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Abstract: Context: As the food industry is continually involved in the development of new attractive
alternative therapeutic agents, the evaluation of the beneficial impact of (poly)phenols on cognitive
and brain function during aging has gained increasing interest. Objective: This systematic review and
meta-analysis aimed to evaluate the acute and chronic effects of (poly)phenol-rich diet supplementation
on cognitive function and brain health in aging adults. Data Sources: PubMed and Web of Science
databases were searched for relevant randomized placebo-controlled trials (RCTs) published from
inception to July 2019. Study Selection: Two researchers independently screened 4303 records,
using the PICOS criteria: Participants were aging adults; Intervention was based on acute and/or
chronic (poly)phenols-rich supplementation; Comparator was any comparator; Outcomes included
cognitive function and neuroprotective measures; and Study design was RCTs. A third researcher
was consulted when discrepancies arose. Fifteen high-quality (mean PEDro score = 8.8 ± 0.56) RCTs
(total participants: 918 healthy older adults) were included in the final sample. Data Extraction:
Information on study design, employed treatment, characteristics of participants, outcomes, and the
correspondent assessing methods were extracted. Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines were followed. Data Analysis and Results: A random-effects
meta-analysis was used to pool estimates across studies. Effect size (ES) and its 95% confidence interval
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(CI) was calculated. Pooled results yielded a trivial ES (−0.2 to 0.03) for brain-derived neurotrophic
factor and neuroinflammatory parameters and small (0.36) to moderate (0.82) ES for executive
functions. Conclusion: This meta-analysis failed to provide evidence regarding the neuroprotective
and anti-inflammatory effect of (poly)phenols supplementation in aging adults. However, findings
from individual studies, included in this systematic review, suggest polyphenol-rich supplementation
may improve some cognitive and brain functions in older adults. The beneficial effect of polyphenols
seems to depend on ingested dose and bioavailability. Results suggest at least an intermediate dose
(≥500 mg), and intermediate (≈9%) to high (43%) bioavailability rates are needed to cross the brain
blood barrier and to exert a significant effect on cognitive health.

Keywords: cognition; neuroplasticity; neuroinflammation; brain; polyphenols; meta-analysis

1. Introduction.

For the first time in history, most people can expect to live into their sixties and beyond [1].
Additionally, by 2050, the proportion of the world’s population over 60 years will be expected to nearly
double from currently 12% to 22% [1]. While this increase in average life expectancy is one of society’s
great achievements, the resulting demographic shift has brought with it a growing number of chronic
diseases such as diabetes, cancer, cardiovascular diseases, and neurodegenerative diseases [1]. Brain
aging, the key risk factor for neurodegeneration [2], is a highly complex biological process that is
inexorably associated with a more or less severe age-related cognitive decline (ARCD) [3]. Among
ARCD, declines in memory, executive functioning, attentional capacities, and processing speed are the
most serious brain-health concerns for the elderly [4,5]. The etiology of these age-associated cognitive
losses is complex and multifactorial [6–8]. One set of ARCD’s factors seems related to oxidative stress,
leading to neuroinflammatory process in neuronal cells [7]. Indeed, given that cognitive impairment
and oxidative stress are common occurrences in old age, multiple studies have identified oxidative stress
as a causative link between normal brain aging and various neuropathological conditions [7,9]. The
redox imbalance in favor of pro-oxidant in older adults is mainly due (i) to the increased generation of
reactive oxygen species because of the higher accumulation of reactive iron with aging [10,11] and (ii) to
the decreased activity of many antioxidant enzymes (i.e., superoxide dismutase, catalase, glutathione,
and glutathione peroxidase) in specific cognitive regions of the brain such as the hippocampus and
the cerebral cortex [12,13]. This imbalance reduces the brain’s capability to neutralize/counter the
generated free radicals (FR) and, consequently, increases vulnerability to FR attack, potentially leading
to tissue damage and neuroinflammatory processes [14,15]. This enhanced neuroinflammatory process
may cause dysfunction and/or death of neurons, eventually resulting in cognitive decline [16,17].
Additionally, this may play an important role in the apparition of neurodegenerative disease via toxin
generation pathways [9,18].

Given the age-dependent inability to counterbalance the altered redox status by endogenous
defenses (e.g., enzymatic antioxidant), it is imperative to develop drugs and/or lifestyle interventions
(e.g., physical exercise) that can catalyze antioxidant and neuroprotective actions in order to slow,
prevent, or even reverse age-related cognitive disorders. One such possibility is the use of potent
antioxidant nutritional substances such as (poly)phenols [19,20]. These (poly)phenol compounds
(i.e., flavones, flavonols, isoflavones, flavanones/flavanonols, flavanols, and anthocyanidins) are present
in high amounts in fruits, vegetables, and natural products such as parsley, celery, onions, leeks, broccoli,
soy, oregano herbs, green tea, red wine, citrus fruit, berry fruits, and dark chocolate [20,21]. Although
research has historically focused on antioxidant properties [22–25], recent data from randomized
placebo-controlled trials suggest (poly)phenols may also modulate neurological disorders, cerebral
hypoperfusion, and neuroinflammation while simultaneously enhancing memory, learning, and
cognitive performances in old-aged adults [19,26–34]. Mastroiacovo et al. [26] demonstrated a daily
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consumption of 250 mL Cocoa drinks, with a high flavanol content (993 mg), for 8 weeks has the
potential to improve psychomotor performance, verbal fluency performance, as well as the overall
cognitive performance (i.e., z-score). Whyte et al. [27] indicated that 3 months of daily supplementation
with 100 mg purified wild blueberry extract, with a total (poly)phenol of 50 mg, improved both
verbal and short-term spatial episodic memory functions. Furthermore, Wightman et al. [28] showed
that acute supplementation with Greek mountain tea (950 mg) improves accuracy of working and
episodic memory, speed of attention, processing of visual information, and cerebral hemodynamics
in the prefrontal cortex. Improvements in resting regional cerebral blood flow have also been
reported following an acute ingestion of high-flavanol (494 mg) cocoa drink [30] and after daily
ingestion of 387 mg anthocyanin-rich blueberry concentrate for 12 weeks [31]. More interestingly,
an ongoing (1997–present) community-based, prospective cohort of 921 older persons showed that
higher dietary intakes of flavanols may be associated with reduced risk of developing Alzheimer
dementia [34]. However, other studies have reported nonsignificant effects or even unwanted effects of
(poly)phenol-rich supplementation on certain cognitive functions, specifically executive functioning,
working memory and verbal memory [35,36], or cerebral blood flow response [37].

Randomized placebo-controlled trials (RCTs) are the gold standard to confirm the effects of
nutritional interventions (e.g., rich-(poly)phenol supplementation) on cognitive decline, maintenance,
or improvement [38]. However, the aforementioned trials have been limited by sample size, supplement
dose, and research design and seem underpowered to achieve a comprehensive and reliable conclusion.
Meta-analysis provides an opportunity to overcome this limitation by increasing the sample size. The
present study aimed to resolve this uncertainty by systematically reviewing the literature and by
conducting a meta-analysis of all trials investigating the acute and chronic effects of (poly)phenol-rich
supplementation on cognitive functions and brain health in old-aged adults.

2. Method

The systematic review and meta-analysis were conducted and reported in accordance
with the guidelines of the preferred reporting items for systematic reviews and meta-analysis
(PRISMA), an evidence-based protocol describing criteria for reporting in systematic reviews and
meta-analyses [39].

2.1. Data Sources and Search Strategy

To inform our review, a comprehensive systematic search of studies was performed electronically
in PubMed/Medline and Web of Science databases considering all manuscripts published in the English
language from inception to July 2019. Search terms (including mapping to appropriate Medical Subject
Headings (MeSH) terms where appropriate) described major (poly)phenol classes (e.g., polyphenol,
flavonoids, polyphenolic compounds, isoflavone, flavanol, resveratrol, etc.) in combination with
keywords relating to cognitive and brain functions (e.g., cognitive performance, cognitive function,
neuroimaging, brain volume, brain structure, Brain-derived neurotrophic factor (BDNF), regional
perfusion, etc.). The search was conducted with additional filters excluding nonhuman studies and
studies in diseases (see Appendix S1 in the Supporting Information online for the full search strategy)
and was applied to titles and abstracts. To identify additional studies not included in these search terms,
the search was supplemented by manually cross-matching reference lists, key author searches, and
citation searching of relevant research and review articles. The search strategies were combined, and
duplicates were removed by Endnote and manually checked by two of the authors. Once all relevant
articles were located, the researchers individually considered each article for its appropriateness for
inclusion based on the predetermined inclusion criteria described below. Where there was uncertainty
with regard to inclusion, discussion with a third researcher determined the final inclusion or exclusion
of the article.
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2.2. Inclusion and Exclusion Criteria

To be included in the systematic review, each individual study was required to meet the following
inclusion criteria: (i) primary research published in peer-reviewed journals in English, (ii) research
conducted with healthy aging human adults aged 55 years old and over, (iii) original studies
investigating an acute or chronic(poly)phenol-rich supplementation intervention on cognition and
brain-related functions, (iv) no severe methodological deficiencies (e.g., allocation not randomized,
absence of control comparison (e.g., Placebo (PLA) or very low poly(phenols) dose and/or content,
etc.), participant not blinded, and inappropriate statistical analysis procedures), and (v) published
before August 2019. Exclusion criteria were (i) studies written in languages other than English,
(ii) data from congress or workshop publications, (iii) animal studies, (iv) studies in which no
supplementation was given, (v) studies which administered multiple supplements in addition to
(poly)phenol, (vi) studies conducted with participants from different age ranges (e.g., tested population
include both young and older adults), and (vii) studies conducted in aging populations with current
cognitive impairment/dysfunction or other diseases. Case studies, encyclopedias, book chapters, and
reviews were excluded, although the bibliographies of the latter were consulted to refine article searches.

2.3. Study Selection

Following the removal of duplicate studies from the different search engines, inclusion or exclusion
of the remaining articles was performed by applying the aforementioned criteria on the title and
abstract to determine eligibility in a preliminary independent screening. Selected papers were then
read in full to finalize eligibility in accordance with the PICOS (population, intervention, comparison,
outcome, and study design) criteria shown in Table 1. A summary of the study selection process is
outlined in Figure 1. The university’s library, hand searches, electronic databases, and contact with the
authors were used to obtain full copies of the published manuscripts.

Table 1. PICOS (population, intervention, comparison, outcome, and study design) criteria for inclusion
of studies.

Parameter Inclusion Criterion

Participants Aging adults (55 years old and over)
Intervention Acute and/or chronic (poly)phenols-rich supplementation
Comparison Any

Outcome

Cognitive functions (e.g., overall cognition, psychomotor performance, executive
function, processing speed, attention, language, verbal memory, and visual memory) and
neuroprotective measures (e.g., brain perfusion, brain activity, cerebral hemodynamics,

cerebral blood flow (CBF), neuroplasticity, and neuroinflammation)
Study design Randomized controlled trial
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in Table 3. For all extracted outcomes, information regarding the assessment methods (e.g., cognitive 
test battery and neuroimaging techniques) are provided in specific columns within both tables.

Figure 1. Flow diagram of the literature selection process.

2.4. Data Extraction

Data were extracted using a standardized form. The following data were extracted from each
study: primary author’s first name, year of publication, study design, treatment characteristics, dosage
of supplements, characteristics of the treatment and placebo groups, and intervention duration. The
primary outcomes extracted in this review were the acute and/or chronic effects of (poly)phenol-rich
supplementation on a range of cognitive functions such as psychomotor function (e.g., reaction time),
visual processing, attention, executive function, verbal and spatial memory, working memory, learning
ability, and other specific cognitive functions assessed using validated neuropsychological measures.
These outcomes are presented in Table 2. All data concerning the acute and/or chronic effect of
(poly)phenol-rich supplementation on neuroimaging, cerebral blood flow, cerebral hemodynamics,
neuroplasticity, neuroinflammation, and other brain-related parameters (i.e., near-infrared spectroscopy
(NIRS), transcranial doppler ultrasound (TCD), functional magnetic resonance imaging (fMRI),
or blood analysis) were extracted from the research papers and are shown in Table 3. For all extracted
outcomes, information regarding the assessment methods (e.g., cognitive test battery and neuroimaging
techniques) are provided in specific columns within both tables.
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Table 2. Effect of polyphenols-rich supplementation on cognitive functions.

Authors Study Design Treatment Phenolyc Content Dose Duration Washout Study Population Effect on Cognitive Functions Assessing Methods (e.g., Cognitive Battery Test)

Antom et al.
(2018) [40]

Double-blind,
phase II,

randomized,
placebo-controlled

pilot study

Resveratrol Not mentioned Low dose: 300 mg/day; high
dose: 1000 mg/day

Chronic:
90 Days N/A

n = 32
(10 PLA,

12 low dose, 10 high dose);
sedentary older adults, mean

age: 73.34 ± 7.02 years old
(65–93 years)

↑ significantly improves psychomotor speed on
the TMT-A using 1000 mg/day;

↔ nonsignificant effect on the other cognitive
functions (visual attention, working memory,

verbal fluency, and semantic memory)

Trail Making Test (TMT) assessing executive
functions: TMT-A = information processing speed,
digits forward and backward (auditory attention:
forward) and working memory (backward), digit
symbol substitution test (attention and processing
speed), Erikson–Flanker task (executive function by

measuring response inhibition), controlled oral
word association (verbal fluency), Hopkins Verbal

Learning Test-Revised: HVLT (verbal learning,
recognition memory, and recall), and task switching

(accuracy and reaction time)

Bensalem et al.
(2019) [41]

Bicentric,
randomized,
double-blind,

placebo-controlled
trial

polyphenol-rich
extract from
grape and

blueberry (PEGB)

258 mg
flavonoids/day

600 mg/day: 2 capsules (each one
contains 300 mg PEGB)/day

chronic:
24 weeks N/A

n = 190 (92 PEGB group,
98 PLA group), healthy

elderly subjects, mean age:
64.66 ± 2.91 years old

(60–70 years)

↑ significantly improves VRM-free recall;
↔ nonsignificant effect on the other cognitive
functions (PAL, VRMR, SSP, and reverse SSP)

Cambridge Neuropsychological Test Automated
Battery (CANTAB): Paired Associate Learning
(PAL) test (visuospatial learning and episodic

memory); verbal recall memory: VRM (episodic
RM using VRM-free recall (VRMFR) and VR

recognition memory using (VRMR) and working
memory using the Special Span (SSP) and the

reverse SSP tests

Bowtell et al.
(2017) [31]

Randomized,
double-blind,

placebo-controlled
parallel trial

Anthocyanin-rich
blueberry

concentrate

387 mg
anthocyanidins/day

30 mL blueberry concentrate
(diluted to 240 mL total volume

with tap water); 387 mg
anthocyanidins/day

chronic:
12 weeks N/A

n = 26 (12 blueberry, 14 PLA),
older adults, mean age:

blueberry group
= 67.5 ± 0.9, PLA group =

69 ± 0.9

↑ significantly improves working memory
performance during 2 back cognitive task;
nonsignificant improvement during 1 back

cognitive task;↔ nonsignificant effect on the
other cognitive functions

The cognitive battery of tests (CogStateLtd.):
detection task (psychomotor function), the Groton
maze timed chase test (speed of visual processing),
the Groton maze learning test with a delayed recall

component (executive function and delayed
record), identification task (attention), international

shopping list task with delayed recall (verbal
learning and delayed recall), 1-back and 2-back

memory tasks (working memory). The speed and
accuracy of responses were quantified.

Gleason et al.
(2009) [35]

Double-blind,
randomized,

placebo-controlled,
parallel-group

pilot study

Purified
glycosidic

isoflavones
100 mg isoflavones 100 mg soy-isoflavones/day chronic:

6 months N/A

n = 30,
(15 isoflavones,

15 PLA), older adults: mean
age: isoflavone group

= 73 ± 7.9,
PLA group:

74.3 ± 6.3, (range:
62–89 years)

↑ significantly improves cognitive
performances on 2 tests of verbal and

visuospatial memory (Rey complex figure and
visual spatial learning tests), verbal/language
fluency test, and visual-motor function tests;
↔ nonsignificant effect on two tests of verbal

learning and recall (Buschke Selective
Reminding Test and Paragraph Recall Test),
language (Boston Naming test), one test of
executive function (mazes); ↓ significantly
decreases performance during two tests of

executive functions (Trail Making Test part B
TMT-B and Stroop Color-Word test)

Battery of neuropsychological measures: verbal
and visuospatial memory (Buschke Selective

Reminding test, Paragraph Recall, Rey Complex
Figure test, Visual Spatial Learning test); language

(Boston Naming test); language fluency (FAS,
animal fluency); visual-motor function (Rey

Complex Figure test copy, Grooved Pegboard), and
executive function (Stroop Color Word test, Mazes,

TMT-B = cognitive flexibility)

Howes et al.
(2004) [36]

Double blind,
randomized,

placebo-controlled,
counterbalanced

trial

Isoflavone-rich
extract from red

clover

25 mg of
formononetin,

2.5 mg of biochanin
and <1 mg of
genistein and

daidzein

Two tablets/day (~55 mg
isoflavone/day)

chronic:
6 months 1 month

n = 30,
(15 isoflavones,

15 PLA), older women, mean
age: isoflavones group =
68.5 ± 6.6 years; placebo

group
= 67.7 ± 5.5 years

↑ significantly improves cognitive performance
during block design test (a test of visual-spatial

intelligence);↔ nonsignificant effect on the
other tests; ↓ significantly decreases

performances during digit recall and verbal
memory 2 tests (all not significant if correction

to multiple comparisons is made)

Tests of speed of information processing (trail A
and digit symbol); tests of memory (memory 1 and
2, verbal memory 1 and 2, and visual memory 1 and
2); tests of verbal ability (Boston naming test, FAS
test, animal naming test, and similarities naming

test); tests of frontal cortex function (arithmetic test,
trail B test, and block design test); digit recall

Huhn et al.
(2018) [42]

Double-blind,
randomized

controlled trial
Resveratrol 200 mg

resveratrol/day

Two pills of 100 mg resveratrol
per day (total daily dose/day =

200 mg/day)

chronic:
26 weeks N/A

n = 60
(30 resveratrol group,

30 PLA), elderly participants,
range age: 60–79 years

nonsignificant improvement on pattern
recognition memory;↔ nonsignificant effect on

verbal memory performance

Verbal memory performance (learning ability,
delayed recall, rate of forgetting, and recognition)

were assessed using the German version of the
California Verbal Learning Task (CVLT); attention

and mental flexibility were assessed using the
TMT-A and TMT-B. Pattern recognition

performance was assessed with the ModBent task
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Table 2. Cont.

Authors Study Design Treatment Phenolyc Content Dose Duration Washout Study Population Effect on Cognitive Functions Assessing Methods (e.g., Cognitive Battery Test)

Kritz-Silverstein
et al. (2003) [43]

Double-blind,
randomized,

placebo-controlled
trial

Soy-extracted
isoflavones

110 mg total
isoflavones/day

Two pills of 55 mg of
soy-extracted

isoflavones per day (total daily
dose = 110 mg/day)

chronic:
6 months N/A

n = 53
(27 treatment,

26 PLA), older women, mean
age: treatment group

= 60 ± 4,
PLA: 62 ± 6

↑ significantly improves category fluency verbal
memory performance; nonsignificant

improvement on trail B and the immediate and
delayed logical memory and recall test;
↔ nonsignificant effect on trail A

Cognitive function tests: trails A and B (assess
visuomotor tracking and attention), category
fluency (assess verbal memory), and logical

memory and recall tests (a paragraph recall test
assessing immediate and delayed verbal memory).

Marsh et al.
(2017) [37]

Counterbalanced
within-subject

crossover design

Chocolate with a
high

concentration of
polyphenols-rich

cocoa

Total polyphenols:
≈85 mg: white

chocolate, 200 mg:
milk chocolate, 395
mg: Dark chocolate

84 g dark chocolate (80% cacao),
87 g milk chocolate (35% cacao),

or 85 g white chocolate (0%
cacao) per daily

Acute 1 week
n = 12 (counterbalanced

design), older women, mean
age: 57.3 ± 5.3 y)

↔ nonsignificant effect on any of the assessed
cognitive functions

7 CogState measures: verbal memory, psychomotor
memory, visual attention, working memory (one

back), working memory (two back), visual memory,
and verbal recall memory

Mastroiacovo
et al. (2015) [26]

Double-blind,
controlled,

parallel-arm
study

Cocoa flavanol
drinks (high,

moderate, and
low flavanol

contents)

Total flavanols:
high flavanol drink
(993 mg), moderate
flavanols drink (520
mg), low flavanols

drink (48 mg)

250 mL drink with high,
moderate, or low flavanol

content/day

chronic:
8 weeks N/A

n = 90 (30 for each study’s
arm), older adults,
age > 60 years old

↑ significant improvement in performance of
TMT-A and TMT-B and overall cognitive

performance “z score” after consumption of the
high and the intermediate flavanol drinks;

↑significant improvement in the Verbal Fluency
Test (VFT) score using the high flavanols drink;
↔ nonsignificant effect on Mini-Mental State

Examination (MMSE)

Mini-Mental State Examination
(MMSE); TMT-A and TMT-B; the Verbal Fluency

Test (VFT); and overall cognitive function (z score)

Mix & Crews.
(2000) [44]

Double-blind,
fixed-dose,

placebo-controlled,
parallel-group

design

Ginkgo biloba
extract EGb 761 Not mentioned 180 mg/day 6 weeks N/A

n = 48 (n of each arm: not
mentioned), older adults, age

range: 55–86 years old

↑ significant improvement on one task assessing
speed of processing abilities (i.e., color-naming

task of the Stroop Color and Word Test);
nonsignificant improvement in the majorities of

the remaining tasks that involved a timed,
speed of processing component (e.g., trail

making test A and B);↔ nonsignificant effect
on the four objective memory measures
(i.e., logical memory I and II and visual

reproduction I and II)

Stroop Color and Word Test, TMT-A and TMT-B,
Wechsler Memory Scale—Revised (WMS-R),

Logical Memory I and II (LM I and II), and Visual
Reproduction I and II subtests (VR I and II)

Whyte et al.
(2018) [27]

Randomized,
double blinded,

placebo-controlled
trial

1000 mg capsules
of wild blueberry

(WB):
WBP500WBP1000

and WBE111
(purified WB

extract)

Total polyohenol
contents: WBP500

(35 mg/capsule)
powder); WBP1000

(70 mg/capsule);
WBE111 (50
mg/capsule)

1 daily dose of either WBP500,
WBP1000, or WBE111

Chronic
intervention

(3 and 6
months)

N/A

n = 122 (30 PLA,
30 WBP500, 31 WBP1000, and

31 WBE111), older adults,
mean age: 71 ± 4 years old

(65–80 years)

↑ significant improvement of verbal and
short-term spatial episodic memory

performances with better delayed word
recognition during the RAVLT and better recall

of sequences during the Corsi Block task
following WBE111 at 3 months compared to

PLA,↔ nonsignificant effect on working
memory and executive function at 3 months

follow-up↔ nonsignificant effect for all
cognitive performance at 6 months follow-up

Battery of cognitive tasks targeting episodic
memory (verbal episodic memory using the Rey’s

Auditory Verbal Learning task (RAVLT), visual
episodic memory using an object recognition task,
and short-term spatial episodic memory using the
Corsi Blocks task), working memory (using serial

subtractions and Sternberg memory scanning
tasks), and executive function (using the Modified
Attention Network Task (MANT) and Stroop task)

Wightman et al.
(2018) [28]

Double blind,
randomized,

placebo
controlled,

parallel groups
study

Polyphenol-rich
Greek mountain

tea (Sideritis
scardica)

Potal phenolic
content = 6.25% of

the 20% Greek
mountain tee

extract

475 or 950 mg of Greek mountain
tea daily

Acute and
chrnic

(4 weeks)
N/A

n = 140 (n of each arm: not
mentioned), older adults,
mean age 60.3 years old

Acute and chronic effects of the Greek mountain
tea with ↑ significant improvement in working
memory (fewer false alarm during RVIP test)

and higher episodic memory accuracy (during
the picture recognition task) using the higher
(950 mg) dose; ↑ significant improvement in

speed of attention (derived from reaction time
during numerical working memory, choice
reaction time, and RVIP tasks) using both

intermediate (475 mg) and high doses (950 mg)
compared to active Ginko control (240 mg)

Cognitive function tests battery
(www.cognitivetesting.co.uk) assessing accuracy
and speed of attention (choice reaction time test),
working memory (numerical working memory

task, Serial 3s and 7s tasks, and Rapid Visual
Information Processing (RVIP) task), and episodic
memory (delayed word recall, delayed name/face
recall, delayed picture recognition, and delayed

word recognition tasks) performances

Witte et al. (2014)
[29]

Double blind,
randomized,

placebo
controlled,

parallel groups
study

Resveratrol Not mentioned 200 mg/d 26 weeks N/A

n = 46
(23 resveratrol,

23 PLA), older female, mean
age: resveratrol group =
65 ± 7 years old, PLA =

64 ± 5 years old

↑ significant improvement on retention ability;
nonsignificant improvement on delayed recall

and recognition,↔ nonsignificant effect on
learning ability using AVLT

Memory performance (i.e., retention, delayed recall,
and recognition) and learning ability were assessed

using the Auditory Verbal Learning Test (AVLT)

Placebo (PLA), Trail Making Test (TMT), Cambridge Neuropsychological Test Automated Battery (CANTAB), Hopkins Verbal Learning Test-Revised (HVLT), Paired Associate Learning
(PAL), Verbal Recall Memory (VRM), Verbal Recall Memory Free Recall (VRMFR), Special Span (SSP), Mini-Mental State Examination (MMSE), Verbal Fluency Test (VFT), Wechsler
Memory Scale—Revised (WMS-R), Visual Reproduction (VR), Rey’s Auditory Verbal Learning task (RAVLT), Rapid Visual Information Processing (RVIP), Auditory Verbal Learning Test
(AVLT), Modified Attention Network Task (MANT), Wild Blueberry (WB).

www.cognitivetesting.co.uk
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Table 3. Effect of (poly)phenols-rich supplementation on neuroprotective measures.

Authors Study Design Treatment Phenolyc Content Dose Duration Washout Study Population Effect on Neuroprotective Measures Assessing Methods (e.g., Cognitive Battery Test)

Bowtell et al.
(2017) [31]

Randomized,
double-blind,

placebo-controlled
parallel trial

Anthocyanin-rich
blueberry

concentrate

387 mg
anthocyanidins/day

30 mL blueberry concentrate
(diluted to 240 mL total volume

with tap water); 387 mg
anthocyanidins/day

chronic:
12 weeks N/A

n = 26 (12 blueberry, 14 PLA),
older adults, mean age:

blueberry group = 67.5 ± 0.9,
PLA group = 69 ± 0.9

↑ significantly improves task-related brain
activation and increases resting regional grey
matter perfusion in the parietal and occipital

lobes;
↔ nonsignificant effect on BDNF and hs-CRP

1.5 T MRI scanner during numerical Stroop test to
quantify task-related activation; Arterial Spin

Labelling Magnetic Resonance Imaging (ASL MRI)
technique to determine quantitative resting brain

perfusion; blood parameters (BDNF, hs-CRP)

Huhn et al.
(2018) [42]

Double-blind,
randomized

controlled trial
Resveratrol 200 mg

resveratrol/day

Two pills of 100 mg resveratrol
per day (total daily dose/day =

200 mg/day)

chronic:
26 weeks N/A

n = 60 (30 resveratrol group,
30 PLA), elderly participants,

range age: 60–79 years

↔ nonsignificant effect on hippocampus
subfield volumes, mean weighted image

diffusivity, and hippocampus connectivity;
↔ nonsignificant effect on BDNF, hs-CRP,

TNF-α, and IL-6

Anatomical MRI for hippocampal volumetry was
acquired at a Siemens Magnetom 7 Tesla system;

blood parameters (BDNF, hs-CRP, IL-6, and TNF-α)

Lamport et al.
(2015) [30]

Randomized,
counterbalanced

double-blind,
crossover trial

Cocoa flavanols

High flavanol drink
(494 mg), low

flavanols drink (29
mg)

330 mL containing high or low
flavanols content daily Acute 1 week

n = 18 (counterbalanced)
older adults, mean age:

61 ± 5 years old
(55–65 years)

↑ significantly increases regional CBF in the
anterior cingulate cortex and central opercular

cortex

Arterial Spin Labelling Functional Magnetic
Resonance Imaging (ASL fMRI) to assess resting

regional perfusion

Marsh et al.
(2017) [37]

Counterbalanced
within-subject

crossover design

Chocolate with a
high

concentration of
polyphenols-rich

cocoa

Total polyphenols:
≈85 mg: white

chocolate, 200 mg:
milk chocolate,
395 mg: dark

chocolate

84 g dark chocolate (80% cacao),
87 g milk chocolate (35% cacao),

or 85 g white chocolate (0%
cacao) per daily

Acute 1 week
n = 12 (counterbalanced

design), older women, mean
age: 57.3 ± 5.3 y)

↓ significantly decreases CBF responses
(i.e., middle cerebral artery velocity and
cerebrovascular conductance) during the

cognitive tasks using milk and dark chocolate;
↔ nonsignificant effect on mean arterial

pressure

Transcranial Doppler (TCD) (Spencer Technologies)
to assess cerebral blood flow velocity (CBFv)

responses to a computerized cognitive assessment
battery (CogState)

Sorond et al.
(2008) [45]

Randomized,
double-blind,

parallel arm trial

Cocoa flavanol
drink

(flavanol-rich
cocoa (FRC) and

flavanol-poor
cocoa (FPC))

450 mg flavanol
cocoa in each

450 mg FRC packet
drink and 18.2 mg
flavanol cocoa in
each 450 mg FPC

drink packet

2 packets daily (900 mg/day) 1 and 2 weeks N/A

n = 21 (n of each arm: not
mentioned), healthy elderly

volunteers, mean age =
72 ± 6 years old,

(59–83 years)

↑ significantly increases mean Blood Flow
Velocity (MFV) with 8% ± 4% during the first

week and 10% ± 4% during the two weeks,
↔ nonsignificant effect on cerebrovascular

resistance (CVR) and cerebral vasoreactivity
(VR)

Transcranial Doppler (TCD) ultrasonography;
outcome: Mean Blood Flow Velocity (MBFV),

cerebrovascular resistance (CVR), and cerebral
vasoreactivity (VR) in the middle cerebral artery

(MCA)

Wightman et al.
(2018) [28]

Double Blind,
randomized,

placebo
controlled,

parallel groups
study

Polyphenol-rich
Greek mountain

tea (Sideritis
scardica)

Total phenolic
content = 6.25% of

the 20% Greek
mountain tee

extract

475 or 950 mg of Greek mountain
tea daily

Acute and
chronic (4

weeks)
N/A

n = 57 (n of each arm: not
mentioned), older adults,
mean age 60.3 years old

The acute ingestion of the Grek mountain tea
during completion of cognitively demanding

tasks:
↑ significantly improves oxygenated

haemoglobin (HbO) and oxygen saturation
(Ox%) in the prefrontal cortex using both

intermediate (475 mg) and high dose (950 mg)
compared to active Ginko control (240 mg), and
↑ significantly improves total (THb) and

deoxygenated (Hb) haemoglobin only using the
high dose (950 mg) compared to active Ginko
control (240 mg);↔ no significant effect of the

chronic ingestion at day 28

Near-Infrared Spectroscopy (NIRS) during
completion of cognitive task to assess cerebral

hemodynamics/blood flow including total
hemoglobin (total-Hb), oxygenated hemoglobin

(oxy-Hb), deoxygenated hemoglobin (deoxy-Hb),
and oxygen saturation (Ox%) in the prefrontal

cortex

Witte et al. (2014)
[29]

Double blind,
randomized,

placebo
controlled,

parallel groups
study

Resveratrol Not mentioned 200 mg/day 26 weeks N/A

n = 46 (23 resveratrol,
23 PLA), older female, mean

age: resveratrol group =
65 ± 7 years old, PLA =

64 ± 5 years old

↑significantly improves hippocampal functional
connectivity (FC);

↔ nonsignificant effect on total gray matter
volume or in the volume or microstructure of

the hippocampus,
↔ nonsignificant effect on BDNF, Hs-CRP, and

IL-6.

Neuroimaging (MRI 3 tesla) to assess volume,
microstructure, and functional connectivity (FC) of

the hippocampus; blood parameters (BDNF,
hs-CRP, IL-6, and TNF-α)

Placebo (PLA), Magnetic Resonance Imaging (MRI), Arterial Spin Labelling Magnetic Resonance Imaging (ASL MRI), Brain-derived neurotrophic factor (BDNF), High-sensitivity C-reactive
Protein (hs-CRP), Interleukin-6 (IL-6), Tumor Necrosis Factor alpha (TNF-α), Arterial Spin Labelling Functional Magnetic Resonance Imaging (ASL fMRI), Transcranial Doppler (TCD),
Cerebral Blood Flow velocity (CBFv), Mean Blood Flow Velocity (MBFV), Cerebrovascular Resistance (CVR), Cerebral Vasoreactivity (VR), Middle Cerebral Artery (MCA), Near-Infrared
Spectroscopy (NIRS), Total hemoglobin (total-Hb), Oxygenated hemoglobin (oxy-Hb), Deoxygenated hemoglobin (deoxy-Hb) and oxygen saturation (Ox%), Functional Connectivity (FC).
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2.5. Quality Assessment

To assess the methodological quality of the selected studies, the Physiotherapy Evidence Database
(PEDro) scale was used [22,46]. The PEDro scale is based on the Delphi list developed by Verhagen
and colleagues at the Department of Epidemiology, University of Maastricht [47]. The PEDro scale
is a reliable and objective tool that helps identify which of the randomized controlled trials from the
same areas of physiotherapy practice are likely to be externally (criteria 1) and internally (criteria 2 to
9) valid and could have sufficient statistical information to make their results interpretable (criteria 10
and 11) [22,47]. Each paper was independently assessed twice by two independent reviewers using
the 11-item checklist to yield a maximum score of 10 (the sum of awarded points for criteria 2 to 11).
Points are only awarded when a criterion is clearly satisfied and when criterion one, which relates to
external validity, is not used to calculate the PEDro score. Each manuscript was assessed by two of
the four authors, and discrepant results were resolved through a consensus meeting. From previous
studies [22,48], a score of 9–10 on the PEDro scale was considered “high quality”, scores of 5–8 were
considered “moderate quality”, and studies that scored below 5 were considered “low quality”.

2.6. Statistical Analysis

Meta-analysis was conducted using the commercial software “Comprehensive Meta-Analysis”
(CMA for Windows, version 3, Biostat, Englewood, NJ 2013, USA). Given the high variability in
cognitive tasks between the included studies, only executive functions during Trail Making Test A
(TMT-A) and B (TMT-B) showed to be sufficiently comparable and were included in the meta-analysis.
Similarly, given the high variety of the assessed brain-related parameters as well as the diversity in
measurement techniques (i.e., MRI, fMRI, transcranial Doppler sonography (TCD), Near-infrared
spectroscopy (NIRS), and blood analysis), the meta-analysis was only conducted for Brain-derived
neurotrophic factor (BDNF) as a biomarker of neuroplasticity and for HsCRP, IL-6, and TNF-α as
biomarkers of neuroinflammation. To calculate the effect size, performance in TMT-A and TMT-B
were collected in seconds (s), BDNF and Hs-CRP blood concentrations were collated in ng/mL
and mg/L respectively, and blood concentrations of IL-6 and TNF-α were collected on pg/mL. In
studies where net changes were not directly reported in the intervention and control groups, the
effect size was computed by subtracting the values at the endpoint of the intervention from those at
baseline. The standard deviations of mean differences were calculated by using SD = square root
((SD pretreatment)2 + (SD posttreatment)2 − (2R × SD pretreatment × SD posttreatment)), with the
correlation coefficient (R) assumed to be 0.5 [49,50]. Effect size (ES) and its 95% confidence interval
(CI) were calculated utilizing Cohen’s method, reflecting the standardized difference in means (SDM)
between measured parameters (i.e., TMT-A, TMT-B, BDNF, Hs-CRP, IL-6, and TNF-α), both in response
to (poly)phenol-rich supplementation and to placebo. ES was interpreted as trivial (ES < 0.2), small (ES
between 0.2 and 0.6), moderate (ES between 0.6 and 1.2), large (ES between 1.2 and 2.0), very large (ES >

2.0), and extremely large (ES > 4.0) [51]. A positive ES value in BDNF indicated that (poly)phenol-rich
supplementation increased outcomes, while a negative ES in the remaining parameters indicated
(poly)phenol-rich supplementation decreased outcomes. Q and I2 statistics were utilized to assess
statistical heterogeneity [52,53]. Substantial heterogeneity was considered for I2 value >50% and
indicated that a random-effect model was preferred to a fixed-effect model [53]. Funnel plots’ potential
asymmetries, the Begg and Mazumdar’s rank correlation test (Kendall’s S statistic P-Q) [54], the Egger’s
linear regression test [55], and the Duval and Tweedie’s trim-and-fill test [56] were used to examine
publication bias. The stability of the pooled ES of each study was assessed via sensitivity analyses by
removing individual studies from the analysis and by computing the impact of the excluded study. A
cumulative meta-analysis was realized to further ensure the stability and reliability of the results.



J. Clin. Med. 2020, 9, 835 10 of 25

3. Results

Fifteen studies [26–31,35–37,40–45] met the inclusion criteria and were included in the current
systematic review. The studies examined the effects of (poly)phenol-rich supplementation intake on
cognitive functions and/or brain-related parameters (e.g., neuroimaging, neuroplasticity, CBF, etc). All
studies used a statistical significance threshold of p < 0.05.

3.1. Study Selection and Characteristics

3.1.1. Study Selection

The predefined search strategies yielded a preliminary pool of 4303 possible papers. Removal
of duplicates resulted in a selection of 2615 published papers. Removal of nonclinical trial resulted
in a selection of 230 published papers. A first screening of titles and abstracts for eligibility against
inclusion and exclusion criteria led to a provisional list of 38 published studies. After a careful review
of the 38 full texts, 23 articles were excluded (16 studies investigated only young and/or middle-aged
adults and did not investigate the old-age population and 7 studies investigated a heterogeneous
population including both young and older adults in the same group). Therefore, 15 studies met
the established inclusion criteria for determining the effects of (poly)phenol-rich supplementation on
cognitive functions and a variety of neurological related outcome measurements among aging adults.
A summary of this process can be seen in Figure 1.

3.1.2. Study Characteristics

The characteristics of each study as well as the cognitive and the neurological changes following
rich-(poly)phenol supplementation compared to placebo supplementation are summarized in Tables 2
and 3, respectively. Eight papers [26,27,35,36,40,41,43,44] examined only the effect of rich-(poly)phenol
supplementation on different cognitive functions such as visual attention, working memory, reaction
time, executive functioning, and learning abilities. Five studies [28,29,31,37,42] examined the effect
of rich-(poly)phenol supplementation on cognitive function as well as a variety of brain-related
parameters such as brain perfusion, cerebral blood flow, cerebral hemodynamics, hippocampal
functional connectivity, neuroplasticity, neuroinflammation, and other brain-related parameters. Two
studies [30,45] only examined the change in cerebral blood flow parameters following rich-(poly)phenol
supplementation without cognitive function measurements. Concerning the acute (up to 2 h) and
chronic effects of (poly)phenol-rich supplementation on the abovementioned functions, twelve studies
investigated the chronic effect [26,27,29,31,35,36,40–45], two studies investigated only the acute
effect [30,37], and only one study [28] investigated both acute and chronic effect of (poly)phenol-rich
supplementation on cognitive and brain functions.

3.2. Subject Characteristics

The studies in this systematic review included a total of 918 participants. In studies employing a
within-subject counterbalanced design, the number of participants in each trial ranged from 12 [37] to
30 [36] while studies employing a parallel groups design ranged from 21 [45] to 140 [28]. These studies
targeted healthy aging adults with mean age ranging from 57 [37] to 74 [35] years.

3.3. Study Design and Supplement Administration

As presented in Tables 2 and 3, all reviewed studies employed a randomized design. Eight studies
employed two parallel experimental arms, with seven of them using placebo and rich-(poly)phenol
supplementation as treatment arms [29,31,35,41–44], while the remaining study [45] used poor-
and rich-(poly)phenol supplementation as treatment arms. Two studies employed three parallel
experimental arms with one study using placebo as the control arm and low and high (poly)phenol
doses as treatment arms [40] and the second using only (poly)phenol supplementation at different
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doses (i.e., low, moderate, and high) [26]. Two studies used four parallel experimental arms with one
arm being the placebo and three arms for the different doses of (poly)phenol supplementation [27,28].
Three studies used one experimental arm (i.e., within-subject counterbalanced design), with a
1-week [30,37] or a 4-week washout period [36]. The majority of these studies (twelve out of
fifteen) implemented a double-blind, placebo controlled experimental design. The three remaining
studies focused on the effect of different doses of (poly)phenol supplementation without using a
placebo-control: two studies implemented a double-blind design [26,45] and one study implemented
a single-blind design [37]. The fifteen trials included in this review employed different varieties of
dietary (poly)phenol supplementation with an intervention period that ranged from acute (up to 2 h) to
multiple weeks/months (i.e., 2 weeks to 6 months). Three studies [29,40,42] opted for resveratrol extract
treatment with a dose ranging from 200–300 mg/day (low–moderate dose) to 1000 mg/day (high dose).
Three studies [35,36,43] opted for isoflavones extract treatment with a dose ranging from 55 mg/day to
110 mg/day (high dose). Three studies opted for blueberry-based extract treatment that allowed for a
total daily (poly)phenol dose ranging from 35 mg to 70 mg in the study of Whyte et al. [27], a daily
flavonoids dose of 258 mg in the study of Bensalem et al. [41], or a daily anthocyanidins dose of 387 as
reported in the study of Bowtell et al. [31]. Four studies opted for rich-flavanol cocoa treatment that
allowed for a total daily (poly)phenol dose ranging from 85 mg to 395 mg in the study of Marsh et al. [37]
or a daily flavanol dose ranging from 29 mg (low dose) to 993 mg (high dose) as reported in the
studies of Lamport et al. [30] and Sorond et al. [45]. The two remaining studies opted for flavonoid-rich
Ginkgo biloba extract treatment with a daily dose of 180 mg [44] or a polyphenol-rich Greek mountain
tea with a daily dose of 475 or 950 mg [28] without delineating the exact the polyphenol content in
each dose. Additionally, different cognitive test batteries such as the Cambridge Neuropsychological
Test Automated Battery (CANTAB) Paired Associate Learning test [41], the cognitive battery of tests
(CogStateLtd.) [31,37], the cognitive function test battery (www.cognitivetesting.co.uk) [28], or a
combination of validated cognitive tests [26,27,29,35,36,40,42–44] have been employed to assess the
effect of (poly)phenol-rich supplementation on a variety of cognitive functions in aging populations, as
presented in Table 2. Similarly, different neuroimaging techniques such as MRI [29–31,42], transcranial
doppler (TCD) ultrasonography [37,45], and near-infrared spectroscopy (NIRS) [28] have been employed
to assess the effect of polyphenol-rich supplementation on a variety of neurological functions in aging
populations, as presented in Table 3.

3.4. Methodological Quality of Studies

All reviewed studies received a high score of seven and above with a mean PEDro score of
8.8 ± 0.56. Of the 15 studies included, 13 investigations received a very high score of 9 (i.e., authors
employed a double-blind but not triple-blind trial), 1 investigation [40] scored 8 out of 10 as the authors
failed to conceal allocation and to employ a triple-blind trial (i.e., double blind design was employed),
and 1 investigation [37] scored 7 out of 10 as the authors failed to conceal allocation and to blind
therapists and investigators. Overall, the study quality was deemed to be good to excellent (Table 4).

www.cognitivetesting.co.uk
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Table 4. Methodological quality of the studies with (poly)phenols-rich supplementation assessed with the PEDro scale.

Items

Antom
et al.

(2018)
[40]

Bensalem
et al.

(2019) [41]

Bowtell
et al.

(2017)
[31]

Gleason
et al.

(2009)
[35]

Howes
et al.

(2004)
[36]

Huhn
et al.

(2018)
[42]

Kritz-
Silverstein
et al. (2003)

[43]

Lamport
et al.

(2015)
[30]

Marsh
et al.

(2017)
[37]

Mastroiacovo
et al. (2015)

[26]

Mix and
Crews

(2000) [44]

Sorond
et al.

(2008)
[45]

Whyte
et al.

(2018)
[27]

Wightman
et al.

(2018) [28]

Witte
et al.

(2014)
[29]

11 Eligibility criteria were specified. + + + + + + + + + + + + + + +

22
Subjects were randomly allocated to groups (in a
crossover study, subjects were randomly allocated

an order in which treatments were received).
+ + + + + + + + + + + + + + +

33 Allocation was concealed. - + + + + + + + - + + + + + +

44 The groups were similar at baseline regarding the
most important prognostic indicators. + + + + + + + + + + + + + + +

55 There was blinding of all subjects. + + + + + + + + + + + + + + +

66 There was blinding of all therapists who
administered the therapy. + + + + + + + + - + + + + + +

77 There was blinding of all assessors who measured
at least one key outcome. - - - - - - - - - - - - - - -

88
Measures of at least one key outcome were

obtained from more than 85% of the subjects
initially allocated to groups.

+ + + + + + + + + + + + + + +

99

All subjects for whom outcome measures were
available received the treatment or control

condition as allocated or, where this was not the
case, data for at least one key outcome was

analysed by “intention to treat”.

+ + + + + + + + + + + + + + +

110
The results of between-group statistical

comparisons are reported for at least one key
outcome.

+ + + + + + + + + + + + + + +

111
The study provides both point measures and

measures of variability for at least one key
outcome.

+ + + + + + + + + + + + + + +

Total score 8 9 9 9 9 9 9 9 7 9 9 9 9 9 9
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3.5. Effect of (Poly)Phenol-Rich Supplementation on Cognitive Functions of Older Adults

Of the 15 studies included in this meta-analysis, 13 assessed the acute and/or chronic effect of
(poly)phenol-rich supplementation on cognitive functions of aging adults (Table 2). Two studies showed
no significant effect of acute [37] or chronic [42] (i.e., 26 weeks) administration of (poly)phenol-rich
supplementation (cocoa-rich chocolate with 85–395 mg polyphenol [37] or 200 mg resveratrol/day [42])
on cognitive function (e.g., memory, visual attention, learning ability, pattern recognition, etc.). Six
studies showed that chronic ingestion (6 to 26 weeks) of (poly)phenol-rich supplementation resulted in
a significant improvement of only one cognitive function out of the overall tested cognitive functions.

(i) A dose of 1000 mg resveratrol/day consumed over a 90-day period showed improved information
processing time on the TMT-A with no effect on the other assessed cognitive functions (visual attention,
working memory, verbal fluency, and semantic memory) [40].

(ii) A dose of 258 mg flavonoids/day over a 24-week period improved episodic recall memory
on the verbal free recall memory (VRMFR), with no effect on visuospatial learning, recognition, and
working memories assessed using CANTAB battery test [41].

(iii) A daily dose of 387 mg anthocyanins over a 12-week period significantly improved working
memory performance during a 2-back cognitive task with nonsignificant effects on psychomotor
function, visual processing, executive function, attention, verbal learning, and delayed record assessed
using the “CogState Ltd.” cognitive test battery [31].

(iv) A daily dose of 110 mg isoflavones demonstrated improved verbal memory performance
during a category fluency test but not immediate and delayed verbal recall memory and visuomotor
tracking and attention functions during TMT-A and TMT-B [43].

(v) A daily dose of 180 mg flavonoid-rich Ginkgo biloba extract EGb 761 for 6 weeks significantly
improve speed of processing abilities during only the Stroop-color-naming task with no significant
effect during TMT-A, TMT-B, and Wechsler memory scale [44].

(vi) A dose of 200 mg resveratrol/day showed to significantly improve retention ability with
nonsignificant effects on delayed recall, recognition, and learning abilities [29].

Of the reviewed 13 studies in Table 2, only 3 studies showed significantly enhanced performance
following the chronic (1–6 months) and/or acute consumption of (poly)phenol-rich supplementation
on at least two cognitive functions. Mastroiacovo et al. [26] showed that a daily consumption of
250 mL cocoa drink with high (993 mg) or moderate (520 mg) total flavanols content for 8 weeks
may improve executive functions during TMT-A and TMT-B tests as well as the overall cognitive
performance “z score.” Whyte et al. [27] showed that 3 months of daily supplementation with 100 mg
purified wild blueberry extract with a total polyphenol of 50 mg improved both verbal and short-term
spatial episodic memory functions but with no effect on working memory and executive functions,
increasing the supplementation period to up to 6 months blinded the beneficial effect of polyphenols
on all tested cognitive functions. Wightman et al. [28] showed that both acute and chronic (4 week)
supplementation of Greek mountain tea improved accuracy of both working and episodic memory
using the intermediate (475 mg) and high tea doses (950 mg) as well as speed of attention (i.e., reaction
time) and processing of visual information. The remaining two studies (out of the 13 studies reviewed
in Table 2) showed either an enhancement (e.g., verbal and visuospatial memory), a stability (e.g., verbal
learning, paragraph recall, and language) or a decrease (e.g., digit recall and executive functions during
Stroop color word and TMT-B tests) of cognitive functions following 6 months of daily isoflavones-rich
supplementation (100 mg/day [35] or 55 mg/day [36])

3.6. Effect of (Poly)Phenol-Rich Supplementation on Brain Parameters of Older Adults

A total of seven studies assessed the acute and/or chronic effect of (poly)phenol-rich
supplementation on brain parameters of aging adults (Table 3). Two studies focused on resting
brain perfusion, showing beneficial effects of an acute ingestion of high-flavanol (494 mg) cocoa drink
on resting regional CBF in the anterior cingulate cortex and central opercular cortex [30] as well as
a beneficial effect of a 12-week daily ingestion of 387 mg anthocyanin-rich blueberry concentrate
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on regional grey matter perfusion in the parietal and occipital lobes [31]. Two studies focused on
hippocampal volumetry and connectivity, showing that a daily intake of 2000 mg/day for 26 weeks
increased hippocampal functional connectivity [29] with no effect on total gray matter, hippocampal
volumes, or mean weighted hippocampal microstructure [29,42]. Two studies focused on cerebral blood
flow responses to acute and/or chronic (poly)phenols-rich supplementation in older adults showing that
2 weeks of flavanol-rich (300 mg/day) cocoa supplementation increased mean blood flow velocity with
no effect on cerebrovascular resistance and cerebral vasoreactivity [45]. The acute ingestion of similar
cocoa-based supplementation (200 mg to 395 mg total polyphenol) decreased middle cerebral artery
velocity and cerebrovascular conductance in response to a computerized cognitive assessment battery
with no effect on mean arterial pressure [37]. The remaining study is the only study that investigated
the acute and chronic supplementation of polyphenol-rich supplementation (Greek mountain tea) on
cerebral hemodynamic registering during completion of a cognitive task, demonstrating that only
acute ingestion of either 475 mg (intermediate dose) or 950 mg (high dose) of Greek mountain tea
increased oxygenated haemoglobin and oxygen saturation in the prefrontal cortex with total and that
deoxygenated hemoglobin only increased using the high dose protocol [28]. From the 7 reviewed
studies in Table 3, only 3 studies focused on neuroplasticity and neuroinflammation blood parameters
and all of them showed an absence of significant beneficial effects of (poly)phenol-rich supplementation
on BDNF or HsCRP compared to placebo [29,31,42]. Two of these three studies also investigated IL-6
and TNF-α as neuroinflammatory biomarkers with one study showing significant increases [42] and
the other [29] showing a significant decrease in both parameters in response to resveratrol (200 mg/day)
or placebo supplementation.

3.7. Meta-Analysis Results

3.7.1. Trail Making Test-A

Data from five trials (comprising 281 participants) were pooled in our meta-analysis [26,40,42–44].
Since the studies of Antom et al. [40] and Mastroiacovo et al. [26] each included two doses of

polyphenols, results from each condition were considered as an independent study. Pooling the
findings yielded a small ES of 0.355 (SE = 0.199, 95% CI −0.035 to 0.746, Z- value = −1.784, p = 0.074;
Figure 2), with a significant heterogeneity (Q = 16.352, df = 6, p = 0.012; I2 = 63.308%).
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A funnel plot (Figure 3) showed no evidence of publication bias, a conclusion confirmed by
Begg and Mazumdar’s rank correlation test (Kendall’s S statistic P-Q = −9.00; tau without continuity
correction = 0.429, z = 1.352, p = 0.088; tau with continuity correction = 0.381, z = 1.201, p = 0.115) and
by Egger’s linear regression test (intercept = 0.401, SE = 3.614, 95% CI −8.889 to 54.331, t = 0.111, df = 5,
p = 0.458). The Duval and Tweedie’s trim-and-fill test did not identify any missing studies.
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3.7.2. Trail Making Test-B

Data from six trials (comprising 311 participants) were pooled in our meta-analysis [26,35,40,42–44].
Because the studies of Antom et al. [40] and Mastroiacovo et al. [26] each included two doses of

polyphenols and because the study of Gleason et al. [35] included 3 intervention periods, results from
each of condition were considered as independent studies. Pooling the findings yielded a moderate ES
of 0.817 (SE = 0.446, 95% CI −0.058 to 1.692, Z - value=1.831, p = 0.092; Figure 4), with a significant
heterogeneity (Q = 124.324, df = 5, p = 0.000; I2 = 95.978%).
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Making Test (TMT-B).

Visual inspection of the funnel plot (Figure 5) and the performance of the Begg and Mazumdar’s
test (Kendall’s S statistic P-Q = 19.00; tau without continuity correction = 0.422, z = 1.699, p = 0.045; tau
with continuity correction = 0.400, z = 1.610, p = 0.054) provided evidence of publication bias, even
though the performance of the Egger’s linear regression test (intercept = − 10.336, SE = 6.171, 95% CI
−3.894 to 24.565, t = 1.675, df = 8, p = 0.066) did not provide evidence of publication bias. The absence
of publication bias was confirmed by the Duval and Tweedie’s trim-and-fill test, which did not identify
any missing studies.
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3.7.3. Brain-Derived Neurotrophic Factor

Data from three trials comprising 138 participants were pooled in our meta-analysis [29,31,42].
A trivial ES of 0.023 (SE = 0.179, 95% CI −0.329 to 0.374, Z– value = 0.125, p = 0.900; Figure 6) was

computed, without significant heterogeneity (Q = 1.348, df = 2, p = 0.510; I2 = 0.000%).
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Figure 6. Forest plot of studies investigating the effect of (poly)phenols-rich supplementation on
brain-derived neurotrophic factor.

A funnel plot (Figure 7) showed no evidence of publication bias, a conclusion confirmed by Begg
and Mazumdar’s rank correlation test (Kendall’s S statistic P-Q = 100; tau without continuity correction
= 0.333, z = 0.522, p = 0.301; tau with continuity correction = 0.000, z = 0.000, p = 0.500) and by Egger’s
linear regression test (intercept = 3.847, SE = 2.296, 95% CI −25.225 to 33.020, t = 1.676, df = 1, p = 0.171).
The Duval and Tweedie’s trim-and-fill test did not identify any missing studies.

3.7.4. High-Sensitivity C-reactive Protein

Data from three trials comprising 138 participants were pooled in our meta-analysis [29,31,42].
A trivial ES of 0.028 (SE = 0.179, 95% CI −0.324 to 0.380, Z – value = −0.156, p = 0.876; Figure 8)

was computed, without significant heterogeneity (Q = 1.003, df = 2, p = 0.606; I2 = 0.000%).
A funnel plot (Figure 9) showed no evidence of publication bias, a conclusion confirmed by

Begg and Mazumdar’s rank correlation test (Kendall’s S statistic P-Q = −1.00; tau without continuity
correction = −0.333, z = 0.522, p = 0.301; tau with continuity correction = 0.000, z = 0.000, p = 0.500)
and by Egger’s linear regression test (intercept = −1.465, SE = 3.682, 95% CI −48.260 to 54.331, t = 0.398,
df = 1, p = 0.379). The Duval and Tweedie’s trim-and-fill test did not identify any missing studies.
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3.7.5. Interleukin-6

Data from two trials comprising 106 participants were pooled in our meta-analysis [29,42].
Pooling these findings, a trivial ES of −0.229 (SE = 0.202, 95% CI −0.624 to 0.167, Z – value = −1.134,

p = 0.257; Figure 10) was computed, without significant heterogeneity (Q = 0.002, df = 1, p = 0.966;
I2 = 0.000%).
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3.7.6. Tumor Necrosis Factor alpha

Data from two trials comprising 106 participants were pooled in our meta-analysis [29,42].
Pooling these findings, a trivial ES of −0.257 (SE = 0.202, 95% CI −0.653 to 0.139, Z – value = −1.274,

p = 0.203; Figure 11) was computed, without significant heterogeneity (Q = 0.324, df = 1, p = 0.569;
I2 = 0.000%).
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3.8. Sensitivity and Cumulative Meta-Analyses

Both sensitivity and cumulative meta-analyses confirmed the reliability and stability of the findings.

4. Discussion

To our knowledge, this is the first systematic review and meta-analysis conducted examining
the effects of acute and chronic (poly)phenol-rich supplementation on cognitive functions and
brain parameters in aging adults. Data regarding changes in a variety of cognitive functions
(e.g., psychomotor function, visual processing, attention, executive function, verbal and spatial
memory, working memory, and learning abilities) and brain parameters (cerebral blood flow,
cerebral hemodynamics, neuroplasticity, and neuroinflammation) following an acute and/or chronic
consumption of (poly)phenol-rich supplementation were extracted from the reviewed trials. However,
only a few items showed to be sufficiently comparable and were included in the meta-analysis
(i.e., executive functions during TMT-A and TMT-B, BDNF, HsCRP, IL-6, and TNF-α). The pooled
analysis suggests that chronic administrations (6–26 weeks) of (poly)phenol-rich supplementation have
no significant effect on executive functions (TMT-A and TMT-B). In agreement with these findings,
some of the included studies have reported that a daily ingestion of 200–300 mg of resveratrol [40,42]
as well as 110 mg of isoflavones [43] for a period of 3 to 6 months had no effect on the registered
performance during TMT-A and TMT-B tests. However, the ingestion of higher resveratrol doses
(1000 mg/day for 3 months) in the study of Antom et al. [40] significantly improved the information
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processing speed during TMT-A test (i.e., which was not the case using a lower dose of 300 mg/day).
Similarly, in response to a daily dose of moderate to high (520–933 mg of total (poly)phenols for
2 months) polyphenol-rich cocoa drinks, Mastroiacovo et al. [26] demonstrated a significant lower time
to completion during both TMT-A and TMT-B tests. Discrepancies between findings from the included
studies may be linked to the dose (low vs. intermediate vs. high) with intermediate (≈500 mg/day) to
high dose (≈1000 mg/day), seemingly improving psychomotor performance of aging adults [26,40].
A dose of 300 mg/day or lower seems only sufficient to stabilize this cognitive performance during
the 6–26 weeks intervention period with no more beneficial effect. This suggestion is in line with the
findings of Mix and Crews [44], indicating that 180 mg/day of flavonoid-rich Ginkgo biloba extract EGb
761 results in a nonsignificant change in both TMT-A and TMT-B performance compared to baseline.
Another included study in the meta-analysis of TMT-B performance [35] revealed that a daily dose of
100 mg soy isoflavones (i.e., low dose) increased performance during TMT-B compared to baseline
after one month and significantly decreased after 3- and 6-months of intervention. Taken together, the
findings from these studies suggest that a low polyphenol dose (≤300 mg/day) may enhance executive
functions up to 1 month of intervention period and may stabilize this performance up to 6–8 weeks
of intervention period but do not exert enough effect to counteract the decline in executive functions
which can be detected after 3 or 6 months of intervention in aging populations. To counteract the
unwanted effect of aging on TMT performances, it seems that at least a daily intermediate to high dose
(≥500 mg/day) of polyphenols’ compound should be administered in clinical trials lasting 3 to 6 months.
This suggestion extends to future studies investigating the effect of polyphenol-rich supplementation
on overall cognitive performance, as Mastroiacovo et al. [26] indicated also a significant increase in
“z score” (overall cognitive performance) after 6 months consumption of both intermediate (520 mg/day)
and high (933 mg/day) flavanols drinks.

In addition to the used polyphenol dose, the bioavailability of the ingested phenolic compounds is
usually reported as an important factor influencing the change on cognition and brain function [57,58].
From a pharmacological perspective, bioavailability is the rate and extent to which the bioactive
compound is absorbed and becomes available at the site of action [59]. In other words, this rate
reflects the ability of the bioactive compound to cross membranes/barriers and to reach the tissues
in an appropriate amount of time to exert its effect [57,60]. Variation in phenolic bioavailability
ranges from 0.3% to 43% [21], with isoflavones (≈43%) and Gallic acid (≈38%) representing the most
well-absorbed polyphenols, followed by catechins (≈18%), flavanones (≈9%), and quercetin glucosides
(≈2.5%); the least well-absorbed polyphenols (<1%) are the proanthocyanidins, the galloylated tea
catechins, and the anthocyanins [61,62]. This classification suggests that the most well-absorbed
polyphenols such as isoflavones have higher abilities to cross the brain–blood barrier in order to
induce a neuroprotective response and to thereby enhance brain and cognitive functions. Findings
from the included studies confirm this suggestion for some cognitive functions and indicate that a
daily ingestion of 100–110 mg isoflavone for 6 months may improve verbal and visuospatial memory
functions and visual-motor function [35,43] while the ingestion of a high dose of anthocyanidins
(387 mg/day) only improved the working memory performance during a 2-back cognitive task with
no significant effect on other assessed cognitive functions [31]. Therefore, it is recommended that
future trials use intermediate to high doses (≥500 mg/day) of polyphenols with an intermediate (9%) to
high rate of bioavailability (43%). This strategy would increase the amount of polyphenol metabolites
effectively transported/distributed/delivered to target tissues, enhancing the bio-efficacy of the adopted
supplementation, thereby impacting the promotion of brain health and the improvement of cognitive
performance [59].

Regarding the pooled analysis of the neuroplasticity and neuroinflammation markers, results
suggest that the chronic ingestion of 200 mg resveratrol/day or 387 mg anthocyanidins/day have no
significant effects on BDNF, HsCRP, IL-6, and TNF-α. All included studies in the analysis of BDNF and
Hs-CRP are in line with these findings and showed either an absence of significant changes [29,40]
or an increase of a similar magnitude for these biomarkers (BDNF and Hs-CRP) following both
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(poly)phenols and placebo supplementation [42]. The analyses of IL-6 and TNFα are also in line with
the pooled analysis, demonstrating an absence of significant beneficial effects of (poly)phenol-rich
supplementation on these biomarkers with either a significant increase [42] or decrease [29] of a similar
magnitude following polyphenols and placebo supplementation. However, polyphenols are widely
reported to inhibit neuroinflammation by attenuating nitric oxide (NO) production, iNOS induction,
NADPH oxidase activation, and subsequent reactive oxygen species (ROS) and proinflammatory
cytokine (e.g., IL-1β, IL-6, and TNF-α) generation [20,63–65]. The present results of the pooled analysis
failed to demonstrate any anti-inflammatory action of chronic anthocyanin [31] and resveratrol [29,42]
supplementation on Hs-CRP and/or IL-6 and TNF-α. These results indicate that the employed dose
(200 mg to 387 mg) and the bioavailability of the used polyphenol compound (e.g., 0.4 for anthocyanin)
of the included studies were not sufficient to exert anti-inflammatory effects. Again, the results
from this meta-analysis suggest that at least an intermediate (≥500 mg/day) dose of polyphenols
compound with at least intermediate to high bioavailability rates (≥9%) are needed to utilize the
bio-efficacy of these food components. This suggestion is in line with previous studies showing
that a daily dose of (poly)phenol-rich supplementation with 135 mg to 200 mg total polyphenol has
no effect on CRP, IL-6, IL-18, and TNFα [66,67] while blackcurrant juice containing 617 mg total
polyphenols has the potential to decrease TNFα, IL-1β, and iNOS mRNA levels while increasing
FR-scavenging capacity [68]. Similarly, it has been shown that catechin (estimated bioavailability of
18%) and flavanone (estimated bioavailability of 9%) are highly effective in inhibiting TNF-α release
and inflammatory signaling in glial cells and in protecting against neuroinflammatory injury [69], while
quercetin supplementation with a lower estimated bioavailability rate (≈2.5%) fails to demonstrate any
anti-inflammatory action [70].

The impact of using (poly)phenol compounds at efficient doses and bioavailability rates to
increase its efficacy have also been confirmed by the majority of studies in Table 3. Regarding the
effect of rich-(poly)phenol supplementation on CBF, Marsh et al. [37] showed that flavanol-rich cocoa
containing 200 mg to 395 mg total polyphenols failed to improve CBF responses while a higher dose
of 494 mg [30] and 900 mg [45] showed increases in mean CBF velocity, neuronal activities, and
regional CBF in the anterior cingulate and central opercular cortex. Generally, the beneficial effects
of (poly)phenols on CBF and neuronal activity were reported to be due to their positive impact on
several measures of endothelial function and other aspects of the vasculature through an activation of
the NO system [25,71–73]. Particularly, polyphenol compounds were hypothesized to promote nitric
oxide (NO) synthesis (an important contributor to flow-mediated dilation [74]) by enhancing nitric
oxide synthase (NOS) activity and NO bioavailability through limiting NO scavenging by ROS [75].
To exert these beneficial effects on the brain, a sufficient amount of polyphenol metabolites would be
expected to cross the blood–brain barrier [76] towards their specific binding sites on neurons, triggering
the activation of various downstream kinases (e.g., mitogen-activated protein (MAP) and PI3 kinase
pathways), thus inducing the opening of agonist-activated ion channels and leading to increased
neuronal activity accounting for increased CBF [77,78]. The abovementioned mechanism indicates
that an insufficient amount of polyphenol metabolites, beyond the brain–blood barrier, would blind
the bio-efficacy of (poly)phenol-rich supplementation on brain health. Such a mechanism explains
the divergent effects of flavanol rich cocoa on CBF (absence of beneficial effect using 200–395 mg vs.
improvement using ≥495 mg of polyphenol dose) and, most importantly, suggests that an efficient
(poly)phenol dose (≥500 mg) containing phenolic compound with moderate to high bioavailability
(≥9%) is indispensable to improve brain health in older adults.

Strengths and Weaknesses: This is the first systematic review and meta-analysis evaluating the effect
of acute and/or chronic (poly)phenols-rich supplementation on cognitive and brain function in healthy
aging adults. Strengths of the study include a comprehensive coverage of the current literature via the
utilization of a wide range of key words related to cognition and brain, the searching through two
scholarly databases (as recommended by the Cochrane Association guidelines and good practices for
conducting systematic reviews), the absence of language restriction, and a careful appraisal of study
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quality. However, given some methodological issues, results must be interpreted with caution. These
methodological issues include (i) the application of some broad key words (e.g., “injury”, “patient”,
“disease”, and “impairment”) that were filtered out of the systematic search (modifier: NOT) and,
therefore, some relevant results would have been likely filtered, and (ii) the relatively medium sample
sizes of the individual studies which used a large variety of cognitive task batteries, imaging technics,
neuroprotective markers, observation periods, and supplementation doses. Therefore, further rigorous
studies on this issue, including more than two scholarly databases (e.g., Web of Science, Pubmed,
Embase, and Cochrane), are warranted.

5. Conclusions

The evaluation of the beneficial impact of (poly)phenols on cognitive and brain function
during aging has recently garnered increased interest as food industries are continually involved in
developing new attractive alternative therapeutic agents. This meta-analysis failed to provide evidence
regarding the neuroprotective and anti-inflammatory effect of (poly)phenol supplementation in aging
adults. However, findings from individual studies included in this systematic review suggest that
polyphenol-rich supplementation may improve some cognitive and brain functions in older adults.
The beneficial effects of (poly)phenols on the studied brain health parameters appear to depend on
both ingested dose and bioavailability, which vary greatly. Particularly, the present systematic review
and meta-analysis suggest at least an intermediate dose (≥500 mg) of polyphenols with intermediate
(≈9%) to high (43%) bioavailability rate/profiles (e.g., isoflavones, gallic acid, catechin, and flavanones)
is needed to cross the blood–brain barrier and to exert a healthy effect. These findings provide
better general insight into (poly)phenols effect on cognitive and brain function and present further
information, including appropriate dosage and bioavailability profiles of the consumed compounds, to
provide health benefits in older brain structures and functions. This information should be useful for
the design and interpretation of intervention studies investigating the health effects of (poly)phenols.
However, as the number of available studies concerning the described topic was rather small, it is
essential to conduct further research with adjusted supplementation and measuring methodology to
create improved approaches to take advantage of health promoting effects of these compounds in
older adults.
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