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Abstract: Neurorehabilitation for stroke is important for upper limb motor recovery. Conventional
rehabilitation such as occupational therapy has been used, but novel technologies are expected to open
new opportunities for better recovery. Virtual reality (VR) is a technology with a set of informatics
that provides interactive environments to patients. VR can enhance neuroplasticity and recovery after
a stroke by providing more intensive, repetitive, and engaging training due to several advantages,
including: (1) tasks with various difficulty levels for rehabilitation, (2) augmented real-time feedback,
(3) more immersive and engaging experiences, (4) more standardized rehabilitation, and (5) safe
simulation of real-world activities of daily living. In this comprehensive narrative review of the
application of VR in motor rehabilitation after stroke, mainly for the upper limbs, we cover: (1) the
technologies used in VR rehabilitation, including sensors; (2) the clinical application of and evidence
for VR in stroke rehabilitation; and (3) considerations for VR application in stroke rehabilitation.
Meta-analyses for upper limb VR rehabilitation after stroke were identified by an online search of
Ovid-MEDLINE, Ovid-EMBASE, the Cochrane Library, and KoreaMed. We expect that this review
will provide insights into successful clinical applications or trials of VR for motor rehabilitation
after stroke.

Keywords: virtual reality; stroke; rehabilitation; hemiplegia; recovery of function; neuronal
plasticity; sensor

1. Introduction

Stroke is one of the leading causes of disability and socioeconomic burden worldwide [1]. Although
the age-standardized stroke incidence has decreased in most regions, the growth of aging populations,
who are at risk of stroke, may lead to an increase in the crude incidence of stroke [2]. According to a
policy statement by an American Heart Association working group, approximately 4% of US adults
will have a stroke by 2030 [3]. Stroke-related mortality has shown a remarkable decline due to better
management in the acute phase, which means there are more people living with disabilities after
stroke [1,3].
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Upper limb hemiparesis is one of the most common impairments after stroke [4] and is associated
with activity limitation and a worse quality of life [5–7]. Therefore, adequate recovery of upper limb
weakness is necessary. Spontaneous motor recovery occurring up to one year after stroke can be
accelerated with active rehabilitation strategies [8,9]. However, the effects of conventional rehabilitation
modalities are limited and novel therapeutic approaches are required [10].

Virtual rehabilitation using virtual reality (VR) technology is a novel promising modality for motor
rehabilitation after stroke [11] that can add beneficial components to current rehabilitation strategies.
Considering motor learning theory, task-oriented, intensive (that is, more doses and movements), and
repetitive training is essential for promoting neuroplasticity and thereby, motor recovery (Figure 1) [12].
Several advantages of virtual rehabilitation can be suggested in terms of rehabilitation intensity and
motivation. VR can motivate patients’ participation by increasing enjoyment and gamification—“the
process of adding game-design elements and game principles to something (e.g., task) so as to encourage
participation”—thereby increasing task repetition (intensity) [13–15]. Flexible and individualized
rehabilitation design is possible according to the patient’s motor impairment, which makes the
step-by-step approach possible. A low-cost virtual rehabilitation system can be used as an adjunctive
therapy to conventional rehabilitation, with less direct supervision by a therapist [16], and it can also
be considered for use as a tele- or home-based rehabilitation tool [17]. Functional assessment and
digital tracking of patients’ progress is possible using motion sensors combined with VR systems for
rehabilitation [18].
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In this comprehensive narrative review of the application of VR in motor rehabilitation after
stroke, we will cover (1) the technologies used in VR rehabilitation including sensors, haptic devices,
and VR displays; (2) the clinical application and evidence for VR in motor rehabilitation in stroke; and
(3) considerations for VR application in stroke rehabilitation. We expect that this review will provide
insights into successful clinical applications or trials of VR for motor rehabilitation after stroke.

2. Technologies Used in VR Rehabilitation

2.1. Definition of VR

VR technology can give users the experience of being surrounded by a computer-generated
world. With VR, users experience inclusive and extensive surroundings, with vivid illusions of a
virtual computer generated environment in which both realistic and unrealistic events can occur. So,
users can interact as though they are in a real environment and may not even recognize that they are
existing in a virtual environment [19]. Therefore, in VR, participants can be fully immersed in the
surrounding virtual environment and interact naturally with virtual objects in the virtual world [20].
Because VR content responds to a user’s movements in a natural and valid manner, such as showing
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the corresponding scene on the display when the user looks at it, the interaction evokes a feeling of
existing in a virtual environment, which is referred to as “presence.” Moreover, control of the avatar’s
body movements by those of the user can even induce a feeling of ownership in which the user regards
the avatar’s body parts as surrogates of their own, a phenomenon called “virtual embodiment” [21].
Based on these factors, users are fully immersed, which allows them to experience where they are and
what they do there in a way that is similar to real/lived experience.

2.2. Non-Immersive and Immersive VR

Non-immersive VR allows users to experience a virtual environment as observers and interact
with the virtual environment by using devices that cannot fully overwhelm sensory perceptions [22],
which results in a lesser feeling of immersion in the virtual world. Non-immersive VR systems are
mainly characterized by users’ ability to control their surroundings while perceiving stimuli around
them, such as sounds, visuals, and haptics. Non-immersive VR systems are primarily based on a
computer or video game console, flat screen, or monitor and input devices such as keyboards, mice,
and controllers. Non-immersive VR systems can also use other physical input devices, such as racing
wheels, pedals, and speed shifters, to augment users’ realistic experiences. Using various input
devices, users can interact with VR content on a display. To enhance the level of immersion, some
non-immersive VR systems provide a first-person view for users to associate themselves with their
virtual avatar. To allow users to perceive objects as being 3D, stereoscopic vision technology, with
which stereo images are provided so that each eye of the user, who wears special goggles, receives the
same scene but from a slightly different angle, could be used, which would allow the user to feel the
third dimension from a 2D monitor or screen [23].

Immersive VR, on the other hand, improves the feeling of presence, enabling people to feel more
like they are actually in the virtual environment, which means that users are more likely to interact
with the stimuli given by the computer and related devices providing visual, auditory, and haptic
sensations. The main goal of immersive VR is to make it possible for users to experience the illusion of
being in the computer-generated environment rather than the real-world environment. By wearing a
head-mounted display (HMD), tracking devices, haptic devices, and data gloves and by using wireless
controllers, users can be placed in virtual environments and interact with a computer-generated world.
However, the real world has a greater variety of senses including smell, taste, the feeling of warm
and cold, etc., which may increase the gap between the virtual and real worlds. These could be
further covered by complete immersive VR, but the need for a sophisticated artificial stimulator to
provide variable sensations may require more space and have a higher cost. HMD-based immersive
VR could also be enriched using physical objects or devices placed in the physical space by tracking
their positions precisely in relation to where the user stands. By using this paradigm, the user could
perceive the texture or temperature of objects without any awkwardness when touching it because
the physical object is tracked to be placed at the same position as that in the virtual space; thus, the
user touches the physical object when they touch the virtual object. Another issue to overcome is
that the user must be placed in a limited space; therefore, their walking area is constrained. Using
a VR treadmill allows users to physically walk or run toward any place in a virtual environment by
solving two problems: realistic synchronized simulation of the user’s walk and no requirement for a
large space. The Cave Automatic Virtual Environment (CAVE) has been introduced as another way
to provide visual information for immersive VR, instead of using an HMD [24]. CAVE uses six large
walls on which scenes are displayed so that the participant can be placed in the CAVE and experience
the surrounding virtual environment with a large field of view.

Immersive and non-immersive environments can be better differentiated by their level of
immersion. Immersive VR strengthens the level of immersion because less mental effort is required to
be immersed in the virtual environment since the hardware systems cover most sensory perceptions.
In contrast, non-immersive VR requires more mental effort to be immersed in the virtual environment.
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Therefore, non-immersive VR may reduce the level of spatial presence, which is defined as “the sense
of being in an environment” [25,26].

2.3. Technologies for Motion Tracking and Feedback for Virtual Rehabilitation

Virtual rehabilitation is a method of rehabilitation via gamification through synchronization with
software content or by providing a motion guide. Various studies have been conducted to investigate
the application of VR for upper limb rehabilitation (Table 1).

For motor rehabilitation of limbs, the patient’s body part must be captured by motion tracking
sensors and synchronously transferred to an object in VR. Sensors to track the patient’s motion are
mandatory for movement visualization and can be selected from a mouse and joystick, depth-sensing
cameras, electromagnetic sensors, inertial sensors, bending sensors, data gloves, and so on. The sensor
performance is important to precisely track the motion, but the subjective perception and preferences
are also important factors to be considered, in addition to cost [27].

A sensor technology that recognizes motion is essential for virtual rehabilitation. Such technologies
are divided into wearable and nonwearable devices that recognize upper limb rehabilitation motions.
Nonwearable devices are further divided into those using a vision sensor and those using a robot-based
controller or a controller with three degrees of freedom (DOF) either alone or in combination. Wearable
devices are usually divided into those using data gloves and those using an exoskeleton. Some studies
have used both types together. Sensing using cameras in nonwearable devices has recently changed
from tracking markers or color patches using webcams to tracking body or hand signals through
depth sensing methods. In this way, the users’ movements are sensed within a limited space without
obstacles. With wearable devices, the sensor is attached to collect high frequency data and force or
torque can be tracked as well as position and movement.

Most studies have primarily used visual and auditory feedback through content and some studies
have applied tactile and force feedback (which are haptic feedback). We divided the studies into
visuomotor and visuohaptic feedback. Visuomotor feedback provides visual information by applying
measured movements through sensors to content in real time. Visuohaptic feedback refers to providing
haptic feedback with visual information. Haptic feedback could be divided into tactile or force feedback,
depending on whether resistance is present. Tactile feedback provides feedback to users through
the sense of touch using vibration, skin deformation, or small forces. Force feedback, or kinesthetic
force feedback, simulates real-world physical touch using motorized motion or resistance rather than
by fine touch [28]. Research on virtual rehabilitation can be categorized according to the use of fine
motor tracking during upper limb rehabilitation, which is distinguished by the use of wearable or
nonwearable devices. In the case of camera methods among nonwearable devices, hand tracking is
possible with a HMD for VR, and this has been released as a commercial product (e.g., Oculus Quest,
Facebook Technologies, LLC, Menlo Park, CA, USA). The sensor types used in previous studies are
summarized in Figure 2.
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Table 1. Virtual rehabilitation studies for upper limb rehabilitation.

Study Sensor Type Sensor Type
(Detail) Feedback Type VR Type Rehabilitation

Part

Visuomotor Feedback

Dimbwadyo-Terrer et al.,
2016 [29] Wearable Data glove V NI Arm, hand,

finger

Crosbie et al., 2012 [30] Wearable Data glove, motion tracking sensor V, A I Arm, hand,
finger

Calabrò et al., 2019 [31] Wearable End-effector hand exoskeleton V, A NI Finger

Kiper et al., 2018 [32] Wearable Electromagnetic sensor V NI Arm, hand

Cho et al., 2016 [33] Nonwearable Motion-sensing camera (depth
sensing, hand tracking) V, A NI Arm, hand,

finger

Askin et al., 2018 [34] Nonwearable Motion-sensing Camera (body
tracking with depth sensing) V NI Arm

Faria et al., 2018 [35] Nonwearable Marker-based tracking with webcam V NI Arm, hand

Lee et al., 2018 [36] Nonwearable Controller for paddling movement
(canoe-like apparatus) V, A NI Arm, hand

Sucar et al., 2014 [37] Nonwearable Pressure sensor in custom gripper,
colored object tracking with webcam V, A NI Arm, hand

Ballester et al., 2017 [38] Wearable,
nonwearable

Motion-sensing camera (depth
sensing, body tracking), data glove V NI Arm, hand,

finger

Sampson et al., 2012 [39] Wearable,
nonwearable Colored object tracking with webcam V NI Arm

Xin et al., 2014 [40] Wearable,
nonwearable

Motion-sensing camera (body
tracking with depth sensing),

EMG sensing
V I Arm

Visuohaptic Feedback

Feintuch et al., 2006 [41] Wearable Colored glove tracking with webcam T, V, A NI Arm

Popescu et al., 2000 [42] Wearable Non-contact position sensors F, V, A NI Hand, finger

Prisco et al., 1998 [43] Wearable
Glove with electromagnetic

measurements, torque/force and joint
rotation sensing in arm exoskeleton

F, V, A I Arm, hand,
finger

Alamri et al., 2008 [44],
Kayyali et al., 2007 [45] Wearable Data glove with hand exoskeleton F, V NI Arm, hand,

finger

Adamovich et al., 2009 [46] Wearable Data glove with hand exoskeleton F, V, A NI Arm, hand,
finger

Molier et al., 2011 [47] Wearable Potentiometer and optical encoder in
arm exoskeleton F, V, A NI Arm, hand

Jack et al., 2001 [48]
Merians et al., 2002 [13] Wearable Non-contact position sensor,

data glove F, V, A NI Hand, finger

Wille et al., 2009 [49] Wearable Data glove, accelerometers, and
magnetometers T, V NI Arm, hand,

finger

Connelly et al., 2009 [50] Wearable Data glove, magnetic tracker for head
tracking T, V, A I Hand, finger

Huang et al., 2017 [51] Wearable Position and force sensor in hand
rehabilitation robot V, A I Finger

Pignolo et al., 2012 [52] Wearable Optical encoder in arm exoskeleton V, A I Arm

Andaluz et al., 2016 [53],
Bardorfer et al., 2001 [54] Nonwearable 3D controller including buttons F, V NI Arm, hand,

finger

Broeren et al., 2004 [55] Nonwearable 3D controller F, V SI Hand, finger

Adamovich et al., 2009 [56] Nonwearable Force sensor in 3 DOF
admittance-controlled robot F, V NI Arm, hand

Merians et al., 2011 [57] Nonwearable
Data glove, optical fiber curvature

sensor, force sensor in 3 DOF
admittance-controlled robot

F, V NI Arm, hand,
finger

Nagaraj e al., 2009 [58],
Chiang et al., 2017 [59] Nonwearable 3D controller F, V, A NI Arm, hand

Sadihov et al., 2013 [60] Wearable and
nonwearable

Motion sensing camera (depth
sensing, body tracking), data glove

(bend sensing)
T, V NI Arm, hand,

finger

Kapur et al., 2009 [61] Wearable and
nonwearable Sleeve for optical tracking (camera) T, V NI Arm

Ramírez-Fernández et al.,
2015 [62]

Wearable and
nonwearable

3D controller, motion sensing camera
(depth sensing, hand tracking) F, V, A NI Arm, hand

In studies using only visual feedback, auditory feedback could possibly be used. Abbreviations: I, immersive; NI,
non-immersive; SI, semi-immersive; T, tactile; F, force; V, visual; A, auditory; EMG, electromyography; DOF, degrees
of freedom; VR: virtual reality.
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2.4. Examples of Commercialized VR Upper Limb Rehabilitation Systems

Commercialized virtual rehabilitation devices that can provide gamification through content or
rehabilitation guides are similar to those used in VR rehabilitation research, but they are simplified and
more focused on ease of use. Sensing methods are divided into wearable and nonwearable methods
using cameras, joysticks, and robots (Table 2).

Table 2. Commercialized VR systems custom-built for upper limb rehabilitation.

VR System VR Type Sensor Type Body Part Company Country

Riablo
Premium NI IMU sensor Arm CoRehab Italy

SaeboVR NI Motion-sensing camera (depth
sensing, body tracking) Arm Saebo USA

Doctor Kinetic NI Motion-sensing camera (depth
sensing, body tracking) Arm Doctor Kinetic Netherlands

IREX NI Motion sensing with webcam Arm GestureTek
Health Canada

Virtual Rehab NI
Motion-sensing camera (depth

sensing, body tracking, and
hand tracking)

Arm, hand Evolv Spain

XR Health I HMD, controller Arm XR Health USA

iWall NI
Motion-sensing camera (depth

sensing, body tracking),
touch screen

Arm, hand CSE
Entertainment Finland

Nirvana NI wall or floor touch sensing Arm, hand BTS
Bioengineering USA

Myro NI Touch screen, touchable objects on
screen Arm, hand Tyromotion USA

DIEGO NI Hand suspended type Arm Tyromotion USA

AMADEO NI Position and force sensor in hand
rehab robot Finger Tyromotion USA

Pablo NI IMU sensor Arm, hand Tyromotion USA

EsoGLOVE NI Hand exoskeleton Arm, hand,
finger

Roceso
Technologies Singapore

Bimeo PRO NI IMU sensor for body, IMU sensor
in objects Arm, hand Kinestica Slovenia
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Table 2. Cont.

VR System VR Type Sensor Type Body Part Company Country

HandTutor NI Data glove Hand, finger Meditouch Israel

Playball NI IMU sensor in ball Hand Tonkey Italy

Anika NI Data glove Hand, finger ZARYA Russia

Gloreha
Workstation

plus
NI Hand exoskeleton, Optical sensor Hand, finger Gloreha Italy

Icone NI Machine holding and
moving handle Arm Heaxel Italy

ExoRehab X NI Arm exoskeleton Arm HoustonBionic Turkey

Hand of Hope NI Hand exoskeleton Hand, finger Rehab-Robotics
Company Hong Kong

SaeboRejoyce NI 3D movable handle Arm, hand Saebo USA

MindMotion
Pro NI Colored object 3D tracking Arm, hand MindMaze Switzerland

YouGrabber NI Data glove, infrared tracking
camera

Arm, hand,
finger YouRehab Switzerland

Rapel Smart
Glove NI Data glove, IMU sensor Arm, hand,

finger Neofect South Korea

Smartboard NI 2D handling board Arm Neofect South Korea

MusicGlove NI Finger-to-finger contact Finger FlintRehab USA

FitMi NI Puck with multiple sensors for
movement tracking Arm, hand FlintRehab USA

SensoRehab NI Data glove Hand, finger SensoMed Russia

Rewellio I HMD, controller Arm Rewellio Inc. USA

Abbreviations: I, immersive; NI, non-immersive; IMU, inertial measurement unit; HMD, head-mounted display;
VR, virtual reality.

3. Clinical Evidence and Considerations for VR in Motor Rehabilitation after Stroke

3.1. Literature Search

Studies for upper limb VR rehabilitation after stroke were identified by an online search of
Ovid-MEDLINE, Ovid-EMBASE, the Cochrane Library, and KoreaMed on 18 June 2020. The search
queries are presented in Supplementary Table S1. Titles and abstracts were reviewed for screening
by Y.K. and non-English papers, animal studies, commentaries, case series, narratives, book chapters,
editorials, nonsystematic reviews, and conference papers were excluded. Duplicated publications
between databases were also excluded. A total of 339 studies were included for the full text review
and Y.K. and W.S.K. selected systematic reviews and meta-analyses for review. Six meta-analyses were
included for our evidence summary [63–68].

3.2. Clinical Evidence

The general characteristics of the included meta-analyses are presented in Table 3. Two studies
included randomized controlled trials (RCTs) and quasi-randomized controlled trials [64,68] and
three other studies only included RCTs [63,65,67]. Karamians et al. included RCTs and prospective
studies [66]. The number of studies and participants included in each meta-analysis ranged from 21 to
72 and 562 to 2470, respectively.
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Table 3. Characteristics of the included meta-analyses.

Study Aim Search Strategy Search Period Inclusion Criteria Included Trials, n Participants, n

Lohse et al., 2014 [64]

To demonstrate the effect of virtual
reality (VR) therapy among patients

after stroke in both custom built virtual
environments and commercial

gaming systems.

MEDLINE, CINAHL,
EMBASE, ERIC, PSYCInfo,
DARE, PEDro, Cochrane

Central Register of Controlled
Trials, and Cochrane Database

of Systematic Reviews

From inception to 4
April 2013

Randomized or
quasi-randomized controlled
trials with adults (>18 years
old) after stroke, excluding

other neurological disorders.

24 626

Laver et al., 2017 [68]

To investigate the efficacy of VR in
comparison with alternative

interventions or no interventions on the
function and activity of hemiparetic

upper limbs.

Cochrane Stroke Group Trials
Register, CENTRAL,

MEDLINE, Embase, and seven
additional databases

From inception to
April 2017

Randomized and
quasi-randomized trials of VR

rehabilitation in adults
after stroke.

72 2470

Aminov et al., 2018 [63] To review the evidence for VR in upper
limb function and cognition after stroke.

Scopus, Cochrane Database,
CINAHL, The Allied and
Complementary Medicine
Database, Web of Science,
MEDLINE, Pre-Medline,

PsycEXTRA, and PsycINFO

From inception to 28
June 2017

Randomized controlled trials
utilizing a VR to improve either

motor (upper limb) function,
cognitive, or activities of daily
living in patients with stroke.

31 971

Lee et al., 2019 [67]
To evaluate the effect of VR training on

lower limb, upper limb, and overall
functions in patients with chronic stroke.

OVID, PubMed, and EMBASE From January 2000 to
June 2018

Randomized controlled trials
for using VR as a rehabilitation

intervention in patients with
chronic stroke.

21 562

Karamians et al., 2020 [66]
To demonstrate the efficacy of VR- and
gaming-based rehabilitations for upper
limb function in patients with stroke.

PubMed, CINAHL/EBSCO,
SCOPUS, Ovid MEDLINE, and

EMBASE
From 2005 to 2019

Randomized controlled trials
or prospective study design

with outcome measures of Wolf
Motor Function Test,

Fugl-Meyer Assessment or
Action Research Arm Test in
patients who had poststroke

upper extremity deficits.

38 1198

Mekbib et al., 2020 [65]
To evaluate the therapeutic effect of VR
compared to dose-matched conventional

therapy in patients with stroke.

EMBASE, MEDLINE, PubMed,
and Web of Science

From 2010 to
February 2019

Randomized controlled trials
that allocated patients either to

a VR therapy or to a
dose-matched

conventional therapy.

27 1094
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Table 4. Review of findings of included meta-analyses.

Study Intervention Comparison Outcomes Major Findings Conclusions Methodological Quality

Lohse et al., 2014 [64]
VR therapy:

Custom-built VE or
CG

CT

Behavioral
assessment in body
function, activity, or

participation
according to
International

Classification of
Functioning (ICF)

(1) Body function
-VE: SMD = 0.43, 95% CI = 0.22 to 0.64

-CG: SMD = 0.76, 95% CI = −0.17 to 1.70
(2) Activity

-VE: SMD = 0.54, 95% CI = 0.28 to 0.81
-CG: SMD = 0.76, 95% CI = −0.25 to 1.76

(3) Participation
-VE: SMD = 0.56, 95% CI = 0.02 to 1.10

VR rehabilitation moderately improves
functional outcomes compared to CT in
patients with stroke. CG studies were

too few and small to evaluate the
benefits of CG.

High

Laver et al., 2017 [68] VR rehabilitation
Alternative

intervention (usually
CT) or no intervention

Upper limb function
and activity

(1) Upper limb function (VR versus CT)
-Composite: SMD = 0.07, 95% CI = −0.05 to 0.20

-FMA: SMD = 2.85, 95% CI = 1.06 to 4.65
(2) Upper limb function (additional VR)

-Composite: SMD = 0.49, 95 CI = 0.21 to 0.77
(3) Activity of daily living

-VR versus CT
: SMD = 0.25, 95% CI = 0.06 to 0.43

-Additional VR
: SMD = 0.44, 95% CI = 0.11 to 0.76

VR rehabilitation was not superior to CT
in improving upper limb function. VR
may be beneficial, when applied as an

additional therapy to usual care, to
improve the function of hemiparetic

upper limbs and activities of daily living
as additional VR therapy can increase

overall therapy time.

High

Aminov et al., 2018
[63] VR rehabilitation CT

Upper limb function
(e.g., FMA) and

activity (e.g., BBT, BI)
according to ICF

(1) Upper limb function
: SMD = 0.41, 95% CI = 0.28 to 0.55

(2) Upper limb activity
: SMD = 0.47, 95% CI = 0.34 to 0.60

VR can be beneficial on outcomes of
body structure/function and activity in

patients with stroke.
Moderate

Lee et al., 2019 [67] VR rehabilitation CT or no intervention Upper limb function

(1) Upper limb function
: SMD = 0.43, 95% CI = 0.42 to 0.54

(2) Lower limb function
: SMD = 0.42, 95% CI = 0.34 to 0.51

(3) Overall function
: SMD = 0.55, 95% CI = 0.25 to 0.84

VR training moderately improved
function in patients with chronic stroke. Low

Karamians et al., 2020
[66] VR rehabilitation CT or no intervention Upper limb function

(FMA, WMFT, ARAT)

(1) VR or gaming versus all controls
: Percent possible improvement

= 28.45%, 95% CI = 24.40 to 32.49%
(2) VR or gaming versus CT

: Percent possible improvement
= 10.40%, 95% CI = 5.65 to 15.14%

VR- or gaming-based rehabilitation for
upper limb function was more effective

than CT in patients with stroke.
Moderate

Mekbib et al., 2020
[65] VR rehabilitation Dose-matched CT Upper limb function

(FMA, BBT, MAL)

(1) FMA
: Mean difference = 3.84, 95% CI = 0.93 to 6.75

(2) BBT
: Mean difference = 3.82, 95% CI = 0.26 to 7.38

(3) MAL
: Mean difference = 0.80, 9% CI = 0.44 to 1.15

VR rehabilitation was more beneficial on
post-stroke upper limb function in the
outcomes of FMA, BBT and MAL than

dose-matched CT.

Moderate

VR rehabilitation includes both rehabilitations using custom-built virtual environments and commercial video gaming consoles (e.g., Nintendo Wii or Xbox Kinect). FMA, BBT, WMFT,
ARAT, and MAL are the measurement tools for upper limb function. Abbreviations: VR, virtual reality; VE, virtual environments; CG, commercially available gaming systems; CT,
conventional therapy; ICF, International Classification of Functioning; SMD, standardized mean difference; CI, confidence interval; FMA, Fugl-Meyer Assessment; BBT, Box and Block Test;
BI, Barthel Index; WMFT, Wolf Motor Function Test; ARAT, Action Research Arm Test; MAL, Motor Activity Log.
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The interventions were VR rehabilitation and the controls were either conventional therapy
(dose-matched or not) or no intervention (Table 4). VR rehabilitation included rehabilitations using
both custom-built virtual environments and commercial video gaming consoles (e.g., Nintendo Wii
or Xbox Kinect) in the selected meta-analyses. Outcomes were usually the composite outcomes of
upper limb function or activities and Karamians et al. only included studies using one of the following
outcome measures: Fugl-Meyer Assessment (FMA), Wolf Motor Function Test (WMFT), and Action
Research Arm Test (ARAT) [66]. Mekbib et al. only included studies using one of the three following
outcomes: FMA, Box and Block Test (BBT), and Motor Activity Log (MAL) [65]. Methodological quality
of the included meta-analyses was assessed using the Assessment of Multiple Systematic Reviews
(AMSTAR 2) instrument by two authors (S.C. and W.S.K.) and was categorized as high, moderate, low,
or critically low [69]. Any disagreements were resolved through the discussion for consensus. Most of
the included meta-analyses showed moderate to high methodological quality (Table 4).

In one high-quality meta-analysis from 2014, VR rehabilitation showed better improvements in
body function (standardized mean difference (SMD) = 0.43, 95% confidence interval (CI) = 0.22 to
0.64) and activities (SMD = 0.54, 95% CI = 0.28 to 0.81) when compared to conventional therapy [64].
However, the commercially available gaming failed to show a significant beneficial effect due to the
small number of studies (Table 4). In a recent Cochrane systematic review with high methodological
quality, VR rehabilitation for the composite outcome of upper limb function (primary outcome) was
not superior to conventional therapy, but upper limb function measured by FMA was significantly
improved in VR rehabilitation (SMD = 2.85, 95% CI = 1.06 to 4.65) [68]. When VR rehabilitation was
applied in addition to conventional therapy, VR rehabilitation showed significant beneficial effects on
the composite outcome of upper limb function (SMD = 0.49, 95 CI = 0.21 to 0.77). Two metanalyses by
Aminov et al. [63] and Lee et al. [67] also showed similar moderate effect sizes for upper limb function
in VR rehabilitation (Table 4). Mekbib et al. [65] only included RCTs using dose-matched conventional
therapy and calculated the mean differences of FMA, BBT, and MAL, which all represent upper limb
function. Although VR showed better improvements in all outcomes when compared to conventional
therapy, they were less than the minimal clinically important difference [70,71].

4. Considerations for VR Application in Stroke Rehabilitation

4.1. HMDs and Motion Sickness

HMDs give users a more immersive experience in a 3D artificial world and allow interaction with
virtual objects using motion tracking sensors. Considering the therapy time and active motion during
the rehabilitation, the HMD must be light, comfortable to wear, positioned stably on the head, and
cool enough during operation (HMD typically generate heat). The HMD may also benefit from being
wireless (with enough battery life). Although VR rehabilitation can induce eye strain or physical fatigue
during extended therapy, the most common issue to overcome is motion sickness. Motion sickness can
be elicited when there is a lag in processing the visual response to user input interactions, resulting in
conflicting signals to the brain from the eyes, vestibular systems in the inner ear, and proprioceptive
sensory receptors (sensory conflict theory) [72]. Motion sickness can be affected by the system (e.g.,
head tracking, rendering, field of view, optics); application and user interaction (lack of controlling
visual motion, visual acceleration or deceleration, longer duration of VR experience, frequent head
movement during VR play); and individual perceptual factors (age, motion sickness history, lack of VR
experience). The following approaches can be employed to reduce motion sickness when designing VR
rehabilitation programs [73]: “(1) to make patients actively control their view points and be responsible
for initiating movement, (2) to avoid or limit linear or angular accelerations or decelerations without
corresponding vestibular stimulation, (3) to display visual indicators or motion trajectories, (4) to
display visual cues that remain stable as the patient moves, and (5) to perform dynamic blurring of
unimportant areas.”
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4.2. Differences in Movements in VR

The movement kinematics of the upper limb in patients with stroke differ between VR and real
environments. Viau et al. reported that patients with hemiparesis used less wrist extension and
more elbow extension at the end of the placing phase during reaching, grasping, and performing
tasks in VR than in a real environment [74]. Similarly, several studies using reaching tasks also
demonstrated that the movements in VR using HMDs were slower than those in the real environment
and that spatial and temporal kinematics differ between VR and real environments [75–77]. Lott et
al. reported that the range of the center of pressure during reaching in standing (usually used for
balance training) was different between real environments, non-immersive VR with 2D flat-screen
displays, and immersive VR with HMDs [78]. Considering the rehabilitation purpose of improving
independence in real-world living, these different movement kinematics can affect the transfer of
learning in VR to real environments and therefore must be considered when designing a VR-based
rehabilitation program.

4.3. Transfer of Learning in VR to the Real World

The transfer of improved function after rehabilitation to the performance of activities of daily
living is important in upper limb rehabilitation after stroke. Constraint-induced movement therapy
(CIMT) comprises repetitive tasks/shaping practice with constraint of the hemiparetic upper limb,
emphasizing the transfer package to foster compliance and use of the hemiparetic upper limb in the
real world as a key component to improve function following CIMT [79]. Therefore, the transfer of
novel rehabilitation therapeutic approaches based on repetitive movements to the real environment,
such as robot-assisted arm rehabilitation [80] and VR-based rehabilitation [81], is an important issue to
be discussed.

The transfer of learning effects in VR to real environments is inconclusive. Rose et al. showed that
the effect of simple sensorimotor task training is comparable between VR and real environments [82].
However, several recent studies have shown that training in VR did not translate to better performance
in the real environment [83–86]. In the virtual BBT simulated using a 2D flat screen and depth-sensing
camera, the number of boxes moved in VR showed good correlation (a high correlation coefficient) with
that in the real BBT, but the actual number of boxes moved was much less in the VR condition [33]. The
weak transfer of effects from VR to real environments may be associated with different sensory-motor
symptoms and spatiotemporal organization, especially the differences in depth perception in VR during
upper limb rehabilitation (reach, touch, grasp, and release tasks). Although an HMD improves depth
perception compared to a 2D flat screen display [87], further improvements in VR depth perception,
and thereby fidelity, is needed. Possible strategies include object occlusion; effects of lighting and
shadow; color shading; and relative scaling of objects by considering depth, perspective projection,
and motion parallax [88]. Other methods to improve the interaction can be visual (e.g., color change) or
auditory feedback when touching objects in VR. Haptic feedback can further improve the interaction
and thereby the fidelity of the VR training. Ebrahimi et al. demonstrated that the errors and time to
complete the task during reaching and pointing tasks using a stylus in immersive VR with a HMD
were decreased with the addition of visuohaptic feedback compared to the condition without it [89]. It
has also been suggested that matching the VR interaction dimensions with the control dimension of
the task in the real world could improve the transfer of the VR rehabilitation effect [90].

4.4. Gamification

Gamification has been broadly and clearly defined as the “use of game design principles in
non-game contexts” by Deterding et al. [91]. Gamification of VR-based rehabilitation systems can
motivate patients to participate in rehabilitation actively with enjoyment, which could lead to more
movements of the hemiparetic arm and better recovery [92]. The strategies to apply gamification to
virtual rehabilitation design have been thoroughly reviewed by Charles et al. [88] and Mubin et al. [93].
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Briefly, the VR rehabilitation system must give the patients clear feedback for meaningful play, such
as the therapist’s verbal and emotional encouragement, with a clear goal to be achieved during the
occupational therapy. The difficulty level or challenge during the rehabilitation game should be adapted
according to the patient’s ability to facilitate meaningful play and handle failures [94,95] as patients
with stroke may experience multiple failures and can be frustrated during upper limb rehabilitation
due to motor impairments. Various types of feedback, including visual, auditory, and haptic feedback,
can be applied and approaches to possibly promote motor learning should be considered (inducing
variability of tasks, amplification of visual errors, and manipulating task physics for implicit behavioral
guidance) [81].

4.5. Barriers

In addition to the barriers caused by patients (physical and cognitive disabilities, low adoptability,
and compliance to technology), it has been suggested that there are also barriers at the therapist level,
which can lead to underuse of VR rehabilitation [96]. Glegg et al. recently reviewed the barriers
and facilitators influencing the adoption of VR rehabilitation, which include “the ability to grade the
degree of training, transfer of training to real life, knowledge about how to operate the VR clinically,
therapist self-efficacy and perceived ease of use, technical and treatment space issues, access to the
technology, and time to learn practice for VR rehabilitation” [97]. They gave three recommendations to
promote the use of VR rehabilitation, which were “(1) enhance collaboration, (2) ensure knowledge
transfer interventions are system- and context-specific, and (3) optimize VR effectiveness through an
evidence-based approach” [97].

5. Combinational Approaches with VR in Stroke Rehabilitation

Neuroplasticity is the ability of the human brain to adapt to certain experiences, environments,
and extreme changes, including brain damage [98–100]. Several novel therapeutic approaches to
enhance neuroplasticity can be considered as combinational approaches to VR rehabilitation.

The brain-computer interface (BCI) is one method used to improve neuroplasticity after stroke; it is
based on motor imagery, which is defined as the mental simulation of a kinesthetic movement. The BCI
provides sensory feedback of ongoing sensorimotor brain activities, thereby enabling stroke survivors
to self-modulate their sensorimotor brain activities [101]. BCI for motor rehabilitation involves the
recording and decoding of brain signals generated in the sensorimotor cortex areas. The recorded
brain signals can be used (1) to objectify and strengthen motor imagery-based training by providing
stroke patients with real-time feedback on an imagined motor task; (2) to generate a desired motor
task by producing a command to control external rehabilitative tools, such as functional electrical
stimulation, robotic orthoses attached to the patient’s limb, or VR; and (3) to understand cerebral
reorganizations of lesioned areas by quantifying plasticity-induced changes in brain networks and
power spectra in motor-related frequency bands (i.e., alpha and beta) [102]. A previous meta-analysis
reported that BCI had an SMD of 0.79, which represented a medium to large effect size comparable
with those of conventional rehabilitation therapy such as CIMT (SMD = 0.33), mirror therapy (SMD
= 0.61), and mental practice (SMD = 0.62) [101]. Pichiorri et al. showed that BCI combined with VR
may further improve upper limb rehabilitation outcomes and may be used to predict motor outcomes
by analyzing brain activity in patients with stroke [103]. A more recent study also demonstrated
the clinical feasibility of using a combination of BCI and VR in post-stroke motor rehabilitation and
confirmed that this combinatory method may benefit patients with severe motor impairments who
have little ability for volitional movement [104].

Another novel strategy to increase neuroplasticity using noninvasive brain stimulation, such as
transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), has also
been suggested by various researchers [105–107]. Noninvasive brain stimulation methods can be used
to (1) enhance the ipsilesional brain activity by high-frequency rTMS [108] or anodal tDCS [109,110];
(2) inhibit contralesional brain activity by low-frequency rTMS [111,112] or cathodal tDCS [113]; (3)
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produce an additive effect by simultaneously applying anodal tDCS over the ipsilesional area and
cathodal tDCS over the contralesional area, referred to as bihemispheric tDCS [114]; or (4) modulate
the somatosensory input from nerve fibers to the brain [115,116]. These noninvasive brain stimulation
methods have been reported to have acceptable tolerability and safety with no significant adverse effects
in various populations, including patients with stroke [117,118]. Several studies have shown a positive
effect of combinational approaches (noninvasive brain stimulation plus VR-based rehabilitation) in
patients following stroke [119–121].

Together with BCI and noninvasive brain stimulation, a telerehabilitation approach may also be
important for motor rehabilitation after stroke in terms of better accessibility and prolonged usage at
home. Telerehabilitation, by definition, can provide the inputs of multidisciplinary skilled personnel
for rehabilitation, including physiatrists, physiotherapists, and occupational therapists, which are
often unavailable at home or challenged by transportation restrictions for disabled patients [122]. A
recent Cochrane systematic review showed moderate-quality evidence that there was no difference
in activities of daily living in patients with stroke between those who received telerehabilitation and
those who received usual care (SMD = −0.00, 95% CI = −0.15 to 0.15) [123]. There was also low-quality
evidence of no difference in upper limb functions between the use of a computer program to remotely
retrain upper limb function and in-person therapy (mean difference = 1.23, 95% CI = −2.17 to 4.64) [123].
Several studies have shown that VR based telerehabilitation can be used for motor rehabilitation of
upper extremity functions with improvements in FMA of the upper extremity, Brunnstrom stage,
manual muscle test, and action research arm test [124,125].

6. Summary

VR-based rehabilitation is a promising tool to actively engage patients in the rehabilitation
program and can lead to better motor recovery. Although current clinical evidence shows that
VR-based rehabilitation is beneficial as an adjunct therapy to conventional rehabilitation therapy, the
interventions in the studies included in the meta analyses were heterogeneous and it is unclear who
benefits more from VR rehabilitation (e.g., severity of impairment, time since onset of stroke) and
what type of VR (e.g., immersive vs. non-immersive) and feedback is more effective. Further research
including large well-designed RCTs to find the factors influencing the effects of VR rehabilitation
are required.

To improve the efficacy of VR-based rehabilitation, VR rehabilitation is designed to improve the
transfer of VR training to real environments, gamification, and feedback to promote active patient
participation and neuroplasticity is necessary. The user interface and user experience must be designed
to be more user-friendly to patients and therapists, considering both the patient’s physical and cognitive
impairments and therapists’ needs. VR can be integrated into novel therapeutic modalities that can
enhance neuroplasticity (e.g., BCI and noninvasive brain stimulation) and is expected to induce better
recovery by combinational approaches, which warrant further investigation.
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