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Supplementary Note 1: Network analysis to investigate the mechanistic basis of EMT
continuum phenotype observed in the data analysis.

To investigate the mechanistic basis of our data analysis from multiple CTC datasets, we
explored the expansive literature for a functional implication of the genes that were identified in
epithelial and mesenchymal signatures for their roles in EMT and/or MET (see Supplementary
Table 2). We next constructed a network based on the functional implications of these genes in
EMT and/or MET, including their effects on the regulatory feedback loops involving miR-200,
ZEB and GRHL2 — the fulcrum of epithelial-mesenchymal plasticity. We mapped the
connections known to promote EMT and metastasis (SNAIL, TIMP1, etc.) through promoting
ZEB and/or inhibiting miR-200. Moreover, some genes in this list have already been known to
have a direct effect on CDH1 and VIM. Please note that many of the molecules identified here
are markers of epithelial and mesenchymal state, and their functional impact on EMT or
metastasis remains elusive, hence they were excluded from the network. CDH1 and VIM were
chosen to denote epithelial and mesenchymal states respectively; their expression levels are
considered as the outcome for the network.

As the data were collected across multiple cancer types, the parameters for each
connection are very likely to vary. Hence, instead of applying a single parameter set to the
network, we sampled the parameter space via a uniform distribution using a tool called RAndom
ClIrcuit PErturbation (RACIPE)'. As the name suggests, RACIPE' chooses the parameter space
of a given circuit randomly to elucidate the robust dynamical outcomes of the network and
pinpoint the gene expression signatures most likely to emerge from the given network topology.

To understand the significance of the network topology, we generated random network
topologies by swapping the edges while maintaining the degree of each node and the number of
activating and inhibiting edges in the network, ensuring the conservation of the nature of the
nodes. Furthermore, we characterized the effect of single edge perturbations (SEP’s), i.e., change
in the sign of one edge in the network at a time, on the correlation between ZEB-miR200 and
VIM-CDHI pairs. With randomized networks (Supplementary Fig-ta,Supplementary Fig-6a), we
observe that the correlation between the markers VIM-CDHI1 as well as the core elements
ZEB-miR200 is strongly negative in the original network, denoted by wildtype (WT). A very
small fraction of randomly generated topologies have equal or stronger correlation than WT for
both (CDH1, VIM) and (ZEB, miR-200), suggesting the importance of the particular network
topology for the observed behavior. Similarly, we observe that most SEPs do not show as a
strong correlation in terms of (CDH1, VIM) or (ZEB, miR-200) as the original network (WT,
shown in red). The effect of perturbations on the network is calculated by applying a distance
metric, Jensen-Shannon Divergence (JSD)?, on the steady-state frequencies of the networks.

Supplementary Note 2: Gene expression quantification of CTCs detected by the
ClearCell Polaris workflow

An index for RNA-Seq by expectation maximization (RSEM) was generated based on the hgl9
RefSeq transcriptome downloaded from the UCSC Genome Browser database. Read data were
aligned directly to this index using RSEM/bowtie. Quantification of gene expression levels in
counts for all genes in all samples was performed using RSEM v1.2.4°. Genomic mappings were
performed with TopHat 2 v2.0.13%, and the resulting alignments were used to calculate genomic



mapping percentages. Raw sequencing read data were aligned directly to the human rRNA
sequences NR 003287.1 (28s), NR 003286.1 (18S) and NR 003285.2 (5.8S) using bowtie 2
v2.2.4°, and the percentage of reads aligned to rRNA was then calculated as reads aligned to
these sequences divided by the total reads.

Supplementary Note 3: Exploration of novel surface markers for CTCs.

We performed Wilcoxon’s rank-sum test for determining differentially expressed genes between
CTCs and blood cells. P-values thus obtained were subjected to multiple test corrections using
the Benjamin-Hochberg method (p.adjust function in R). We applied an FDR cut off of 0.05 for
selecting the differential genes (DE). DE genes that were expressed in at least 80% of the CTCs
were retained. We downloaded a list of the surface proteins from the Cell Surface Protein Atlas
(CSPA) database® and took intersection with the narrowed set of DE genes. Supplementary
Fig-12 displays the selected markers in the order of the gene-wise fold change values.
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Supplementary Figure-1: A) Boxplots show the distribution of total read counts across cells in
each dataset. B) Boxplots show the distribution of the number of detected (non zero) genes in
each dataset.
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Supplementary Figure-2: Expression of known markers in curated CTCs and PBMCs
A) Expression of Epithelial markers in the integrated dataset of CTCs and PBMCs (blood). B)
Expression of Fibroblast markers C) Expression of Platelet markers. D) Expression of T-cell

markers.
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Supplementary Figure-3:

Combined epithelial, mesenchymal and cancer stem cell signatures.
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Supplementary Figure-4: Scatter plots show Epithelial-Mesenchymal anti-correlation for

individual datasets.
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Supplementary Figure-5: The network simulated using RACIPE, including genes used for the

creation of epithelial and mesenchymal signatures. Here n200 represents miRNA-200.
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Supplementary Figure-6: Top: Cumulative frequency distribution of the correlation between
A) VIM and CDHI and B) ZEB and miR200. The black line represents the correlation
coefficient for ‘wildtype’ (WT) network. Bottom: scatter plots of JSD distance against the
correlation between C) VIM and CDHI1 and D) ZEB and miR200 for SEP’s. Y-axis represents
the distance of each SEP from WT (JSD).
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Supplementary Figure-7: The heatmap of log, (expressiont+1) of selected epithelial,
mesenchymal marker along with PDL1 and HLA-B for cells with non zero PDL1 expression
from one specific study (having maximum numbers of PDL1 expressing cells). Note that we
only showed the HLA-B expression since this was most well expressed.
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Supplementary Figure-8: Treatment history of the patients
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Supplementary Figure-9: Number of expressed genes in CTCs detected using the
Clearcell-Polaris workflow
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Supplementary Figure-10: Tissue - single cell correlation plot obtained from RCA
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Supplementary Figure-11: Log2 fold change of surface markers between CTC and PBMC
populations. Besides EpCAM, few genes including ITGB5, TACSTDZ2, SLC39A6 appear specific
to CTCs.
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Supplementary Figure-12: PCA plots of log transformed median normalized counts and
Harmony batch correction method.
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Supplementary Figure-13: Clustered heatmap of Main Figure 2-B
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Supplementary Table 1. List of all studies from which datasets are used

The table can be found as a separate file Supplementary_Table 1.xlsx. The sheet contains data
of the studies used in the project in the form of a table with identifier, title, number of samples,

link etc. More information about the studies can be fetched from the links provided.

Supplementary Table 2. Functional details of the EMT related genes used in the study.

The table can be found as a separate file Supplementary_Table_2.xIsx. The sheet contains data

of the genes used for all the analysis related to EMT.

Supplementary Table 3. Genes used as features for machine learning based analyses.

The table can be found as a separate file Supplementary Table 3.xlsx. The sheet contains data

of the list of genes used as features for machine learning model.

Supplementary Table 4. Machine learning results The table can be found as a separate

file Supplementary_Table_4.xlsx The workbook Supplementary Table_ 4.xIsx contains

testing and training statistics done on three ml models.
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