positions of the
identified mutations. Numbered boxes represent exons and lines represent introns (not to scale). UTR,

untranslated regions. A 250 base-pair (bp) scale is shown.

Thirteen variants have already been reported in MODY patients, namely GCK c.130G>A [15],
GCK ¢.386G>A [16], GCK ¢.544G>A [17], GCK ¢.556C>T [18], GCK ¢.698G>A [19], GCK ¢.757G>C [20],
GCK ¢.1099G>A [21], GCK c.1268T>A [22], HNF1A c.425C>T [23], HNF1A c.475C>T [24], HNF1A
¢.511C>T [23], HNF1A ¢.521C>T [25], and HNF1A ¢.607C>A [26].

Seven variants (GCK ¢.494T>C, GCK ¢.563C>G, HNF1A ¢.1623G>A, HNF1A ¢.1729C>G, HNF4A
c.68delG, HNF4A ¢.422G>C, HNF4A c.602A>C) have not previously been reported in patients with
MODY and were found to be absent or very rare (<0.0001) in the gnomAD population database [8]
(Table 1). These variants were not found in healthy Portuguese controls, except for HNF1A ¢.1729C>G,
which was identified in 1/1000 alleles. These novel variants were shown to cosegregate with diabetes
in additional family members, except for HNF4A c.68delG, because DNA from relatives was not
available for testing. All variants were predicted to be deleterious by at least one of four bioinformatics
programs (SIFT [9], PolyPhen-2 [10], Mutation Taster [11], or Human Splicing Finder [12]) (Table 1).
The synonymous variant in HNF1A (c.1623G>A, p.GIn541Gln) was predicted to affect RNA splicing,
by the Mutation Taster [11] and Human Splicing Finder [12] bioinformatics programs.

According to strict ACMG classification criteria [14], HNF1A ¢.521C>T, HNF1A ¢.1623G>A, and
HNF1A ¢.1729C>G were classified as variants of uncertain significance and all others were classified as
either pathogenic or likely pathogenic variants (Table 1).

An additional synonymous variant (HNF4A ¢.711G>A, p.Ala237Ala) was identified in one patient.
Although this variant was found to be very rare in the gnomAD population database (allele frequency
3/282800 = 0.00001), it was found in several Portuguese normal controls (allele frequency 5/980 = 0.005)
and was therefore considered as a population-specific polymorphism with no relation to the disorder.

The clinical characteristics of MODY patients with identified mutations are summarized in Table 2.
The comparison between mutation-positive and mutation-negative patients (Table 3) showed that
mutation-positive patients were significantly younger at the time of diagnosis (14.3 vs. 23.0 years,
p =0.011). No differences were observed regarding family history, clinical presentation, or course
of the diabetes (Table 3). No differences were observed for BMI, Alc, or serum C-peptide (data not
shown). The majority (n = 12) of mutation-positive patients presented only two of the three classical
clinical criteria for MODY (Table 3).
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Table 1. Rare sequence variants identified in MODY patients.

9of 16

Population Allele Computational Programs Previousl
Nucleotide Amino Acid . Frequency P grams Classification (ACMG y
Gene (a) Mutation Type That Support a Pathogenic - Reported
Change Change (gnomAD/Portuguese Criteria) (c)
Effect (b) (Reference)
Controls)
. L. Pathogenic (PM1, PM2,
GCK c.130G>A p.Gly44Ser missense 0 SIFT, PPh-2, MT PMS5, PP2, PP3) Yes [15]
.386G>A p.Cys129Tyr missense 0 SIFT, PPh-2, MT L. Pathogenic (PM1, PM2, Yes [16]
PP2, PP3)
. L. Pathogenic (PM1, PM2,
c.494T>C p-Leul65Pro missense 0/0 (d) SIFT, PPh-2, MT PP2, PP3, PP5) No
. L. Pathogenic (PM1, PM2,
c.544G>A p-Vall82Met missense 0 SIFT, PPh-2, MT PP2, PP3, PP5) Yes [17]
Pathogenic (PVS1, PM1,
*
¢.556C>T p-Argl86 nonsense 0 MT PM2, PP3, PP5) Yes [18]
. L. Pathogenic (PM1, PM2,
c.563C>G p-Alal88Gly missense 0/0 (h) SIFT, PPh-2, MT PMS5, PP2, PP3) No
.698G>A p.Cys233Tyr missense 0 SIFT, PPh-2, MT L. Pathogenic (PM1, PM2, Yes [19]
PP2, PP3)
. L. Pathogenic (PM1, PM2,
c.757G>C p-Val253Leu missense 0 SIFT, PPh-2, MT PMS5, PM6, PP2, PP3) Yes [20]
. L. Pathogenic (PM1, PM2,
c.1099G>A p-Val367Met missense 0 SIFT, PPh-2, MT PP2, PP3, PP5) Yes [21]
c1268T>A p.Phe423Tyr missense 0 SIFT, PPh-2, MT L. Pathogenic (PM1, PM2, Yes [22]

PP2, PP3, PP5)
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Table 1. Cont.

10 of 16

Population Allele

. . . Computational Programs e Previously
Gene (a) Nucleotide Amino Acid Mutation Type Frequency That Support a Pathogenic Class1f1c:at1(.m (ACMG Reported
Change Change (gnomAD/Portuguese Criteria) (c)
Effect (b) (Reference)
Controls)
. L. Pathogenic (PM2, PP1,
HNF1A c.425C>T p-Ser142Phe missense 0 SIFT, PPh-2, MT PP2, PP3, PP5) Yes [23]
. L. Pathogenic (PM1, PM2, )
c475C>T p-Argl59Trp missense 0.0000039 SIFT, PPh-2, MT PMS5, PP2, PP3, PP5) Yes [24]
. Pathogenic (PVS1, PM2,
c511C>T p-Argl71l nonsense 0 MT PP3, PP5) Yes [23]
c.521C>T p-Alal74Val missense 0.0001951 MT VUS (PP2, PP3, BS2) Yes [25]
. L. Pathogenic (PM1, PM2,
c.607C>A p-Arg203Ser missense 0 SIFT, PPh-2, MT PMB5, PP2, PP3) Yes [26]
c.1623G>A p-GIn541GIn synonymous 0/0 (e) MT, HSF VUS (PM2, PP1, PP3) No
c.1729C>G p-His577Asp missense 0.0001429/0.001 (i) SIFT, MT VUS (PP1, PP2, PP3, BS2) No
HNF4A c.68delG p.Gly23Alafs*81 frameshift 0 MT Pathoge“}flf;v S1,PM2, No
. L. Pathogenic (PM1, PM2,
c.422G>C p-Argl41Pro missense 0/0 (f) SIFT, MT PP1, PP2, PP3) No
c.602A>C p-His201Pro missense 0/0 (g) SIFT, PPh-2, MT L. Patho{%g’;“‘ijgyl' PM2, No

(a) Reference sequences are GCK (NM_000162.5), HNFIA (NM_000545.5), and HNF4A (NM_175914.3). (b) SIFT, sorting tolerant from intolerant; PPh-2, PolyPhen-2; MT, Mutation Taster;
HSF, Human Splicing Finder. (c) American College of Medical Genetics and Genomics (ACMG) criteria [14] were used to classify each variant as Pathogenic, Likely (L) Pathogenic, or
Variant of Uncertain Significance (VUS), based on the evidence of pathogenicity (very strong (PVS1), strong (PS1-4), moderate (PM1-6), or supporting (PP1-5)). (d—g) Determined in 200
Portuguese controls (400 alleles) using allele-specific PCR. (h) Determined in 200 Portuguese controls (400 alleles) using HpyCHA4III restriction enzyme. (i) Determined in 500 Portuguese
controls (1000 alleles) using allele-specific PCR.



J. Clin. Med. 2020, 9, 288

Table 2. Clinical characteristics of MODY patients with identified mutations.

11 of 16

Age at

Family

. . . . Presenting Signs BMI o C-Peptide A o, .
Patient ID Sex/Age (yrs) Dl?}%:l;))ms Hl(s:;)ry and Symptoms (kg/m?) Alc (%) (ng/mL) (b) Abs  Treatment Complications  Last Alc (%) Mutation
Retinopathy,
neuropathy,
2476 M/28 9 Yes Asymptomatic 21.8 (*) 7.2 0.10 Yes Insulin nephropathy 5.2 HNFIA C1729C>G
. (p-His577Asp)
(kidney
transplant)
i * GCK ¢.563C>G
5035 F/48 15 No Asymptomatic 194 (*) n/a n/a n/a No No 6.5 (p.Ala188Gly)
i GCK c.130G>A
5227 M/9 8 No Asymptomatic 175 6.4 0.84 No No No 6.7 (p.Gly44Ser)
. " GCK ¢.544G>A
6243 F/22 10 Yes Asymptomatic 22.3 (%) n/a 7.20 No OHA No 6.6 (p.Vall82Met)
. GCK ¢.757G>C
6291 F/12 11 No Weight loss 17.9 6.0 4.80 No No No 6.0 (p.Val253Leu)
. - GCK ¢.1099G>A
6518 F/15 14 Yes Polyuria/polydipsia ~ 25.5 6.5 4.50 No OHA No 6.4 (p.Val367Met)
. GCK ¢.494T>C
6856 F/16 6 No Asymptomatic 15.5 6.6 0.82 No OHA No 6.3 (p-Leul65Pro)
. " GCK c.1268T>A
6866 M/33 3 Yes Asymptomatic 25.2 (%) 6.6 2.52 n/a No No 6.2 (p-Phe423Tyr)
. HNFIA ¢.521C>T
6955 F/34 34 Yes Asymptomatic 26.2 6.4 3.40 No OHA No 5.9 (p.Alal74Val)
Gestational " GCK c.1268T>A
7004 F/32 31 Yes diabetes 20.7 (*) 6.1 0.80 No No No 6.1 (p-Phe423Tyr)
. s . . HNF4A c422G>C
7018 F/31 16 Yes Polyuria/polydipsia ~ 28.9 9.0 1.00 No Insulin Retinopathy 6.7 (p.Arg141Pro)
i * GCK ¢.386G>A
7034 M/20 14 Yes Asymptomatic 234 (%) 6.5 2.39 n/a No No 6.1 (p-Cys129Tyr)
Gestational ” HNF4A c.68delG
7071 F/39 21 Yes diabetes 19.1 (%) n/a 0.70 No No No 6.4 (p-Gly23Alafs *81)
7113 M/7 4 No Asymptomatic 17.4 (*) 6.4 1.17 No No No 6.7 GCK c757G>C

(p-Val253Leu)
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Table 2. Cont.

Age at Family

Patient ID Sex/Age (yrs) Di?}g,:ls())sis Hi(s:;)ry P:;Ze;;i;itssizs (k];\:gz) Alc (%) (S;;T; ?lf) Abs  Treatment Complications  Last Alc (%) Mutation
7396 F/13 11 Yes Weight loss 16.2 8.7 1.80 No Insulin No 59 H?{féé‘lcééf}g )>T
7422 M/27 25 No Asymptomatic 22.7 n/a 1.70 No ggﬁl; No 5.1 HI(\PT)Fk:gCZSg;eCSA
7451 F/39 18 Yes Asymptomatic 25.8 6.4 2.30 No OHA No 7.3 C(flé;segzﬁ;ﬁ
7467 F/14 14 No Asymptomatic 22 8.0 137 No OHA No 8.0 HI\(’g 'I:r;'ls;llg*
7613 M/7 6 No Asymptomatic 15.6 6.9 0.90 No No No 6.7 Géﬁigfggf;
7629 F/32 18 Yes Polyuria/polydipsia  22.9 (¥) n/a 1.50 No Insulin No 5.6 HI(\II)Féilcé?ii;T
7646 M/35 17 Yes Polyuria/polydipsia  19.3 (¥) n/a 0.10 No Insulin No 5.5 HgFifgigg?ng
7690 F/18 14 No Asymptomatic 30.7 6.8 3.60 No OHA No 7.7 HI\(III;IGI?;SEZG?’E )> A
7797 F/12 11 Yes Polyuria/polydipsia ~ 24.1 12.0 2.22 No ﬁljﬁlg No 8.1 HI(\;F;?S;(?{);;Z;C

(a) Autosomal dominant inheritance pattern through at least three generations, or the existence of at least two first-degree relatives with diabetes. Yrs, years. (b) Normal values > 0.8
ng/mL. M, male; F, female; BMI, body mass index (*) At last evaluation. Alc, glycated hemoglobin; Abs, positivity for at least one pancreatic autoantibody; OHA, oral hypoglycemic agents;
n/a, not available.
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Table 3. Comparison of clinical characteristics of mutation-positive and mutation-negative patients.

Mutation-Positive (n =23)  Mutation-Negative (n = 23) p-Value (c)

Age at diagnosis (mean + SD) (y) 143+ 7.7 23.0+13.2 0.011*
Family history (a) (n, %) 14 (60.9) 15 (65.2) 1.000
Clinical presentation and course (b) (n, %) 22 (95.7) 22 (95.7) 1.000
Presence of 2 inclusion criteria (n, %) 12 (52.2) 16 (69.6) 0.365
Presence of 3 inclusion criteria (n, %) 11 (47.8) 7 (30.4) 0.365

(a) Autosomal dominant inheritance pattern through at least three generations, or the existence of at least two
first-degree relatives with diabetes. (b) Ability to control diabetes without insulin treatment for at least two years, or
significant levels of serum C-peptide, or absence of pancreatic autoantibodies. (c) Mean age compared by two-tailed
Student’s t-test (*statistically significant), all other parameters compared by two-tailed Fisher’s exact test. SD,
standard deviation; y, years; n, number.

4. Discussion

This study of 46 families with clinically suspected MODY revealed the presence of a genetic cause
in 23 (50%) families. GCK, HNF1A, and HNF4A heterozygous mutations were found in 12 (26%), eight
(17%), and three (7%) families, respectively.

The frequency of mutations in clinically suspected MODY cases varies across different European
countries, such as Germany/Austria (97%), Spain (89%), Italy (70%), Greece (66%), Denmark (49%), the
Czech Republic (48%), the Netherlands (39%), Norway (31%), the United Kingdom (27%), and Poland
(7%) [6]. The differences observed between different countries are most likely explained by the different
selection criteria used for genetic testing [6]. Ours is the first study in the Portuguese population and
shows that the mutation frequency (50%) lies within the range for European populations [6].

The most frequent genetic defects in our population were GCK mutations (MODY 2), followed
by HNF1A mutations (MODY 3). This is consistent with the distribution in other southern European
populations [6]. HNF4A mutations (MODY 1) were rarer, as expected according to their known
contribution to MODY [6]. Other MODY subtypes are even rarer and therefore were not searched for
in our group of patients.

The 23 identified mutations consisted of 20 unique mutations and three recurrent mutations (i.e.,
occurring in more than one family). Of these 20 different mutations, 13 have already been reported in
MODY [15-26]. The remaining seven mutations (GCK ¢.494T>C, GCK c.563C>G, HNF1A ¢.1623G>A,
HNF1A c.1729C>G, HNF4A c.68delG, HNF4A c.422G>C, HNF4A ¢.602A>C) have not previously been
reported, and are therefore novel mutations.

Bioinformatics analysis, using sequence conservation and structure-based algorithms, predicted
that the identified mutations are highly likely to affect protein function. Most mutations in this study
were missense mutations. These results are consistent with studies in other European populations
where missense mutations were also predominant [22,26]. Missense mutations may result in alterations
of secondary structures, affecting protein stability or resulting in the loss of important catalytic
domains. Two nonsense and one frameshift mutations were identified—these may result in premature
termination of the encoded protein or in nonsense-mediated RNA decay [27]. A synonymous mutation
in HNF1A (c.1623G>A, p.GIn541GlIn), involving the last nucleotide of exon 8, was predicted to affect
RNA splicing, although no RNA was available from the patient to demonstrate this experimentally. In
addition to the computational prediction results, the absence or rarity of all these mutations in large
population databases [8] is highly suggestive that these are indeed pathogenic mutations associated
with the disorder, rather than common benign polymorphisms.

In 23 (50%) of the families, no genetic defect was identified in the GCK, HNF1A, or HNF4A genes.
This rate of mutation-negative cases is similar to that observed in other European populations [6]
and could have several explanations. First, it may be due to the occurrence of mutations in genes
that were not analyzed in the study. Although the GCK (MODY 2), HNFIA (MODY 3), and HNF4A
(MODY 1) genes are responsible for the vast majority of genetic causes of MODY [6], there are other
rarer MODY subtypes caused by mutations in genes not analyzed in this study, which could have
been analyzed by next-generation sequencing methods [28]. However, these other subtypes have been
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shown to represent together only a small proportion (<5%) of cases or to be associated with specific
extra-pancreatic features that were not present in our patients [29]. Second, mutations may rarely
be located in the promoter or deep intronic regions, or result from large deletions of the genes that
would not be detected by conventional sequencing [30]. Finally, mutation-negative genetic tests may
be explained by the occurrence of phenocopies. This occurs when suspected MODY cases represent
other types of diabetes (e.g., type 1 or 2) that can also occur in young individuals and/or coexist with
other affected family members, thus mimicking the phenotype of MODY, but with no monogenic cause.
As diabetes is a relatively common disease, the existence of several affected family members does not
necessarily imply an inherited cause of diabetes [31]. Furthermore, the fact that mutation-negative
patients in our study were diagnosed at a later age suggests that these are less likely to be associated
with a genetic cause.

The inclusion criteria for patients in this study were less stringent than the classical clinical triad
for MODY (i.e., diagnosis under the age of 25 years, autosomal dominant inheritance, and clinical
presentation and course of the diabetes) [1], because patients do not always exhibit all the typical clinical
characteristics of MODY. This occurs because family history is sometimes incomplete or unknown
and vertical transmission through three generations is not always possible to confirm, patients may
have de novo mutations (i.e., not present in the parents), asymptomatic hyperglycemias can remain
undiagnosed beyond the age of 25 years, and the presence of pancreatic autoantibodies (which are
typical for type 1 diabetes) has also been reported in MODY [32]. As our study included cases that
fulfilled only two of the three above-mentioned criteria, this allowed the genetic diagnosis of 12 patients
that would have otherwise remained undiagnosed, although at the expense of a higher proportion
of mutation-negative cases. Several studies have proposed the selection of cases for genetic testing
based on biomarkers and clinical features associated with a higher probability of having a genetic
defect [33-35]. These prediction models show high sensitivity, although with relatively low positive
predictive values that result in even higher proportions of mutation-negative cases. It is likely that
the decision about which patients should undergo genetic testing, based on their prior likelihood of
having a MODY mutation, will ultimately depend on the cost-effectiveness of the genetic testing [36].

In conclusion, this is the first Portuguese multicenter genetic study of MODY patients. In 46
families with clinically suspected MODY, mutations were found in 23 (50%) families, including seven
GCK, HNF1A, and HNF4A mutations that have not previously been reported. Several mutations were
identified in cases that only partially fulfilled the classical clinical criteria for MODY. The study results
may contribute to a better understanding of the pathogenesis of the most common subtypes of MODY
and to a more personalized approach to patients’ treatment, follow-up, and genetic counselling.
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